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Abstract: The purpose was to show, using destructive/nondestructive methods, that the interplay
between water, tablet structure, and composition determine the unique spatiotemporal hydration
pattern of polymer-based matrices. The tablets containing a 1:1 w/w mixture of sodium alginate with
salicylic acid (ALG/SA) or sodium salicylate (ALG/SNA) were studied using Karl Fischer titration,
differential scanning calorimetry, X-ray microtomography, and magnetic resonance imaging. As
the principal results, matrix specific features were detected, e.g., “locking” of the internal part of
the matrix (ALG/SA); existence of lamellar region associated with detection of free/freezing water
(ALG/SA); existence of water penetrating the matrix forming specific region preceding infiltration
layer (ALG/SNA); switch in the onset temperature of endothermic water peak associated with an
increase in the fraction of non-freezing water weight per dry matrix weight in the infiltration layer
(ALG/SNA). The existence of complicated spatiotemporal hydration patterns influenced by matrix
composition and molecular properties of constituents has been demonstrated.

Keywords: hydrophilic matrix tablets; sustained release drug delivery; sodium alginate; polymer
hydration; swelling; drug solubility; polymer dissolution; magnetic resonance imaging; mass
transport; X-ray microtomography

1. Introduction

Considering the processes taking place in polymer matrix tablets during hydration,
one notices their complexity, interdependence, parallelism, and multi-faceted nature. At
the same time, in the hydrating matrix, the effects related to water transport to its interior,
increased rotational freedom of polymer chains, dissolution and erosion of the outer layers
of the polymer matrix, polymer swelling, and the formation of viscous solutions occur.
The effects of the polymer hydration are further associated with drug dissolution and
diffusion effects, osmotic effects, etc. [1,2]. The result of these phenomena is responsible for
macroscopic properties and the performance of the drug delivery system [3–7].

The studies of the phenomena occurring during the hydration of matrix tablets were
initiated in the last decade of the 20th century [8,9]. The simple methods of polymer matrix
expansion recording by photographing in visible light, video recording or measuring
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the refraction have been applied [10–13]. Starting from these studies, the existence of
several fronts or regions have been proposed to describe the matrix and its temporal
evolution e.g., swelling, diffusion and erosion fronts [8]; water penetration, phase transition,
apparent gel, dissolution fronts [14]; penetration, swelling, erosion fronts [15] etc. The fronts
terminology has been set arbitrarily with no exhaustive experimental confirmation of the
actual physicochemical processes occurring therein. The studies in the proceeding decades
show that the processes occurring in the hydrating matrix are much more complex [6,16].

Magnetic resonance imaging (MRI, MR imaging) has been used to study hydrophilic
matrices starting from mid-90’s [17–19]. Spatially resolved MR relaxometry (T2 relax-
ation time mapping), one of the MR imaging techniques, has been proposed to obtain
deeper insight into their molecular properties as proton distribution and mobility [20,21].
Fronts derived from optical studies have been consequently imposed on MR images or
T2 profiles [22,23]. X-ray synchrotron microtomography [24] and X-ray microtomography
(microCT) [25] have also been used for studies on the hydration of polymeric matrices in
situ. Some X-ray synchrotron microtomography studies have been concentrated on freeze-
dried samples [26,27]. It has been shown that the behavior of the matrix during hydration
(morphology and geometrical aspects) can have an impact on the subsequent dissolution
of the drug and several aspects of drug dissolution including various kinetics models,
changes in dissolution kinetics and what is also important, dissolution variability [28,29]. A
simple approach identifying only the external gel layer is the most common when studying
hydrophilic matrices. However, at this moment, some studies allow more detailed analysis
and in consequence have revealed that more complex hydration patterns are possible and
are not an artifact [4,5,27]. The main challenge is to relate the matrix features observed
by imaging methods with quantitative information concerning the composition of the
particular matrix zones.

In the previous study, we proposed an integrated methodology to effectively evaluate
multiple spatiotemporal aspects of matrix tablet hydration: (1) quantitative water distri-
bution using Karl Fischer (KF) titration of precisely localized samples; (2) water–polymer
interaction using spatially localized differential scanning calorimetry (DSC); (3) water
distribution and its molecular mobility in hydrophilic polymeric matrix upon hydration
with non-invasive MRI [30]. According to the described methodology, the assessment of
water content and interaction with the matrix is feasible for any area of the hydrated tablet,
regardless of the hydration time and the state of the polymer–gel, sol, wetted polymer, un-
hydrated material, etc. In the mentioned work, placebo tablets containing sodium alginate
as a matrix former have been analyzed. In the current study, we investigated matrix tablets
containing the same polymer type and grade. However, the tablets also comprised active
pharmaceutical ingredients (API): salicylic acid or sodium salicylate. For the purpose of the
study, substances with similar molecular weight and structure which significantly differ
in physicochemical properties were chosen. The solubility of salicylic acid is 2.48 g/dm3

and the solubility of sodium salicylate is 48.1 g/dm3. Both substances are often applied as
model drugs [31–33].

The scientific hypothesis was that different and complicated hydration patterns would
occur when dealing with various compositions of the sodium alginate-based matrices.

The detailed spatiotemporal characterization of the matrix during hydration could
play a crucial role in the elucidation of hydration and drug dissolution mechanisms. There-
fore, the goal of the study was to show that the interplay between water, tablet structure,
and composition determines unique spatiotemporal hydration patterns which influence
the performance of controlled release matrix tablets. The analysis of the influence of API
on physicochemical properties and the behavior of tablets containing sodium alginate
during hydration was carried out. Such samples under hydration are non-equilibrated,
which means that the physicochemical state and morphology of the sample depend on
the position in the matrix and on time. The real challenge is to take snapshots of the
physicochemical properties of such a system in a reasonable time to describe its evolu-
tion. The previously described methodology, enriched by X-ray micro tomography, was
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applied to record and assess spatial and temporal changes of water content, its mobility
and interaction with the matrix, as well as the tablet matrix morphology.

2. Materials and Methods
2.1. Materials

Sodium alginate Protanal LF 240 D was purchased from FMC Biopolymers (Philadel-
phia, PA, USA): the intrinsic viscosity [η] = 4.27·102 cm3/g, average molar mass 151.955 g/mol,
degree of polymerization 767, M unit content: 65–70%, G unit content: 30–35% (M/G ≈ 2).
Sodium salicylate (SNA) and salicylic acid (SA) were purchased from Pharma Cosmetic
(Kraków, Poland). All components were of pharmaceutical grade.

Aquametric Composite 5, methanol, and methanol high purity grade were supplied
by Panreac AppliChem (Barcelona, Spain). Hydranal Composite 5 and methanol were
obtained from Honeywell Fluka (Charlotte, NC, USA). All other materials used in the
study were of analytical grade.

2.2. Tablet Preparation, Hydration and Spatial Sampling

The tablets used in the study contained a 1:1 w/w mixture of sodium alginate with
salicylic acid (ALG/SA) or sodium salicylate (ALG/SNA). Round, flat matrix tablets with
a diameter of 12 mm, a thickness of 6 mm and a weight of 800 mg were prepared by direct
compression of powder mixtures using a single punch tablet press EK0 (Korsch-Erweka,
Berlin, Germany). The hardness of all tested tablets was in the range of 40–50 N.

A spatially localized sampling of the tablet after its hydration was performed to
provide spatially localized samples for Karl Fischer and differential scanning calorimetry
measurements. It was feasible in the device developed especially for this purpose. It
consisted of a tablet holder and a micrometric screw coupled with a piston. After unilateral
tablet hydration inside the device, the tablet was cut into 1 mm thick slices by pushing up
the tablet within the holder to the required position with the use of the micrometric screw.
The exception was the tablet region that protruded from the holder after hydration due
to polymer swelling: its sampling was not viable with the same resolution. For a detailed
description of the device as well as for a mode of tablet hydration, the reader is referred to
the previous study by Juszczyk et al. [30].

2.3. Spatial Distribution of Water Content within the Matrix Tablets Using Karl Fischer Titration

The study of water distribution in tablets during hydration by Karl Fischer titration
method was carried out using 890 Titrando with Touch Control and 803 Ti Stand (Metrohm,
Herrisau, Switzerland) in accordance with the experimental methodology described in
Juszczyk et al. [30]. Briefly, the hydrated tablets were sampled at 1, 2, 3, and 4 h of hydration
according to procedure described in Section 2.2. Samples were weighed accurately, placed
into 50 mL flasks filled with methanol, sonicated for 15 min, and left for stabilization for
24 h. The water content in the samples was corrected in reference to blank measurements.
The initial water content in unhydrated matrices was also determined.

2.4. Differential Scanning Calorimetry

The study of water distribution and its interaction with the matrix during hydration
by DSC was carried out using the DSC 822e (Mettler–Toledo, Greifensee, Switzerland)
with a liquid nitrogen cooling station in accordance with the experimental methodology
described in Juszczyk et al. [30]. The calibration of the apparatus for temperature and
enthalpy was carried out using zinc, n-octane, and indium standards. The samples were
frozen to −80 ◦C at 10 ◦C/min, and then they were gradually heated from −80 ◦C to 30 ◦C
with a scanning rate of 2 ◦C/min. Weight of the samples taken from the slices of hydrated
tablets was in the range of 3–30 mg.
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2.5. Magnetic Resonance Imaging and Image Analysis

MR imaging study was carried out using 9.4 T Bruker Biospin MRI scanner (Bruker,
Ettlingen, Germany) and multi-slice multi-echo (MSME) pulse sequence in accordance
with the experimental methodology described in details in Juszczyk et al. [30].

Briefly, the parameters of the MSME sequence were as follows: number of echoes—
NE = 256, echo time—TE = 3.536 ms, repetition time—TR = 5 s, number of accumulations—
NA = 1, slice thickness—1 mm, field of view—FOV = 28 × 28 mm2, matrix size of
256 × 256 pixels. The MSME stacks of images obtained at consecutive echo times were
imported to Fiji distribution of ImageJ version 1.44 (National Institutes of Health, Bethesda,
ME, USA, http://rsb.info.nih.gov/ij/, last accessed on 26 October 2021) [34]. The 14-pixel
wide (1.53 mm) segment of the image was chosen. The rows of the resulting images were
averaged to obtain profiles along the axis of the tablet (1D images). The pixel-by-pixel
analysis of the 1D image stacks was performed to obtain 1D parametric images of T2 decay
constant and signal amplitude A. For each profile, pixel image intensity vs. echo time was
fitted using the Levenberg–Marquardt algorithm with exponential function, Equation (1).

f (t) = y0 + Ae−
t

T2 (1)

The calculations were made using OriginPro 2021b (OriginLab Corporation, Northamp-
ton, MA, USA).

2.6. X-ray Microtomography

Microtomography study was performed using Benchtop CT160 X-ray computed
microtomograph (Nikon Metrology NV, Leuven, Belgium). The scanning parameters were
set as follows: X-ray energy of 148 keV, current 99 µA and rotation step of 0.12◦. Scanning
time was optimized to 17 min per sample to be comparable with the MRI acquisition time.
The 3D image volume was reconstructed using the CTpro 3D Version XT 4.4.2 (Nikon
Metrology NV, Leuven, Belgium) with an isotropic voxel size of 9 µm. Further image
processing was performed using Fiji distribution of ImageJ version 1.44. A 1 mm thick
slice (related to 1 mm slices used in MRI study) was cropped using slice keeper stack tool.
Finally, the two images were produced using the z-project stack tool: (1) image of averaged
pixel intensity over all slices in 1 mm slice; (2) image containing standard deviations of
pixel intensity over the slice.

2.7. Drug Dissolution Study

The drug dissolution study was carried out using the rotating basket method according
to the European Pharmacopeia. A Hanson Vision Elite 8 dissolution tester equipped with
a Hanson Vision AutoPlus Maximizer panel with a Hanson Vision AutoFill sampler and
a Hanson Vision Heater was used (Teledyne Hanson Research, Chatsworth, CA, USA).
The tests were carried out in distilled water for 4 h at the basket rotation speed of 100 rpm
at 37 ◦C ± 0.5 ◦C. The samples were taken every 30 min. Detection of the amount of
the released substances was carried out using Shimadzu UV-1800 spectrophotometer
(Shimadzu USA Manufacturing Inc., Canby, OR, USA).

3. Results
3.1. Characteristics of ALG/SA Tablets

The initial water content of the unhydrated alginate tablets containing salicylic acid
determined by the KF (wc0(KF)) method was 7.1%. After immersion of the tablet in water,
an increase in total water content (wctot(KF)) was observed in the whole tablet structure,
regardless of hydration time. After the first hour the wctot(KF) along the axial cross-section of
the ALG/SA tablet, was in the approximate range of 10–90%. In the deepest tablet slice, i.e.,
at the distance from the bottom of tablet l = 0–1 mm, the value of wctot(KF) increased from
10.1% at 1 h of hydration to 13.3% at 2 h. In the next slice (closer to the tablet surface), i.e.,
l = 1–2 mm, it raised from 12.2% to 15.8%. In the slice lying at l = 2–3 mm, an increase from

http://rsb.info.nih.gov/ij/
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17% to 30% was observed, and for the region at l = 3–4 mm water content augmented from
41% at 1 h to 50% at 2 h. It should be noted that wctot(KF) at a distance up to l = 4 mm did not
change much from the second to fourth hour. After 4 h the following values of wctot(KF) were
determined in those slices: 12.8% (l between 0 and 1 mm), 16.4% (l between 1 and 2 mm),
32.8% (l between 2 and 3 mm), 51.4% (l between 3 and 4 mm). The data, plotted as wctot(KF)
vs. time in particular slices is presented in Supplementary Materials Figure S1.

The highest difference in wctot(KF) was observed between the slice l = 3–4 mm and
the external part of the matrix, which was located in the proximity to the surrounding
medium and protruded from the holder due to polymer swelling. The spatial extent
of this region was dependent on the incubation time. The longer hydration, the larger
the swollen area. Tablet contour was detected at varying positions, which ended up at
l = 6 (1 h), l = 7 (2 h), l = 8 (3 h) or l = 9 mm (4 h). Therefore, the sample taken from this
region for KF measurements corresponded to its spatial position in a particular hydration
time (Figure 1A). Interestingly, the values of wctot(KF) decreased upon hydration time from
90.2% at 1 h to 80.3% at 4 h. Similar effects have been observed by Ching et al., 2008, during
the hydration of systems with sodium alginate in the acidic environment [35]. The authors
have linked the greater absorption of water into the alginate matrix in the early stages of
hydration with the formation of cracks and gaps that arose due to local acidification of
the matrix. These micro-cracks could also be formed as a result of the hydration of the
ALG/SA matrix due to the presence of a weak acid (salicylic acid) in the matrix.

Basing on the Karl Fischer data, it was observed that starting from 2 h of hydration,
water penetration for spatial range l = 0–4 mm was highly restricted and water concentra-
tion in this region was practically unchanged (see Figure 1A). The system was “locked” in
terms of water penetration for this spatial range. Differences in water content at subsequent
hydration times were evident for slices taken from the area above 4 mm—the evolution of
the system was restricted to this region only.

The DSC studies of samples taken from particular slices of hydrated tablet at 4 h
showed, that in spatial range l = 1–9 mm one endothermic peak corresponding to freezing
water fraction in the sample was observed. On the thermogram of the slice between
l = 0 and 1 mm (the least hydrated tablet region), no phase transition peaks were recorded.
In Figure 1C the transition heat of subsequent slice peaks was normalized to sample weight.
The normalized peak areas were increasing along the tablet’s axis from the tablet bottom,
and it was associated with increasing content of freezing water in the sample. The onset of
phase transition temperature registered for a slice between 3 and 4 mm was +1 ◦C, and
for the external slice (l ≈ 9 mm): +2 ◦C. The thermogram of the material taken from the
external slice was similar to the thermal characteristics of distilled bulk water, indicating
the presence of free water in these areas. The highest absolute value of phase transition
heat was recorded in the external part of the tablet (l ≈ 9 mm): −252 J/g, and the lowest
at a slice located between 1 and 2 mm: −19 J/g. The onset of temperature transitions
in the slices between 1 and 3 mm were shifted to lower temperatures (up to −12 ◦C),
which indicated a presence of freezing bound water in the sample. The obtained results
correspond to the data obtained for sodium alginate (ALG) placebo tablets [30]. Salicylic
acid did not influence the formation of the additional peaks of the water phase transitions
in sodium alginate tablets during its hydration (see Supplementary Materials Figure S3).

Total water content as measured by DSC was calculated as the difference of sample
weight before and after its heating up to 180 ◦C according to the procedure described in
Section 2.4. The weight of the non-freezing water fraction was calculated as a difference
between total water content (wctot(DSC)) and freezing water content. Figure 1B presents
the individual water fractions in the samples of all tablet slices, i.e., total, freezing, and
non-freezing water contents. The freezing water content in ALG/SA matrix increased from
the tablet bottom towards the external part of the tablet from 0% for l = 0–1 mm to 77%
in the external slice (l ≈ 9 mm). The non-freezing water content decreased from 17% in
the bottom slice to about 10% in the external part of the matrix. The water present in the
bottom slice was entirely a non-freezing water. In the external part, wctot(DSC) was ca. 87%.
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The comparison of water content as analyzed by KF and DSC at 4 h of hydration
showed the excellent agreement of the results.

Materials 2021, 14, 6531 6 of 19 
 

 

freezing water contents. The freezing water content in ALG/SA matrix increased from the 
tablet bottom towards the external part of the tablet from 0% for l = 0–1 mm to 77% in the 
external slice (l ≈ 9 mm). The non-freezing water content decreased from 17% in the bot-
tom slice to about 10% in the external part of the matrix. The water present in the bottom 
slice was entirely a non-freezing water. In the external part, wctot(DSC) was ca. 87%. 

The comparison of water content as analyzed by KF and DSC at 4 h of hydration 
showed the excellent agreement of the results. 

 
Figure 1. Changes in total water content (wctot(KF)) in subsequent ALG/SA tablet slices at 1, 2, 3 and 
4 h of hydration determined by Karl Fischer method—continuous lines serve as visual guide only 
(A); Freezing water content, non-freezing water and total water in subsequent tablet slices of the 
ALG/SA matrix after four hours of hydration as determined by the DSC method and total water 
content (wctot(KF)) determined by KF method—continuous lines serve as visual guide only (B); DSC 
heating curves of the samples taken from subsequent ALG/SA matrix slices after 4 h of hydration 
(C). 

In the imaging part of the study microCT and MRI were applied in separate experi-
ments. The temporal parameters of experiments were chosen to ensure similar conditions 
for observations and to enable co-registration of obtained results. MicroCT fast scan was 
used to match reasonable temporal resolution −17 min, which was comparable with a 

Figure 1. Changes in total water content (wctot(KF)) in subsequent ALG/SA tablet slices at 1, 2, 3 and
4 h of hydration determined by Karl Fischer method—continuous lines serve as visual guide only
(A); Freezing water content, non-freezing water and total water in subsequent tablet slices of the
ALG/SA matrix after four hours of hydration as determined by the DSC method and total water
content (wctot(KF)) determined by KF method—continuous lines serve as visual guide only (B); DSC
heating curves of the samples taken from subsequent ALG/SA matrix slices after 4 h of hydration (C).

In the imaging part of the study microCT and MRI were applied in separate experi-
ments. The temporal parameters of experiments were chosen to ensure similar conditions
for observations and to enable co-registration of obtained results. MicroCT fast scan was
used to match reasonable temporal resolution −17 min, which was comparable with a
single MRI scan. Single microCT slice was 10 µm thick and resulted in a mediocre signal to
noise ratio and in consequence a low information content. Therefore, the obtained data
were processed in a similar way as it was applied by Laity et al. for the processing of
synchrotron microtomography data [24]. Creating averaged image over 140 slices (1.4 mm
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thick segment) perpendicular to the matrix axis allowed to emphasize some density related
morphological features. Additionally, the standard deviation image reflected uniformity of
material density in this 1 mm slice.

Magnetic resonance imaging and X-ray microtomography gave, in non-destructive
manner, a more detailed overview of the hydration processes with much higher resolution
than previously described results of mechanical sampling of the tablets for KF and DSC
measurements.

According to Figures 2 and 3, it was apparent that the hydration pattern of ALG/SA
system was different than the corresponding placebo tablet presented by Juszczyk et al. [30],
i.e., there were distinct (relatively sharp) changes in T2/A profiles, MR images, and microCT
images. When looking at spatial relaxometric profiles at 1 h of hydration, it could be noted
that the part of profiles up to 4.5 mm resembled pure sodium alginate matrix, as has been
presented before [30].
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Figure 3. MicroCT (left) and MR images (right) of the profiles of ALG/SA matrix at 1 h (A) and
4 h (B) of hydration: microCT image containing standard deviations of pixel intensity and image
of averaged pixel intensity over all slices in 1 mm thick segment; MR images of the same fragment
of ALG/SA matrix at various echo times (3.5, 63 and 518 ms)—red square bracket marks lamellar
region. White dashed line marks initial end-position of a dry matrix before hydration.

Starting from the matrix bottom (l = 0 mm) the first region, which could be identified
as the core, was denoted as a minimally hydrated layer. Starting from l ≈ 3.5 mm at all
hydration times MR signal was detected and allowed quantitative assessment of effective
T2 relaxation time. This position marked the beginning of the infiltration layer (terminol-
ogy introduced after Miller-Chou [16]) was characterized by a high gradient of MR signal
amplitude (l in the range of 3.5–4.5 mm) for all hydration times. MicroCT cross-section ob-
tained at 1 h of hydration showed that the region denoted in the MRI profiles as infiltration
layer, corresponded to the region of lower density in a microCT image (orange zone as
depicted in false color scale). This suggested matrix swelling in this layer without mass
replenishment (water).

Regarding the next denoted region (gel) the starting position was identified at maximal
amplitude, i.e., at the distance l between 4.4 and 5.4 mm. This region was relatively
narrow, similar to those denoted as a gel in pure alginate, but of slightly higher T2 values
(≈10 ms) [30]. Next, in ALG/SA T2 profile at 1 h of hydration spikes in T2 profile were
observed for l between 5 and 7 mm, with anomalous spatial T2 variations at approximately
constant proton density level (constant hydration level). These spikes at 4 h became less
pronounced, but this region spatially expanded during hydration—at 4 h it was in the
range between 6 and 9 mm. To explain this phenomenon, three MR images of the same
spatial region at two representative hydration times (1 and 4 h) are presented in Figure 3. At
each hydration time, 256 images (with increasing echo time) were acquired simultaneously
and some of them revealed important morphological features due to different T2 contrast
at consecutive echo times. The images presented in Figure 3 complemented T2/A profiles
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derived from MR images (Figure 2). The first echo image (TE = 3.5 ms) reflected mainly
proton density and is only slightly T1 weighted. The image was uniform concerning image
intensity, and it was only slightly grainy, which was an effect of possible micropores or
microbubbles at sub-pixel level i.e., <100 µm. MicroCT images confirmed the existence
of micropores and microbubbles. The image of the same fragment obtained at the echo
time of 63 ms revealed morphological details of the matrix inside the 5–7 mm region (at
1 h of hydration). Despite the almost constant proton density in this region, the matrix
was heterogeneous on a macro scale in terms of local spatial variations of T2. These
variations formed irregular ca. 300 µm thick lamellae oriented almost perpendicularly to
the matrix axis. The heterogeneity of this region was at the molecular level, it reflected
water molecular dynamics. The only spatial variations were observed in T2. MRI derived
proton density or matrix density according to microCT results were homogeneous. One
can hypothesize concerning the origin of this region, which is absent in the pure sodium
alginate matrix, that the slight acidification of the matrix caused by dissolving salicylic acid
led to the modification of the internal gel structure. This observation corresponded with
the decrease in water content in the external layer of the matrix at subsequent hydration
times as measured by KF. The results of MRI relaxometry were related to spatially resolved
DSC measurements obtained at 4 h of hydration. At ca. 9 mm, i.e., in a lamellar region, the
bulk water was observed.

Following the lamellar region, a very narrow zone with steeply increasing T2 could be
observed (denoted as sol). At the echo time of 518 ms, only pure solvent was visible as a
blue region. At such long echo time, the signal from the matrix was attenuated, giving a
clear matrix/solvent border.

In the external region containing medium slight T2 drop from ≈220 ms at 1 h down to
≈210 ms at 4 h of hydration was observed in subsequent hydration times. This implies
marginal erosion of the system in terms of matrix dissolution.

According to dissolution profiles presented in Supplementary Materials Figure S4,
partial release of salicylic acid was observed. Therefore, it could be postulated that phenom-
ena observed in the ALG/SA matrix, i.e., (1) the “squeezing” of water from the external
layer of the matrix; (2) the formation of lamellar structures in the middle, which (3) led
to drastic “locking” of the internal part of the matrix system, were caused by the changes
of polymer solubility, connected with the reversal of dissociation of alginate chains in
acidic environment created by dissolving SA. In the placebo alginate matrix, such a drastic
“locking” of the internal part of the matrix has not been observed. The total water content
in ALG matrix for l = 0–4 mm slightly but steadily increased [30].

3.2. Characteristics of ALG/SNA Tablets

The initial water content of the unhydrated alginate tablets containing SNA determined
by the KF method was 7.7%, a situation similar to ALG/SA matrix. The content of water
absorbed in the slices of the ALG/SNA matrix from the bottom to l = 4 mm gradually
increased with time (see Figure 4A). After the first hour of hydration, the slice located at the
tablet bottom (l = 0–1 mm) contained 8.6% of water. During the next three hours, it increased,
up to 23.9%. Initially, a small amount of water was determined between 1 and 2 mm (10.0%),
and at the end of the experiment, it reached 36.2%. The next slice contained, at distance
l between 2 and 3 mm, from 28.1% to 52.9% of water in subsequent hours. For l = 3–4 mm
a 50.2% water content was observed after 1 h of hydration. It increased up to 61.7% after
4 h. The total water content of the external, swollen part of the matrix did not change
noticeably. After the first hour of hydration wctot(KF) of the external part (l = 6 mm) was
77.2% and in the following hydration hours it was about 80% (l = 7 mm for 2 h, l = 8 mm
for 3 h or l = 9 mm for 4 h). The plot wctot(KF) vs. time in particular slices are presented
in Supplementary Materials Figure S2. The presence of a freely soluble sodium salicylate
increased the penetration of water into the system when compared with ALG/SA and
placebo ALG matrix [30]. Similar observations are reported in the literature concerning
other hydrophilic polymer matrices [36,37]. The obtained results confirmed the influence of
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API of different physicochemical properties on the content of absorbed water in individual
regions of sodium alginate-based matrices. The characteristics of the ALG/SNA matrix
thermograms obtained after 4 h of hydration (Figure 4C) differed from the results obtained
for ALG/SA in the number of peaks observed and their position. For l in the range from
0 to 3 mm, the onset of an endothermic water peak was found at a temperature of +15 ◦C. At
temperatures lower than −5 ◦C, there were identified some exothermic or exo-endothermic
phase transitions with very low values of the phase transition heat of 10 J/g or lower.
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Figure 4. Changes in total water content (wctot(KF)) in subsequent ALG/SNA tablet slices at 1, 2,
3 and 4 h of hydration determined by Karl Fischer method—continuous lines serve as visual guide
only (A); Freezing water content, non-freezing water and total water in tablet slices of the ALG/SNA
matrix after four hours of hydration as determined by the DSC method; and total water content
(wctot(KF)) determined by KF method—continuous lines serve as visual guide only (B); DSC heating
curves of samples taken from subsequent ALG/SNA slices after 4 h of hydration (C).

The thermal properties of ALG/SNA tablet slices were related to those of SNA/water
solution (See Supplementary Materials Figure S3). In both cases, onsets of exothermic peaks
were observed at temperatures below −8 ◦C and one endothermic peak at approx. +15 ◦C. It
indicated a dominant influence of sodium salicylate interaction with water on the properties
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of the matrix in the deeper regions of the tablet, with respect to water-polymer interactions.
The phase transition heat of the endothermic peak of the slices from 0 to 3 mm at ca. +15 ◦C
ranged from −115 J/g to −48 J/g, and their normalized values increased towards the
surrounding medium which translated into (increasing content of freezing water).

When moving further towards the external part of the matrix a drastic change in the
onset position of endothermic water peak was observed for these regions (l > 3). In the
matrix regions l = 3–4 mm and the external part of the matrix (l ≈ 9 mm), the onset of
the endothermic peak was observed at −3 ◦C. The heat of phase transition was −84 J/g
for l = 3–4 mm, and for the external part of the matrix, it was −205 J/g. The additional
exothermic peak was recorded at −17 ◦C and in the external part at −22 ◦C.

The freezing water content in ALG/SNA tablet at the 4 h increased from the bottom
towards the external part of the tablet from 11% to 65% (Figure 4B). The content of non-
freezing water remained at the level of about 20% along the whole matrix. Total water
content increased towards the medium achieving 87% at l ≈ 9 mm. In the ALG/SNA
thermogram shown in Figure 4C, there were exothermic and endothermic peaks at temper-
atures lower than −5 ◦C. Their presence did not necessarily mean the existence of water
with different properties. According to Hofer et al. and Kyritsis et al. [38,39] the existence
of numerous peaks in the DSC thermograms of some polymers may be a consequence of
crystallization, melting, and re-crystallization of the same water fraction. Therefore, the
values of freezing and non-freezing water contents for ALG/SNA determined in this DSC
study should be considered as approximated. An additional difficulty in the interpretation
of thermal behavior of the systems composed of sodium alginate, sodium salicylate and
water was connected with hydrotropic properties of SNA [40]. Due to the fact that the
hydrotropism takes place beyond a certain critical concentration called hydrotropic concen-
tration (MHC) and the concentrations of SNA differ within the matrix, the interpretation of
this phase transitions was not possible without additional studies.

In the case of ALG/SNA tablets, the minimally hydrated solid core was observed
using MRI only at 1 and 2 h of hydration. Two images of the same spatial region are
presented in Figure 5 at representative hydration times (1 h and 4 h). It was evident that
the ALG/SNA matrix promoted water penetration in contrast to ALG/SA—the dark blue
region marked by orange bracket between core and infiltration layer was clearly visible.
In T2/A profiles (Figure 6) this region was depicted as a distinct “step” in amplitude
profile at l ≈ 2.5 mm at 1 h of hydration. A similar region of uniform proton density
preceding high proton density gradient has been observed in HPMC based quetiapine
fumarate matrices. Such a region according to previous works by Ju et al. has been denoted
as swollen-glassy [29,41–44]. With the beginning of the “step” as seen in MR images, a
distinctly bright and narrow front was associated with microCT images, suggesting a
higher density of the material. A similar front has been observed by Laity et al. when using
synchrotron X-ray microtomography for studying HPMC/MCC matrix [24].

Unlike ALG/SA, Karl Fischer results suggest moving of hydration front towards the
bottom of the matrix (i.e., towards l = 0), which was characterized by increasing water
content above non-freezing content. It was also reflected in the MRI amplitude profile:
the moving front was observed at the beginning of the infiltration layer. The infiltration
layer was relatively narrow at 1 h of hydration. Then, at subsequent hydration times, it
became broader and, in consequence, less steep. The corresponding T2 relaxation times in
this layer were at the detection limit (i.e., lower than 10 ms). Interestingly, the end-position
of the infiltration layer at all studied hydration times (1–4 h) was at about 4.5 mm and
was synchronized with a simultaneous increase in T2 profiles. According to KF at 4 h, the
“orange bracket” region was related to the appearance of the freezing water pool in the
matrix. Between 2.5 mm and 3.5 mm, i.e., somewhere at half of the slope of infiltration
layer, water phase transition onset temperature was switched from ca. 0 ◦C to ca. −10 ◦C,
which indicated the presence of freezing bound water in that region

Starting from the end of the infiltration layer (or beginning of fully hydrated zone),
T2 increased spatially towards the medium, which was characterized by T2 plateau. The
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change in the character of T2 increase was evident at 2 and 3 h of hydration (l = 7.4 mm
and l = 7.7 mm, respectively). Such a switch-point was practically absent at 1 h. At 4 h,
it was evident at about 8.3 mm but less pronounced. The switch-point marks additional
“front” dividing the fully hydrated part of the matrix into two separate layers (gel and
sol). In studies on HPMC matrices such a switch-point has been observed and interpreted
as related to drug substance dissolution, as it was absent in HPMC placebo matrix [4,5].
Microbubbles were clearly visible in microCT at 1 h for l = 5–6 mm and they were also
detected in MR image on the first echo, as spots of lower intensity. It implied that the
consistency of the matrix allowed the formation of spherical air bubbles instead of cracks
which is a very important observation. Swelling of ALG/SNA matrix was slightly more
effective. At 4 h the tablet border was at ≈10 mm, while for ALG/SA matrix it was 9 mm.
In this case, the whole volume of the matrix was hydrated and evolved, while for ALG/SA
matrix only part of the matrix (l > 3.5) effectively expanded under hydration.
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Figure 5. MicroCT (left) and MR images (right) of the profiles of ALG/SNA matrix at 1 h (A) and
4 h (B) of hydration: microCT image containing standard deviations of pixel intensity and image of
averaged pixel intensity over all slices in 1 mm thick segment; MR images of the same fragment of
ALG/SNA matrix at two echo times (3.5 and 304.5 ms)—orange square bracket marks region denoted
as swollen-glassy as introduced by Ju et al. [41]. White dashed line marks initial end-position of the
dry matrix before hydration.
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In the bulk solvent region (l > 7 mm at 1 h, l > 9 mm at 2 h, l > 9.5 mm at 3 h l > 10 mm
at 4 h) in subsequent hydration times substantial drop from ≈200 ms at 1 h down to
≈170 ms at 4 h of hydration was observed. This indicated that dissolved matrix products
were present in the dissolution medium lowering T2 relaxation time.

3.3. Discussion with Reference to Alginate (Placebo) Matrix

Figure 7 is a good starting point for a discussion on the differences between the
alginate matrix systems and it is crucial for understanding the differences between them. It
presents the spatial distribution of the non-freezing water weight to dry matrix weight ratio
(WNFw/w) for ALG (placebo matrix), ALG/SA and ALG/SNA matrices after four hours
of hydration in water. Data for placebo sodium alginate matrix are presented as a reference
and they are taken from the work by Juszczyk et al. [30]. The WNFw/w ratio shows the
interaction between water and polymer/API binding sites and its value does not directly
depend on the total water content in the sample. ALG/SA matrix was characterized by a
relatively constant level of WNFw/w in the slices from l = 0 to l = 3 mm. Its values were
of ca. 0.21–0.26, i.e., half the value obtained for ALG, which can be explained by lower
polymer content in the matrix—in the ALG/SA matrix the polymer constituted only half
of the total matrix mass. In subsequent slices of ALG/SA, the parameter increased to
0.36 (l between 3 and 4 mm) and in the external part it achieved the value of 0.75. It is
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worth mentioning that the values of WNFw/w for ALG/SA matrix were in each slice lower
than for the ALG placebo matrix as presented in the work by Juszczyk et al. [30]. Despite
this, both matrices had a similar thermal character as seen by DSC. The obtained results
indicated a similar mechanism of interaction of the polymer with water.
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(detailed description in the text) for subsequent slices of ALG/SA, ALG/SNA and ALG matrices
after hydration in distilled water for 4 h—continuous lines serve as visual guide only.

In the slices situated between l = 1 mm and l = 3 mm in ALG/SNA matrix, the values
of WNFw/w were 0.36–0.44. They were similar to placebo tablets (ALG) presented in the
previous study [30]. In the slice between l = 3 and l = 4 mm WNFw/w was 1.09. A sharp
spatial increase was observed between layer 2–3 mm and 3–4 mm. It must be pointed out
that the content of non-freezing water in the matrix was maintained on the constant level
ca. 20%, as can be seen in Figure 4.

Such a sharp spatial increase in WNFw/w was spatially co-registered with changes in
the onset temperature values of phase transition of water present in tablet regions between
the slices 2–3 mm and 3–4 mm. These onset temperatures changed from ca. 10 ◦C down to
ca. −6 ◦C in those regions. The content of non-freezing water was approximately constant
across the matrix, ca. 20%, while in ALG/SA as well as in pure ALG it was decreasing
towards the medium. T2 step appeared at about 2 mm (10 ms) and it was retained up to
l ≈ 5 mm—all described above changes occurred at a relatively low molecular mobility of
non-freezing water of 10 ms (region denoted as infiltration layer—at 4 h stretched). The
ratio WNFw/w was 1.80 in case of the external tablet area (l = 9 mm), which was the highest
recorded value among the tested tablets. The presence of SNA, the easily soluble drug, in
the matrix changed the properties of the system when comparing with ALG/SA and ALG
ALG (placebo tablet). After its dissociation, salicylate ions caused the repulsion of polymer
chains as both compounds had negative charges [45]. This could favor the formation of
spaces that might serve as a reservoir for water molecules in non-freezing state.

To emphasize the differences between the ALG/SA and ALG/SNA Figure 8 presents
their MRI derived profiles of T2 and corresponding signal amplitude at 1 and 4 h in a
single diagram together with profiles of placebo alginate matrix (ALG). The results for
ALG have been described in details in the previous work by Juszczyk et al. [30] and serve
as an introduction to more complicated cases, i.e., matrices with the addition of drugs
ALG/SA and ALG/SNA. It should be noted that initial water content in ALG/SA and
ALG/SNA matrices (7.1% and 7.7%, respectively) as a measure by KF was about half of the
initial water content as measured in pure alginate matrices [30], while the polymer content
in ALG/SA and ALG/SNA matrices was 50% w/w.
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When comparing T2 profiles obtained at 1 h of hydration, it was apparent that the T2
values in ALG/SA for spatial locations inside the matrix for l above 4 mm were higher
than for ALG/SNA. They were in the range ≈50–100 ms for ALG/SA (l = 5.3–6.7 mm),
while T2 relaxation times for l < 6.5 mm of ALG/SNA were lower than 50 ms. This implied
lower mobility of water in the fully hydrated part of ALG/SNA matrix. A “step” in
amplitude profile of ALG/SNA at ca. 2.5 mm at 1 h of hydration did not exist in ALG [30]
or ALG/SA or it was very narrow. The bulk solvent region in the ALG/SNA region (l above
7.5 mm at 1 h, or above 10 mm at 4 h) had lower T2 relaxation times than pure ALG and
ALG/SA matrices. This suggested that in the ALG/SNA matrix the internal environment
facilitated the disentangling of polymeric chains, which in macro-scale resulted in the
increase of matrix viscosity and on a molecular level the decrease of proton mobility.
This implied dissolution of the matrix and the formation of a viscous solution containing
products of matrix dissolution outside of the matrix. Moreover, the heterogeneous region
containing lamellae in ALG/SA was specific for this matrix composition (formulation).
Indeed, its structure evolution suggested possible further erosion of the system in terms of
sequestration rather than dissolution during incubation times longer than 4 h.

4. Conclusions

The study presents the first attempt to co-register spatially the results of several spa-
tially resolved methods including two nondestructive imaging methods, i.e., relaxometric
MR imaging together with X-ray microtomography and two destructive Karl Fischer and
DSC to observe hydration patterns in two alginate-based matrix systems. It allowed iden-
tifying of specific hydration patterns for each matrix composition. When dealing with
various compositions, complicated hydration patterns can be expected. In this particular
case, various hydration patterns were obtained for alginate with salicylic acid (ALG/SA)
and alginate with sodium salicylate (ALG/SNA).

The presented hybrid destructive-nondestructive methodology was a link between
well-established methods (non-spatially resolved) and spatially resolved analysis using
magnetic resonance imaging and X-ray microtomography. For the first time, four differ-
ent methods were spatially co-registered (i.e., Karl Fischer titration, differential scanning
calorimetry, X-ray microtomography, and magnetic resonance imaging) to provide a com-
plex picture of polymeric matrix hydration. Hydrated alginate-based matrices generate
varied hydration patterns which cannot be described simply by one or two hydration layer
models. The existence of up to five different regions (layers) was identified in studied
alginate-based matrices. An attempt to the interpretation of the hydration patterns was



Materials 2021, 14, 6531 16 of 18

made according to the results of spatially resolved magnetic resonance relaxometry in
terms of T2 relaxation time and decay envelope amplitude (roughly the proton density)
and the results of differential scanning calorimetry.

The results of the study showed that it was hard to generalize concepts of hydration
of polymeric matrices, especially when dealing with polyelectrolytes. Such generalizations
did not work. The existence of complicated spatial morphological/molecular hydration
patterns are demonstrated by several features, including:

• “locking” of the internal part of the matrix (ALG/SA);
• existence of lamellar region associated with detection of free/freezing water (ALG/SA);
• existence of water penetrating the matrix, forming a specific layer preceding the

infiltration layer (ALG/SNA);
• switch in the onset temperature of endothermic water peak associated with an increase

in the fraction of non-freezing water weight per dry matrix weight in the middle of
infiltration layer (ALG/SNA);

• the region denoted as infiltration layer is characterized by a high gradient in magnetic
resonance signal intensity (proton density) and lower X-ray absorbance (mainly lower
density) when compared with the core.

The existence of such specific patterns suggests the need for a revision of existing
approaches to matrix hydration (e.g., in terms of hydration, swelling and diffusion fronts).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14216531/s1, Figure S1: Changes in total water content (wctot(KF)) in subsequent ALG/SA
tablet slices at 1, 2, 3 and 4 h of hydration determined by Karl Fischer method—an alternative
presentation: wctot(KF) vs. time, Figure S2: Changes in total water content (wctot(KF)) in subsequent
ALG/SNA tablet slices at 1, 2, 3 and 4 h of hydration determined by Karl-Fischer method—an
alternative presentation: wctot(KF) vs. time., Figure S3: DSC heating curves of drug (salicylic acid,
sodium salicylate) solutions in H2O. Water heating curve is included for reference purpose, Figure S4:
Dissolution profiles of sodium salicylate and salicylic acid from ALG/SA and ALG/SNA matrices
respectively (n = 3).
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