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Abstract: Type 2 diabetes mellitus (T2DM) is a noteworthy worldwide public health problem. It
represents a complex metabolic disorder, mainly characterized as hyperglycemia and lipid dysfunc-
tion. The gut microbiota dysbiosis has been proposed to play a role in the development of diabetes.
Recently, there has been considerable interest in the use of medicine food homology (MFH) and
functional food herbs (FF) to ameliorate diabetes and lead to a natural and healthy life. Hence, this
review compiles some reports and findings to demonstrate that the practical use of the MFH/FF can
modulate the homoeostasis of gut microbiota, thereby ameliorating the development of T2DM. The
results provided useful data to support further investigation of the functional basis and application
of MFH/FF to treat T2DM through maintaining intestinal homeostasis.

Keywords: medicine food homology; functional food herbs; type 2 diabetes mellitus; gut microbiota

1. Introduction

Diabetes mellitus is one of the major public health problems and has become a health
global burden. Based on the data of IDF, there were approximately 451 million diabetic
patients aged 18 to 99 in the world in 2017. By 2045, this figure is expected to increase to
693 million [1]. Diabetes mainly includes Type-1 (T1DM) and Type-2 Diabetes Mellitus
(T2DM), of which T2DM accounts for roughly 90–95% [2]. T2DM is a complex metabolic
disorder, which is chiefly characterized by hyperglycemia, with glycolipid dysfunction,
progressive loss and dysfunction of islet β-cell, and insulin resistance. T2DM is usually
accompanied by oxidative stress and inflammation, and long-term hyperglycemia may
lead to diverse diabetic complications [3].

One of the main reasons for the sharp increase in the incidence of T2DM is the
significant changes in human behavior and lifestyle. Through diet modification, regular
exercise, weight control, and patient education, T2DM can be managed and medications
can be avoided. Diabetes is characterized by “leaky gut” syndrome, where bacterial
cell wall components enter the blood circulation of the animal host in a large amount,
which may cause metabolic endotoxemia and systemic low-grade inflammation [4]. Gut
microbiota acts an important role in modulating the systemic and intestinal immunity and
metabolic homeostasis [5]. Studies have shown that the consortium of gut microbiota is
closely related to host genetics and other diverse conditions, such as food habits, stresses,
exposure to drugs or toxins [5]. It was reported that the gut microbiota in healthy people is
diversified, achieving more short chain fatty acids (SCFA) and producing more branched
amino acids, while the intestinal flora of diabetes is more likely to produce compounds
that affects glucose metabolism. The intestinal microbiota can digest diverse dietary fibers
that cannot be digested by the host, and produce SCFAs as its metabolites, such as acetate,
butyrate and propionate [6]. Propionate can maintain gluconeogenesis in the intestinal
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tract, thereby making better use of energy, while butyrate, with anti-inflammatory activity,
can reduce the permeability of the intestine [6]. In T2DM patients, butyrate producing
microbiota are significantly reduced, specifically the Clostridiales order, including the
genera Ruminococcus and Subdoligranulum, and species such as Roseburia intestinalis and
Roseburia inulinivorans [7,8].

In ancient China, diabetes was called ‘Xiao Ke’, manifested as persistent thirst and
hunger, excessive urination, and weight loss. For thousands of years, Chinese herbal
prescriptions and traditional Chinese medicine (TCM) medicinal materials have been com-
monly used to intervene in ‘Xiaoke’ disease. Historically, many of the formulations and
medicinal herbs have been used as food for safe and effective long-term consumption [9].
Natural plants are essential for the management of many human diseases, such as dia-
betes [10]. Numerous herbal medicinal plants are natural sources of antioxidants, which
can reduce the oxidative stress generated by STZ in β-cells. World Health Organization
(WHO) has recommended the evaluation and application of traditional botanical treat-
ments for diabetes because they are effective and non-toxic, have fewer side effects or have
no side effects, and are considered excellent candidates for oral therapy [11]. In recent
years, more and more researchers have been paying attention to natural products from
traditional herbs and foods for their safety, efficacy, and potency in treating diabetes [12].

The concept of ‘medicine and food homology’ was proposed in the Huang Di Nei
Jing Su Wen: ‘Eating on an empty stomach as food, and administering to the patient as
medication’ embodies the theory of medicine food homology (MFH); that is, some food
classes can also be used as drugs. Functional food (FF), also known as health food, refers
to a specific type of food that is not aimed at curing diseases but can modulate human
body functions. “Notice on Further Regulating the Management of Raw Materials for
Health Foods” was issued in 2012 by the Ministry of Health, which covers both foods and
medicines [9]. In addition, 110 MHF and 114 FF are currently included in this promulgated
management method. More and more clinical evidence clarifies that the occurrence and
development of T2DM can be prevented or delayed by regular intake of foods that are
believed to be functional and affect glycemic control, antioxidant enzymes activity and in-
testinal flora, while also inhibiting the excessive production of pro-inflammatory cytokines
during diabetes [13].

Therefore, in this review, we searched various online databases (PubMed, ScienceDi-
rect, CNKI) and scientific publications from the library using qualitative systematic reviews.
The review was based on MHF and FF application for possessing medicinal value against
T2DM by modulating the gut microbiota (Figure 1A).
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Human health is strongly affected by the microbiota that coexist with our body [14]. The 
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that of healthy controls [15,16]. As Larson et al. reported, the abundance of Firmicutes 
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2. Association between Gut Microbiota and T2DM
2.1. Alteration of Gut Microbiota Composition with T2DM

Although T2DM is caused due to various factors, the human gut microbiota plays
a vital role in the progression of T2DM [4]. The impact of gut microbiota on T2DM has
attracted widespread attention; studies have been done over the past few years to research
the relationship between the two [12]. ‘Human microbiome’ was firstly defined by Joshua
Lederberg in 2001 as an ecological community of symbiotic and pathogenic microorganisms
that share our body space. An adult is colonized by almost 100 trillion microbes, which
mainly exist in the gastrointestinal tract, with the largest group living in the colon. Human
health is strongly affected by the microbiota that coexist with our body [14]. The diversity
of the intestinal flora of T2DM patients is significantly decreased compared to that of
healthy controls [15,16]. As Larson et al. reported, the abundance of Firmicutes phylum in
diabetic patients was reduced when compared to non-diabetic patients, and the ratio of
Bacteroides to Firmicutes was positively correlated with blood glucose levels [17].

2.2. Mechanism of Gut Microbiota Alteration Causing T2DM

T2DM, characterized by “leaky gut” syndrome, is known to have markedly enhanced
intestinal permeability, allowing bacteria to translocate across the intestinal epithelium,
resulting in host metabolic endotoxemia and triggering low-grade inflammation. In T2DM,
the abundance and diversity of the gut microbiota both decreased, accompanied by an
increase in the abundance of pathogenic microorganisms and a decrease in the abundance
of symbiotic microorganisms [18]. For example, the generas Faecalibacterium, Roseburia and
Bifdobacterium, with noticeable abilities to reduce intestinal permeability, have been shown
to be exhausted in T2DM [19]. The changes in the above-mentioned microbiota would
lead to low-grade inflammation, resulting in a decrease in mucus layer and disintegration
of the epithelial membrane. This is followed by an increase in intestinal permeability,
allowing lipopolysaccharides (LPS) to enter the blood circulation. Bacterial fragments
and LPS can be recognized by innate toll-like receptors (TLRs), particularly TLR-4, which
subsequently stimulates the activation of transcription factor κB (NF-κB) and the release
of pro-inflammatory mediators in intracellular signaling pathways [20]. The release of
pro-inflammatory cytokines would further result in the destruction of glucose metabolism
and insulin signaling pathways [21]. Metabolic endotoxemia and low-grade inflammation
occurs, subsequently. The systemic low-grade inflammation affects all vital organs or
tissues, such as the pancreas, liver, and kidney [22]. For example, the level of TNF-α in
T2DM is significantly increased, which is closely related to islet dysfunction [16,23]. Under
this circumstance, the homeostasis of glucose metabolism no longer exists and thus results
in type 2 diabetes. In this condition, the steady state of glucose metabolism collapses and
T2DM is developed [24].

3. Bioactive Ingredients of MFH and FF Target for Microbiota in T2DM

The diet and its metabolites have a major physiological impact on the composition of
gut microbiota and the health of the host [22]. In China, MFH and FF refers to a group of
foods that can also be used as medicines, many of which possessed anti-hyperglycemic
activities. Regular consumption of MFH, which is considered to affect glycemic control,
activation of antioxidant enzymes and gut microbiota, and to inhibit the excessive pro-
duction of pro-inflammatory cytokines, to prevent or treat T2DM [25]. MFH and FF have
been widely sought recently, and research into their use for T2DM has evoked considerable
interest. Herein, the bioactive ingredients of MFH and MHF were divided into: saponins,
polysaccharides, flavonoids, terpenoids, alkaloids, and others, and their anti-diabetic ef-
fects via gut miocrobiota regulation were listed in Table 1, and the chemical structures of
the representative compounds are shown in Figure 2.
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Table 1. Effects of ingredients from MFH and FF on T2DM via gut microbiota.

Ingredients Source Microbiota Findings Mechanism Study Types and
Sequencing Method Animals Dose and Duration Refs.

Saponins

Ginsenoside Rk3 Panax notoginseng
↑ Lactobacillaceae, Helicobacteraceae,

Neococcaceae, Bifidobacteriaceae
↓ Ratio of Firmicute to Bacteroidete;

Inhibit the
inflammatory cascade

by suppressing the
TLR4/NF-κB pathway

In vivo; 16S rRNA
Sequencing Analysis C57BL/6 Mice 60 mg/kg/day; 8 weeks [26]

20(S)-ginsenoside Rg3 Panax ginseng C. A.
Meyer ↑ Bacterial diversity Improve bacterial

diversity
In vivo; principal

component analysis Male Wistar rats 20 mg/kg/day; 2 weeks [27]

Ginsenoside Rb1 Panax ginseng C. A.
Meyer Unclear Inhibit deglycosylation

in the diabetic rats
In vivo; 16S rRNA

Sequencing Analysis
Male

Sprague-Dawley rats 100 mg/kg/day; 72 h [28]

Saponin-containing Korean red
ginseng extracts

Korean red ginseng
(Panax ginseng Meyer)

↑ Parabacteroides, Allistipes, Lactobacillus
↓ Barnesiella, Mucispirillum, Lactococcus,

Oscillibacter, Helicobacter

Improve IR and glucose
intolerance

In vivo; 16S rRNA
Sequencing Analysis C57BL/6 235 mg/kg/day; 4 weeks [29]

Saponin extract of Polygonatum
sibiricum

Polygonatum sibiricum
(Liliaceae)

↑ Bifidobacteria, Lactobacillus;
↓ Enterobacteriaceae, Enterococcus, C.

perfringens
Improve IR In vivo; Bacteria

plate count ICR male mice 1.0, 1.5, or 2.0 g/kg/day;
5 weeks [30]

Polysaccharides

Polysaccharides
(MDG-1) from Ophiopogonis

Radix

Ophiopogon japonicus
(Thunb.) Ker-Gawl.

(Liliaceae)

↑ Lactobacillus, Bifidobacterium;
↓ Escherichia coli, Streptococcus

Improve SCFAs
metabolism

In vivo; 16S rRNA
Sequencing Analysis KKay mice 300 mg/kg/day; 8 weeks [31,32]

Homogeneous polysaccharides
from crude Lycium barbarum

polysaccharides
Lycium barbarum L. ↑ Firmicutes/Bacteroides, SCFAs Regulate SCFAs levels In vivo; 16S rRNA

Sequencing Analysis C57BL/6 50 mg/kg/day; 12 weeks [33]

Polygonatum sibiricum
polysaccharide

Polygonatum sibiricum
(Liliaceae)

↑ Firmicutes, Veillonella,
Escherichia-Shigella, Klebsiella;
↓ Proteobacteria, Bacteroides

Regulate bacterial
diversity

In vitro; 16S rRNA
Sequencing Analysis / / [34]

polysaccharide-rich extracts of A.
venetum Apocynum venetum

↑ Odoribacter, Anaeroplasma,
Parasutterella, Muribaculum;

↓ Enterococcus, Klebsiella, Aerococcus.

Attenuate oxidative
stress and SCFAs levels

In vivo; 16S rRNA
Sequencing Analysis Male C57BL/6 J mice 400 mg/kg/day; 4 weeks [35]

Maydis stigma polysaccharides Zea mays subsp. mays ↑ Lactobacillus and Bacteroides Restore the intestinal
microflora balance

In vivo; 16S rRNA
Sequencing Analysis Male KM mice 400, 600, 800 mg/kg/day;

5 weeks [36]

Plantago asiatica L.
polysaccharides Plantago asiatica L.

↑ Colon bacterial diversity, Bacteroides
vulgatus, Lactobacillus fermentum,

Prevotella loescheii, Bacteroides vulgates

Increase the levels of
SCFAs

In vivo; 16S rRNA
Sequencing Analysis Wistar rats 100, 200 or

400 mg/kg/day; 5 weeks [37]

Pseudostellariae Radix
Pseudostellaria

heterophylla (Miq.) Pax
ex Paxet Hoffm.

↑ Lactobacillus, Bifidobacterium
Attenuate oxidative

stress; suppress
inflammatory response

In vivo; 16S rRNA
Sequencing Analysis Male C57BL/6 J 500 mg/kg/day; 4 weeks [38]

Polysaccharides of Lactobacillus
plantarum-fermented Momordica

charantia
Momordica charantia L.

↑ Lactococcus laudensis, Prevotella
loescheii, diversity of gut microbiota, SCFAs

↓ pH value

Attenuate oxidative
stress

In vivo; 16S rRNA
Sequencing Analysis Male Wistar rats 50, 100 mg/kg/day;

4 weeks [39]

mulberry fruit polysaccharide Morus alba L.
↑ Lactobacillus, Allobaculum, Bacteroides,
Akkermansia, SCFA (butyrate, propionate).
↓ Firmicutes, Bacillus, Lactobacillus

Attenuate oxidative
stress

In vivo; 16S rRNA
Sequencing Analysis Male db/db mice 500, 800 mg/kg/day;

8 weeks [40]
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Table 1. Cont.

Ingredients Source Microbiota Findings Mechanism Study Types and
Sequencing Method Animals Dose and Duration Refs.

Pumpkin polysaccharide Cucurbita moschata
(Duch. ex Lam.)

↑ Bacteroidetes, Prevotella,
Deltaproteobacteria, Oscillospira,

Veillonellaceae, Phascolarctobacterium,
Sutterella, Bilophila

Increase SCFAs
production

In vivo; 16S rRNA
Sequencing Analysis Male Wistar rats 1000 mg/kg/day;

4 weeks [41]

Flavonoids Baicalein Oroxylum indicum,
Scutellaria baicalensis ↑ Bacteroides, Bacteroidales S24-7 Alleviate inflammation

and IR
In vivo; 16S rRNA

Sequencing Analysis Male Wistar rats 50, 150 mg/kg/day;
4 weeks [42]

Terpenoids 2β-hydroxybetulinic acid
3β-oleiate Euryale ferox salisb. Unclear

Reduce blood glucose,
regulate dyslipidemia

and antioxidant
enzymes, protect
pancreatic β-cell

In vivo Male Wistar rats 60 mg/kg/day; 45 days [43]

Alkaloids Berberine Coptidis rhizoma and
Berberis vulgaris

↑ Bacteroidetes, Lactobacillaceae; diversity
of the gut microbiota

↓ Proteobacteria, Verrucomicrobia

Alleviate inflammation
via NF-κB signaling

pathways

In vivo; Real-Time
PCR Assay

Male
Sprague-Dawley rats 200 mg/kg/day; 6 weeks [44,45]

Others

total glycoside from R. glutinosa
leaves Rehmannia glutinosa ↑ Firmicutes,

norank_f_Bacteroidales_S24-7_group

Regulate glycolipid,
inhibit the expression
of α-SMA, TGF-β1,

Smad3 and Smad4 in
the kidney tissues

In vivo; 16S rRNA
Sequencing Analysis db/db mice 520 mg/kg/day; 6 weeks [46]

low-polar S. grosvenorii
glycosides

Siraitia grosvenorii
(Swingle) C.

↑ Elusimicrobium,
Lachnospiraceae_UCG-004

Increase SCFAs
production (acetate,

butyrate, and
1β-hydroxycholic acid)

In vivo; 16S rRNA
Sequencing Analysis Sprague-Dawley rats 20 mg/kg/day; 14 days [47]

sea buckthorn protein Hippophae rhamnoides L.
↑ Bifidobacterium, Lactobacillus,

Bacteroides
↓ Clostridium coccoides, PH value;

Increase intestinal
microorganism

diversity and SCFAs
levels

In vivo; 16S rRNA
Sequencing Analysis ICR mice 50, 100 and

200 mg/kg/day; 30 days [48]

Long chain of inulin-type
fructans inulin ↑ Firmicutes/Bacteroidetes ratio;

Ruminococcaceae, Lactobacilli Regulate SCFAs levels In vivo; 16S rRNA
Sequencing Analysis

Female NOD/LtJ
mice 5% diet; 24 weeks [49]

cinnamon oil Cortex Cinnamomi ↑ Bacteroides
↓ Clostridia flora IV Improve IR In vivo; 16S rRNA

Sequencing Analysis Sprague-Dawley rats 0.384 g/kg/day; 30 days [50,51]

Abbreviations: SCFAs, short-chain fatty acid. IR, insulin resistance. ↑, Increase. ↓, Decrease.
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Figure 2. Chemical structures of the representative hypoglycemic compounds from MFH and FF that
can modulate gut microbiota in T2DM.

3.1. Saponins

Saponins are a class of glycosides composed of triterpenes or spirostanes, which are
widely present in nature [52]. Saponins have been reported to have a wide range of hypo-
glycemic targets and pathways, which can directly repair damaged islet cells and increase
insulin levels to maintain normal blood sugar. Saponins can also regulate blood lipids
and improve glucose tolerance. This suggests that they have broad research and devel-
opment prospects as anti-diabetic drugs [53]. In this review, saponins from Panax ginseng,
Panax notoginseng, Korean red ginseng and Polygonatum sibiricum were researched. It
was observed that these saponins can intervene on T2DM and are associated with their
modulating the imbalance of gut microbiota and inhibiting the low-grade inflammation
and insulin resistance.

Ginseng, a perennial herb of the genus Panax, has been used widely as a TCM herbs
in China and Asia for thousands of years. About 4000 years ago, “Shen Nong Ben Cao Jing”
is the earliest surviving TCM monograph in China. It records the use of ginseng as a health
medicine to delay aging and nourish the body without side effects [54]. According to Zhang
Zhongjing’s Shang Han Za Bing Lun in the Han Dynasty, ginseng was used to cure thirst,
which is the main symptom of “Xiaoke” (diabetes). Additionally, the “Tai Ping Hui Min
He Ji Ju Fang”, an official traditional Chinese medicine book in Song Dynasty, recorded the
use of ginseng to treat “Xiaoke disease”. Many of the Chinese patent medicines approved
by the government for the treatment of diabetes contain ginsenosides, such as Tianqi
capsules [55], Jinlida Granule [56], and ShenMai Injection [28,57]. Ginseng has several
therapeutic functions, such as anti-stress, maintaining and strengthening the central and
immune system, preventing certain chronic diseases, and delaying aging. While American
ginseng is more effective in treating cardiovascular disease [58]. Ginsenosides are extracted
from the roots and rhizomes of Panax ginseng C. A. Meyer. Research has shown that
ginsenosides show noticeable anti-diabetic activities and have been used as adjuvants for
diabetes treatment in China. It was reported that saponins isolated from ginseng, such as
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Ginsenoside Rk3, and 20(S)-ginsenoside Rg3 showed potential anti-diabetic activities by
regulation of gut microbiota.

It was observed that Ginsenoside Rk3 at the dose of 30 and 60 mg/kg/day could
alleviate the abundance imbalance of gut microbiota and inhibit the expression of pro-
inflammatory cytokines by reducing intestinal permeability and LPS levels, thereby pre-
venting low-grade colon inflammation caused by a high-fat diet in mice. An 8-week
intervention of Rk3 could significantly decrease the ratio of Firmicute to Bacteroidete,
and restore the abundance of Lactobacillaceae, Helicobacteraceae, Neococcaceae, and Bi-
fidobacteriaceae at the dose of 60 mg/kg/day. Ginsenoside Rk3 can effectively improve
the C57BL/6 Mice metabolic disorder of gut microbiota by decreasing the ratio of Firmi-
cute/Bacteroidete, and inhibit the inflammatory cascade by suppressing the TLR4/NF-κB
pathway [26]. It was found that 20(S)-ginsenoside Rg3 at a dose of 20 mg/kg can reduce
the blood glucose by regulating the metabolism of gut flora in T2DM rats [27].

Polygonatum sibiricum, a perennial herb of Liliaceae family, has diverse activities,
such as hypoglycemic effect, regulating blood lipids, delaying aging, and strengthening
immunity. A saponin was isolated from P. sibiricum (PSS) and administered to diabetic mice
at the dose of 1.0, 1.5, or 2.0 g/kg/day. It was found that PSS could alleviate the symptoms
of polyphagia and polydipsia and regulate the gut microbiota in the diabetic mice. PPS
increased the abundance of probiotics (including Bifidobacteria and Lactobacillus), and
down-regulated the harmful bacteria (such as Enterobacteriaceae, Enterococcus, and C.
perfringens) [30].

3.2. Polysaccharides

Polysaccharides are formed by the polymerization of monosaccharide molecules
through glycosidic bonds, which are generally composed of hundreds or even thousands
of monosaccharides molecules with a relatively high molecular weight. Polysaccharides,
as a kind of abundant natural product, are found in organisms such as fungi and plant
roots [59]. As prebiotics, polysaccharides have been found to affect the populations and
metabolism of the gut microbiota, and attracted widespread attention in biochemical and
medical research [60]. The polysaccharides from MFH have been studied to show potential
impact on T2DM, which is associated with the regulation of gut microbiota.

Ophiopogonis Radixa, the Chinese name Maidong, is the tuberous roots of Ophiopogon
japonicus (Thunb.) Ker-Gawl (Liliaceae), which is a popular TCM. Maidong is widely used
as a functional food in China. Maidong has been used to relieve diabetes and cardiovascular
diseases for years [31]. The polysaccharide is one of the main active ingredients of Maidong.
A homogeneous polysaccharide fraction was isolated and characterized from Ophiopogonis
Radix collected from Sichuan. Ophiopogonis Radix and was analyzed for anti-diabetic
effects in targeting β-cell dysfunction, insulin enhancement and inhibiting α-amylase and
α-glucosidase [61]. The anti-diabetic effects of polysaccharides, isolated from Maidong,
have been reported [62,63]. More than 15 kinds of polysaccharides have been isolated from
Maidong, which show a good anti-diabetic effect, and the main mechanism is associated
with improving β-cell dysfunction, enhancing insulin and inhibiting α-glucosidase and
α-amylase [64]. For example, MDG-1, a kind of polysaccharide isolated from Maidong,
possessed anti-diabetic effects in diabetic mice and regulated intestinal flora in obese
mice [31,64]. In KKay mice, the abundance of Escherichia coli and Streptococcus increased,
while the abundance of Lactobacillus and Bifidobacterium decreased. However, oral
administration of 300 mg/kg MDG-1 can reduce the number of pathogenic E. coli and
Streptococcus, and increase the number of Lactobacillus (p < 0.05). It has been proven
that oral MDG-1 can improve the glucose tolerance of diabetic mice and is related to its
regulating effect on the intestinal microecological balance [32].

Lycium barbarum L. and its mature fruits have been used as a TCM and functional
food in China for about 2000 years. The leaves of L. barbarum, also named Tianjing grass,
are widely used as tea, food and medicine in China due to its activities of reinforcing
deficiency and benefiting essence, as well as anti-thermic and eye-clearing effects [65,66].
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An HFD/STZ-induced T2DM rat model was established to study the anti-diabetic effects
of the water extract of L. barbarum leaf (LLB). It was found that LLB can improve T2DM,
which is mainly associated with the reversal of gut microbiota imbalance, and regulation of
nicotinate/nicotinamide, arachidonic acid/purine metabolism. Administration of LLB at
2.08 g/kg T2DM rats significantly reduced excessive abundance of Parasutterella, Marvin-
bryantia, Blautia, Ruminococcus_1, and Prevotellaceae_NK3B31_group, and reversed the
ratio of Firmicutes to Bacteroidetes in the gut microbiota of diabetic rats [66]. The homoge-
neous polysaccharide (LBP-W) was purified from crude Lycium barbarum polysaccharides
(LBPs), and administration of 50 mg/kg LBP-W could improve obesity by modulating
the composition of gut microbiota and the metabolism of SCFAs in C57BL/6 mice on a
high fat diet. LBP-W intervention reversed the HFD-induced changes in Firmicutes and
Bacteroides, and the ratio of Firmicutes/Bacteroides was noticeably reduced (p < 0.01) [33].

Plantago asiatica L. is a kind of TCM and has been used as a folk medicine world-
wide [67,68]. A high-fat diet and STZ induced T2DM rat model has been established,
and the anti-diabetic effect of Plantago asiatica L. polysaccharide (PLP) was studied. It
was observed that administration of PLP (at dose of 100, 200 or 400 mg/kg) significantly
decreased the level of blood glucose, insulin, serum lipids, non-esterifified fatty acid and
maleic dialdehyde, and noticeably increased the activities of antioxidant enzymes in T2DM
rats after 4 weeks of PLP intervention. The concentrations of SCFA were noticeably higher
in the feces of diabetic rats after treating with PLP. Moreover, colon bacterial diversity
and abundance of bacteria, including Bacteroides vulgatus, Lactobacillus fermentum, Pre-
votella loescheii and Bacteroides vulgates were markedly increased by PLP intervention. It
indicated that the anti-diabetic effect of PLP inT2DM rats was related to the regulation of
gut microbiota and increased levels of SCFAs production [37].

Apocynum venetum is a perennial herbaceous or half-shrub plant, and its leaves have
been traditionally consumed as a tea beverage in China. A. venetum is widely distributed in
saline-alkali land, riverbanks, fluvial plains and sandy soils of Asia and North America [69].
Hypoglycemic and hypolipidemic effects of polysaccharide-rich extracts from A. venetum
leaves on T2DM mice has been studied. Treatment of alkaline extracted polysaccharide-rich
products markedly decreased the levels of fasting blood glucose, serum insulin, and serum
lipids. Meanwhile, the reduced glycogen contents in liver were prominently improved,
and the oxidative damage was markedly ameliorated by alkaline extracted polysaccharide
products in diabetic mice. Furthermore, the polysaccharide-rich extracts could reverse the
gut microbiota dysbiosis in T2DM mice by increasing the abundance of genera Odoribacter,
Anaeroplasma, Parasutterella, and Muribaculum, while decreasing the abundance of
genera Enterococcus, Klebsiella, and Aerococcus. Thus, polysaccharide-rich extracts of
A. venetum showed good anti-diabetic effects for treating T2DM, which was associated
with the intervention of gut microbiota [35].

In this review, polysaccharides from MFH and FF were summarized and their impacts
on T2DM by regulating gut microbiota were listed in Table 1. It was found that the
polysaccharides play an important role in maintaining intestinal flora steady state, which
was associated with the promotion of short-chain fatty acids (SCFAs). SCFA mainly include
acetate, butyrate and propionate at the ratio of 3:1:1 in human gut microbiota, which are
usually present in the human intestine at a ratio of 3:1:1 and are in a steady state [70].
Butyrate possesses anti-inflammatory effects and can reduce intestinal permeability, and
propionate also maintains gluconeogenesis in the intestines, thereby making better use
of energy [24]. Individuals with T2DM have reduced butyrate-producing gut microbiota,
which promotes low-grade inflammation [70].

3.3. Flavonoids

Flavonoids are meaningful natural compounds that exist widely in the plant kingdom
and have a basic 2-phenyl-chromone structure. They are a class of secondary plant com-
pound with noticeable physiological effects and various health benefits [9]. Flavonoids
possess extensive pharmacological effects, among which are antioxidant and free radical
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scavenging activities, which are of particular interest to the pharmaceutical industry [71].
Flavonoids are widely reported to prevent and treat T2DM by affecting the function of islet
β-cells and anti-lipid peroxidation [72]. However, not so many flavonoids from natural
herbs were found to intervene T2DM by the regulation of gut microbiota.

Baicalein is a dietary flavonoid and is a main component of Oroxylum indicum and
Scutellaria baicalensis. It is used as a dietary supplement or as tea in Asia, Europe and
the Americas. Based on Zhang’s study in 2018, four weeks intervention of baicalein (50,
150 mg/kg·d) significantly decreased the blood glucose and LPS and improved insulin
resistance, inflammation, and lipid profile in T2DM rat dose-developmentally. These
anti-diabetic effects are owing to the increase in SCFAs content and the thickness of the
intestinal mucus layer, which is closely related to the regulation of the intestinal microbiota,
especially the abundance of Bacteroides and Bacteroides S24-7. They had the highest
relative abundance in rats receiving 150 mg/kg baicalein, and they were positively cor-
related with improving T2DM-related phenotypes [42]. As reported, Bacteroidales S24-7,
Prevotella, Blautia, and Butyricoccus are the key SCFA-producing bacteria, which may
relieve inflammation and insulin resistance, by reducing the intestinal endotoxins entering
the circulation, thereby alleviating T2DM [73,74].

Plumula nelumbinis, also named “Lian-Zi-Xin” in Chinese, is the dried embryo of
the ripe seeds of Nelumbo nucifera Gaertn (Nelumbonaceae). It is a traditional Chinese
medicine (TCM), and also an ordinary health food. It is commonly used in several counties
around the world. In TCM, Lian-Zi-Xin has been used to clear heart heat, calm the mind,
and treat high fever, promote astringent essence and hemostasis [75,76]. As Qiuzhe Li
reported in 2015, the total flavonoids from Lotus plumule showed noticeable anti-diabetic
effects by reducing the blood glucose level, regulating blood lipid levels and improving
the glucose tolerance in the T2DM mice.

3.4. Terpenoids

Terpenes are natural hydrocarbons and can be linked in diverse ways through isoprene
or isopentane. It mainly includes monoterpenes, sesquiterpenes, diterpenes and triterpenes,
which play a vital role in organisms. Studies have shown that some terpenoids possess
a preventive effect on T2DM; the mechanism may be mediated by protecting islet β-cells
and increasing glucose tolerance and hepatic glycogen synthesis [71]. However, there are
few studies on the effects of terpenoids treating T2DM by regulating gut microbiota.

A pentacyclic triterpene, 2β-hydroxybetulinic acid 3β-oleiate (HBAO), was isolated
from the seeds of Euryale ferox salisb. Oral administration of 60 mg/kg/d HBAO could
ameliorate glycemic homeostasis and alleviate oxidative stress in the streptozocin (STZ)-
induced diabetic rats. It was observed that HBAO normalized the blood glucose, glycosy-
lated hemoglobin (HbA1c), hepatic hexokinase and plasma insulin, improved damaged
pancreatic β-cell, regulated dyslipidemia and antioxidant enzymes (such as superoxide
dismutase, catalase and glutathione peroxidase) in the diabetic rats (p < 0.05) [43]. STZ-
induced diabetic mice were administrated by the triterpenoid-rich extracts of Euryale ferox
shell (ES) orally at doses of 200, 300, 400, 500 ± 2 mg/L for 4 weeks. It was found that the
triterpenoid-rich extracts of ES could regulate glucose metabolism (p < 0.01), normalize the
body weight of the diabetic mice (p < 0.01), reduce the expression of the negative regulation
protein PTP1B gene and increase insulin receptor IRS-1 protein expression (p < 0.05) [77].

3.5. Alkaloids

Alkaloids are a class of nitrogen-containing organic compounds derived in nature,
mainly in the plant kingdom. Most alkaloids are alkaline and have significant biological
activity and are a kind of important bioactive ingredient in MFH and FF [71]. It has been
found that the hypoglycemic activities of alkaloids are mainly mediated by inhibition
of gluconeogenesis, regulation of gut microbiota structure, promotion of glycolysis and
anti-glucagon activities, promotion of the secretion of pancreatic β-cells, and scavenging
of oxygen free radicals [78]. For example, neferine could reduce the levels of blood glu-
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cose, improve insulin resistance and regulate the disorder of lipid metabolism in T2DM
rats [75]. Isoliensinine was found to attenuate T2DM with hyperlipidemia in a KK-Ay
mouse model by regulating GLUT4, SREBP-1c, PPARγ, AMPK and ACC phosphoryla-
tion [76]. However, there are few studies on the effects of alkaloids treating T2DM through
gut microbiota regulation.

Berberine is an isoquinoline quaternary alkaloid that is widely found in Coptidis
rhizoma and Berberis vulgaris [79]. Berberine has a long history in Chinese and Western
medicine treatment [80]. In China, Berberine has been used to treat diarrhea caused by
bacteria as an over-the-counter drug for years [45,81]. Berberine was administrated to
T2DM rats, and it was found that the anti-diabetic effects of Berberine is related to its
regulation of gut microbiota. The community richness and diversity of the gut microbiota
were noticeably increased by Berberine, and the abundance of Bacteroidetes was increased,
while the number of Proteobacteria and Verrucomicrobia were decreased. At the family
level, a probiotic Lactobacillaceae was markedly increased after Berberine intervention,
which was negatively related to the risk of T2DM [44]. It suggested that Berberine can
alleviate T2DM in rats by modulating gut microbiota composition.

3.6. Others

Some other kinds of compounds in medical herbs, such as proteins, fibers, essential
oil and glycosides, also show significant hypoglycemic activities. We also researched
and summarized those kinds of ingredients from MFH and FF to find the potential anti-
diabetic compounds.

Rehmannia glutinosa is a kind of perennial herbaceous plant of the Scrophulariaceae fam-
ily. The R. glutinosa leaves’ total glycoside (DHY) is mainly composed of iridoid glycosides
and phenylethanoid glycosides extracted from R. glutinosa leaves. Studies have shown that
DHY has been used in the clinical treatment of various kidney diseases, due to its protection
on kidneys by improving glomerular permeability and reducing proteinuria. DHY was
also found to improve STZ-induced gut microbiota imbalance in diabetic nephropathy
rats [46]. DHY was observed to significantly decrease the levels of blood glucose, serum
lipid (such as total cholesterol and triglyceride) and improve kidney damage, and inhibit
the expression of α-SMA, TGF- β1, Smad3 and Smad4 in the kidney tissues of db/db mice.
DHY had noticeable up-regulation effect on Firmicutes in db/db mice. At the genus level,
DHY were dominant for the recovery of norank_f_Bacteroidales_S24_7_group in db/db mice.
Therefore, DHY may restore the dysfunctional intestinal flora to normal and regulate
glycolipid level of db/db mice [46].

Salvia miltiorrhiza Bge., a TCM for promoting blood circulation and removing blood
stasis, has been used as a health-care food recently. The aerial parts of S. miltiorrhiza Bge.
(DJ) are rich in phenolic acids similar to the rhizome [82]. The 60% ethanol extracts of DJ
were found to strengthen the intestinal barrier of diabetic mice by up-regulating the tight
junction proteins expressions in ileum and colon, but not in duodenum. DJ could modulate
the diabetes-induced gut microbiota imbalance. At phylum level, that the number of
Proteobacteria was significantly increased while Tenericutes was significantly decreased in
DJ group compared to the control group [82].

Dietary fibers can modify the gut barrier and microbiota homeostasis, thereby impact-
ing the progression of diabetes. Inulin-type fructans (ITFs) are natural soluble dietary fibers
with different fermentation degrees in chicory root, which can regulate the occurrence
and development of diabetes. Female nonobese diabetic mice were weaned to long-and
short-chain ITFs, ITF(l) and ITF(s) supplemented diet up to 24 weeks. Expression of barrier
reinforcing tight junction proteins occludin and claudin-2, antimicrobial peptides-defensin-
1, and cathelicidin-related antimicrobial peptide as well as short-chain fatty acid production
were enhanced by ITF(l). It was found that ITF(l) enhanced Firmicutes/Bacteroidetes ratio to
an antidiabetogenic balance and enriched modulatory Ruminococcaceae and Lactobacilli [49].
The inulin was found to alleviate different stages of T2DM in diabetic mice by modulat-
ing gut microbiota. It increased the relative abundance of Cyanobacteria and Bacteroides,
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and reduced the relative abundance of Deferribacteres and Tenericutes. Dietary inulin can
ameliorate diverse stages of T2DM by suppressing inflammation and modulating gut
microbiota, especially in pre-diabetic and early diabetic stages, thus it potentially serves as
an inexpensive intervention for the prevention and treatment of T2DM patients [15].

4. Herb Extracts of MFH and FF Target for Microbiota in T2DM
4.1. Single Herb Extracts of MFH and FF Target for Microbiota in T2DM

Generally, MFH and FF are usually taken in the form of decoction or direct consump-
tion. Therefore, the anti-diabetic effect of the water extracts or total extracts is worthy
of attention. We investigated the anti-diabetic effects of the extracts of MFH and FF by
regulating the imbalance of the intestinal microbiota, such as Fructus Aurantii Immaturus,
Atractylodis macrocephalae Rhizoma, Radix Puerariae, sea buckthorn, Anemarrhena asphodeloides,
Dendrobium officinale, listed in Table 2.
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Table 2. The role and mechanism of extracts in MFH and FF on T2DM through modulating gut microbiota.

MFH/FF Source Microbiota Findings Mechanism Test Sections Study Type and
Sequencing Method Animals Dose and Duration Refs.

Fructus Aurantii
Immaturus Citrus aurantium L.

↓ Lachnospiraceae NK4A136, Prevo
tellaceae UCG-003, Prevotellaceae

NK3B31, Lachnospiraceae
UCG-008, Ruminiclostridium 9,

Ruminococcaceae UCG-014;
↑ Lactobacillus, Alloprevotella,

Treponema 2

Restore the intestinal
microflora balance

Water extracts of fried
Fructus Aurantii

Immaturus with wheat
bran decoction

In vivo; 16S rRNA
Sequencing Analysis

Male
Sprague-Dawley rats 9 g/kg/day; 14 d [83]

Atractylodes
macrocephala Koidz

Atractylodes macrocephala
Koidz (Compositae)

↑ Bacteroides thetaiotaomicron,
Methanobrevibacter smithii

Upregulate GLP-1R, PI3K,
PDX-1 expressions, and
suppress inflammation

(decrease FOXO1, NF-κB p65)

Water extracts of
Atractylodis

macrocephalae Rhizoma
(AMK)

In vivo; 16S rRNA
Sequencing Analysis db/db mice 100 mg/kg/day;

3 weeks [84]

Anemarrhena
asphodeloides Anemarrhena asphodeloides Bge.

↑ Blautia coccoides (in vitro)
↓ Proteobacteria, Facklamia,

Oligella, and Klebsiella

Suppress the increased
oxidative stress and

inflammatory activation.

Water extract of A.
asphodeloides

In vivo; 16S rRNA
Sequencing Analysis Male SPF Wistar rats 20, 60, 180 mg/kg/day;

4 weeks. [85]

Lycium barbarum Lycium barbarum L.

↑ the ratio of Firmicutes to
Bacteroidetes;

↓ Parasutterella, Marvinbryantia,
Blautia, Ruminococcus_1,

Prevotellaceae_NK3B31_group

Improve liver, kidney, and
pancreas injury and regulate

metabolic profiles

Water extract of L.
barbarum leaf

In vivo; 16S rRNA
Sequencing Analysis (SPF)-grade rat 1.04, 2.08 g/kg/day;

4 weeks [66]

Alpinia oxyphylla Miq. Alpinia oxyphylla Miq.
(Zingiberaceae)

↑ Akkermansia;
↓ Helicobacter

Modulate gut microbiota
composition

Water extract of Alpinia
oxyphylla Miq.

In vivo; 16S rRNA
Sequencing Analysis db/db mice

100, 300,
500 mg/kg/day;

8 weeks
[86]

Chinese propolis Chinese propolis

↑ Roseburia, Intestinimonas,
Parabacteroides goldsteinii,
Parabacteroides distasonis;
↓ Faecalibacterium, Prevotella,

Bacteroides vulgatus

Reduce inflammation Ethanol extract of
propolis

In vivo; 16S rRNA
Sequencing Analysis C57BL/6 200, 300 mg/kg/day;

12 weeks [87,88]

Puerariae Radix Pueraria lobata ↑ Lactococcus, Ruminococcus
Inhibit obesity and

inflammatory-related
parameters

30% ethanol extracts of
dried root of P. lobata

In vivo; 16S rRNA
Sequencing Analysis

Female C57BL/6 J
mice

400 mg/kg/day;
10 weeks [89]

Mulberry leaf Morus alba L. ↑ Bacteroidetes, Proteobacteria;
Clostridia Improve IR mulberry leaf powder In vivo; 16S rRNA

Sequencing Analysis
Sprague-Dawley

male rats
20% (w/w) in diet;

13 weeks [90]

Coicis Semen Coix lacryma-jobi L. var.
ma-yuen (Roman.) Stapf

↑ Lactobacillus, Coprococcus,
Akkermansia, Akkermansia

muciniphila, Lactobacillus agilis
Improve glucose homeostasis Coicis Semen power

included in diet
In vivo; 16S rRNA

Sequencing Analysis C57BL/6 mice 0.5 g/100 g; 5 weeks [91]

Astragali Radix
Astragalus membranaceus

(Fisch.)
Bge. var. mongholicus (Bge.)

↑ ratio of Firmicutes/Bacteroidota;
Lactobacillales Regulate gut microbiota

Astragali Radix
decoction vesicle-like

nanoparticles extracted
by ltracentrifugation;

In vivo; 16S rRNA
Sequencing Analysis db/db mice 5.3, 10.6,

21.1 g/kg/day; 3 weeks [92]

Dendrobium candidum Dendrobium candidum Wall Ex
Lindl ↑ Akkermansia, Parabacteroides Improve glucose intolerance

and IR
Dendrobium officinale

extract
In vivo; 16S rRNA

Sequencing Analysis T2D mice 1.0 g/kg/day; 30 days [93]
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Table 2. Cont.

MFH/FF Source Microbiota Findings Mechanism Test Sections Study Type and
Sequencing Method Animals Dose and Duration Refs.

hemp seed Cannabis sativa L. ↑ Bacteroidetes;
↓ Firmicutes Modulate gut microbiota hemp seed oil-water

mixture
In vivo; 16S rRNA

Sequencing Analysis Female KM mice 0.2, 0.4 mL; 10 days [94]

Dioscoreae Rhizoma Dioscorea opposita Thunb. ↑ Bifidobacterium, Adolescentis,
Bifidobacterium infantis Modulate gut microbiota yam gruel In vivo; 16S rRNA

Sequencing Analysis Human patients 150 g/day; 3 months [95]

Abbreviations: IR, insulin resistance. ↑, Increase. ↓, Decrease.



Molecules 2021, 26, 6934 14 of 20

Atractylodis macrocephalae Rhizoma is widely used as a functional food in Asia. The
water extracts of A. macrocephalae (AMK) at a dose of 100 mg/kg noticeably increased
the relative abundance of Bacteroides thetaiotaomicron and Methanobrevibacter smithii in gut
microbiota of the diabetic mice. It was found that AMK could significantly decrease the
blood glucose and serum lipids, and improve the insulin resistance, which was associated
with its inhibitory effects on inflammation and its regulation of gut miocrobiota imbalance.

Chinese propolis, is a resinous substance collected by bees from plants exudates that is
mixed with wax and mandibular gland secretions [96]. Propolis has long been recognized
as a natural nutraceutical has shown a beneficial effect on alleviating by exerting good
anti-inflammatory, anti-oxidant effects [96]. Studies have reported that propolis extract
could boost lipid metabolism, alleviate insulin resistance, and delay obesity in high-fat
diet-fed mice and rats with T2DM [87]. Propolis were abserved to reverse the elevation of
Firmicutes and inflammatory biomarkers expression induced by HFD in the obese mice [88].
Propolis intervention can regulate gut microbiota by decreasing Alistipes, and increasing
Lactobacillus in male mice, which are playing an important role in the preventive effect on
obesity and T2DM.

4.2. Herb Formula Consisted of MFH for T2DM by Regulating Microbiota

Chinese herbal formulas with anti-diabetic effects have been well studied, and many of
them have commonly been used in “Xiaoke” patients since ancient times. In the traditional
Chinese medicine system, the relationship between the gut microbiota and disease is
actually the relationship between the intestine and disease, which was early mentioned in
the “Huang Di Nei Jing”. Therefore, we summarized the herb formulas consisted of MFH,
which act anti-diabetic effects by regulating the imbalance of gut microbiota, and listed in
Table 3.

Wumei Wan was first recorded in Zhang Zhongjing’s “Shanghan lun”, and is the
main prescription for the treatment of Jueyin disease. “Xiaoke” disease was considered
to be one of Jueyin diseases as recorded in ancient China. It was found that Wumei
Wan (at the dose of 20, 10, 5 g/kg/d) could significantly enrich the functional bacteria,
such as Firmicutes, DeltaProteobacteria, and Lactobacillus, and decrease the abundance of
Bacteroidetes, Actinobacteria, Bacteroides, Clostridium in the T2DM rats [97]. It has been
proven that Wumei Pill can regulate the balance of intestinal flora in T2DM model rats,
increase the content of short-chain fatty acids (including acetic acid, propionic acid, butyric
acid), thereby lowering blood glucose and ameliorating T2DM. Daesiho-Tang is another
important formulation in TCM, known for its anti-diabetic and anti-hepatotoxic effects. It
has been found that Daesiho-Tang treatment noticeably increased the relative abundance
of Bacteroidetes, Bacteroidetes/Firmicutes ratio, Akkermansia Bifidobacterium, Lactobacillus, and
decreased the level of Firmicutes [98].
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Table 3. The role and mechanism of formula extracts in MFH and FF on T2DM through modulating gut microbiota.

MFH and FF Microbiota Findings Mechanism Test Sections Study Type and
Sequencing Method Animals Dose and Duration Ref.

Wumeiwan

↓ Bacteroidetes, Actinobacteria,
Bacteroides, Clostridium;

↑ Firmicutes, DeltaProteobacteria,
Lactobacillus

Improve SCFA, inhibit
inflammatory mediums

(TNF-α, IL-10)
Decoction concentrate In vivo; 16S rRNA

Sequencing Analysis Sprague-Dawley rats 5, 10, 20 g/kg/day; 4 weeks [97]

Daesiho-Tang

↑ Bacteroidetes, Bacteroidetes/Firmicutes
ratio, Akkermansia Bifidobacterium,

Lactobacillus;
↓ Firmicutes

Modulate intestinal
microbiota Water extracts In vivo; 16S rRNA

Sequencing Analysis Male C57BL/6 mice 700 mg/kg/day; 12 weeks [98]

Gegen Qinlian Decoction
↑ Lactobacillus johnsonii,

Stomatobaculum longum strain ACC2,
Bacteroides vulgatus

Suppress inflammation:
reduce the levels of LPS,

TNF-α, IL-6
Crude drugs In vivo; 16S rRNA

Sequencing Analysis KK-Ay mice 4.44, 13.30, 40.00 g/kg/day;
4 weeks [99]

A mixture of D. officinale
and American ginseng

↑ ratio of Bacteroidetes to Firmicutes,
Prevotella, Akkermansia; and
SCFA-producing bacteria;

↓ S24-7/Rikenella/Escherichia coli.

Decrease inflammation
(IL-6 and TNF-α) and

oxidative stress; improve
intestinal flora balance

Mixture of D. officinale and
American ginseng

In vivo; 16S rRNA
Sequencing Analysis Dogs 160 mg/kg/day; 60 days [100]

Chinese Herbal Formula
Shenzhu Tiaopi

Granule

↑ Lactobacillus;
↓ Firmicutes/Bacteroidetes ratio,

Bacteroidetes, Allobaculum,
Desulfovibrionaceae

Inhibit inflammation,
ameliorate IR

Shenzhu Tiaopi
Granule

In vivo; 16S rRNA
Sequencing Analysis Male Goto-Kakizaki (GK) 1000 mg/kg/day; 8 weeks [101]

Qijian Mixture ↑ Bacteroidetes Inhibit inflammation and
oxidative stress Qijian Mixture In vivo; 16S rRNA

Sequencing Analysis Male KKay mice 1.795, 5.385 g/kg/day; 5 weeks [102]

Anemarrhena asphodeloides
Bge.and Phellodendron

chinense Schneid

↓ Bacteroidetes; Bacilli, Lactobacillus
↑ Firmicutes, Proteobacteria; Clostridia,

Romboutsia, Bacteroides

Improve intestinal
microbiota Decoction concentrate In vivo; 16S rRNA

Sequencing Analysis Sprague-Dawley rats 6.48 g/kg/day; 30 days [103]

Combination of Aronia,
Red Ginseng, Shiitake

Mushroom and
Nattokinase

↓ Clostridales;
↑ Bacterioidales Improve IR Water extracts of the

combination
In vivo; 16S rRNA

Sequencing Analysis Sprague Dawley rats 0.5, 1.0 g/kg/day; 12 weeks [104]

Scutellaria baicalensis
Georgi, SR and Coptis
chinensis Franch, CR

↑ SCFAs-producing bacteria:
Bacteroidales S24-7 group_norank,

Eubacterium nodatum group,
Parasutterella, Prevotellaceae UCG-001,
Ruminiclostridium, Ruminiclostridium
↓ Secondary bile acid-producing

bacteria Escherichia Shigella;

Increase microbially
derived SCFAs Water extracts In vivo; 16S rRNA

Sequencing Analysis Male Sprague-Dawley rats 6.3 g/kg/day; 1 month [105]

Abbreviations: IR, insulin resistance. ↑, Increase. ↓, Decrease.
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5. Conclusions and Perspective

T2DM, as one of the major public health problems worldwide, is currently prevailing
and seems likely to continue for some time. Therefore, there is an urgent need for new
methods to prevent and treat this disease. However, most of the treatments currently in
use, especially drugs with proven effects, generally focus on agents designed to directly
affect signaling pathways that directly modulate the blood glucose, which usually show
some side effects. However, better underlying causes of T2DM indicates that regulating
the gut microbiota may be a potential way to treat this disorder.

Natural plants, especially medicine food homology and functional foods, are con-
sidered to be an ideal candidate for oral treatment because of their effective, non-toxic,
few side effects, and have received widespread attention in the of management of T2DM.
As described in this review, research, especially in animal models, supports this view.
Additionally, studies on MFH and FF suggests that their beneficial effects on T2DM may
be partly mediated by their influences on gut microbiota. In fact, approaches such as
inhibiting low-grade inflammation to prevent T2DM through regulating gut microbiota
have existed, but recent studies on impacts of gut microbiota suggest it may be a possible
medium for preventing this disorder. In this regard, further studies on the impacts of MFH
and FF on the gut microbiota are worthy of in-depth attention, in humans, paving the way
for better treatment and prevention of T2DM.
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