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In pediatric acute myeloid leukemia (AML), fusions involving lysine methyltransferase 2A
(KMT2A) are considered hallmarks of aggressive AML, for whom the development of
targeted specific therapeutic agents to ameliorate classic chemotherapy and obtain a
complete eradication of disease is urgent. In this study, we investigated the antiapoptotic
proteins in a cohort of 66 pediatric AML patients, finding that 75% of the KMT2A-r are
distributed in Q3 + Q4 quartiles of BCL-2 expression, and KMT2A-r have statistically
significant high levels of BCL-2, phospho-BCL-2 S70, and MCL-1, indicating a high anti-
apoptotic pathway activation. In an attempt to target it, we tested novel drug combinations
of venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, in KMT2A-MLLT3, for being themost
recurrent, and KMT2A-AFDN, for mediating the worst prognosis, rearranged AML cell
lines. Our screening revealed that both the bromodomain and extra-terminal domain (BET)
inhibitor, I-BET151, and kinase inhibitor, sunitinib, decreased the BCL-2 family protein
expression and significantly synergized with venetoclax, enhancing KMT2A-r AML cell line
death. Blasts t (6; 11) KMT2A-AFDN rearranged, both from cell lines and primary samples,
were shown to be significantly highly responsive to the combination of venetoclax and
thioridazine, with the synergy being induced by a dramatic increase of mitochondrial
depolarization that triggered blast apoptosis. Finally, the efficacy of novel combined drug
treatments was confirmed in KMT2A-r AML cell lines or ex vivo primary KMT2A-r AML
samples cultured in a three-dimensional system which mimics the bone marrow niche.
Overall, this study identified that, by high-throughput screening, themost KMT2A-selective
drugs converged in different but all mitochondrial apoptotic network activation, supporting
the use of venetoclax in this AML setting. The novel drug combinations here unveiled
provide a rationale for evaluating these combinations in preclinical studies to accelerate the
introduction of targeted therapies for the life-threatening KMT2A-AML subgroup of
pediatric AML.
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INTRODUCTION

Leukemia is the most common type of cancer in childhood,
accounting for 25–30% of cancers in children and adolescents
aged 0–18 years (Kuhlen et al., 2019).

Despite the refinement of risk stratification on the basis of
clinical characteristics, molecular profiling, and detection of
minimal residual disease after induction therapy, to date the
overall survival for children with acute myeloid leukemia (AML)
has not exceeded 70% (Pui et al., 2011; Pession et al., 2013;
Elgarten and Aplenc, 2020). Collaborative international efforts
have resulted in the convergence of treatment approaches for
pediatric AML that, nevertheless, continue to be based primarily
on intensive, conventional chemotherapy, followed by
hematopoietic stem cell transplant for patients with high-risk
AML or after experiencing a relapse (Zwaan et al., 2015).

In the last decades, data that emerged from sequencing and
molecular profiling have identified molecular subsets with
prognostic significance, with a pediatric AML molecular
landscape that remains quite distinct from adults (Pigazzi
et al., 2011; Masetti et al., 2013; Manara et al., 2014b;
Manara et al., 2016; Bisio et al., 2017; Bolouri et al., 2018;
Noort et al., 2018; Zampini et al., 2018). Among the recurrent
lesions in pediatric patients, fusions involving lysine
methyltransferase 2A (KMT2A, MLL) are considered
hallmarks of aggressive AML, particularly in infants and
early childhood. The 11q23-rearranged AML subgroup
represents more than 20% of pediatric cases, with >80
recognized fusion partners, although the majority of
leukemias result from KMT2A fusions with one of about six
common partner genes, with KMT2A-MLLT3 being the most
recurrent, and the prognostic significance is strictly dependent
on the fusion partner, with the KMT2A-AFDN fusion
associated with a particularly poor prognosis (Balgobind
et al., 2009; Coenen et al., 2011; Pigazzi et al., 2011; Manara
et al., 2014a; Meyer et al., 2018). This ever-expanding knowledge
on leukemia biology is crucial to identify those molecular targets
useful for the development of therapeutic agents to ameliorate
classic chemotherapy and obtain complete eradication of the
disease while reducing toxicity when possible (Mercher and
Schwaller, 2019). In the adult AML field, there is a fervent and
rapid evolution on the prognosis and management of the disease
due to the Food and Drug Administration (FDA) approval of
several new drugs targeting key molecular pathways involved in
leukemia development, cell growth, and proliferation for
different AML indications (Kantarjian et al., 2021). In the
pediatric ambit, some of them are under investigation in
early-phase trials, particularly in the relapse AML setting
(Elgarten and Aplenc, 2020). One of the most promising and
studied agents is venetoclax, a B-cell lymphoma-2 (BCL-2)
inhibitor that can restore the activation of caspase-dependent
apoptosis in malignancies, including AML. While lymphoid
malignancies nearly universally overexpress BCL-2
(Stilgenbauer et al., 2016; Ashkenazi et al., 2017), in myeloid
leukemias, BCL-2 expression is heterogeneous and not always
upregulated, with relapses showing higher percentages of
positive expression than those seen at leukemia onset,

suggesting that BCL-2-expressing blasts might be those
escaping apoptosis in first-line treatments (Bensi et al., 1995;
Testa and Riccioni, 2007; Kuusanmäki et al., 2020).

Nevertheless, venetoclax showed limited activity as a single
agent in high-risk AML (Konopleva et al., 2016), encouraging the
investigation of rationally designed combinations to increase its
activity in these subgroups that emerged with the recent FDA
approval for venetoclax in combination with hypomethylating
agents or low-dose cytarabine for the treatment of newly
diagnosed AML in adults who are 75 years of age or older
(DiNardo et al., 2019; Wei et al., 2019; DiNardo et al., 2020;
Wei et al., 2020a) and with several studies of venetoclax
combinations (Bogenberger et al., 2017; Karjalainen et al.,
2017; Ma et al., 2019; Pollyea et al., 2019; Fischer et al., 2020;
Han et al., 2020).

In this study, we pursued the identification of newly targeted
opportunities for KMT2A-rearranged AML that still represent a
challenge in the oncohematology field by selecting novel drug
combinations. To accomplish this goal, we evaluated the
proteomic profile of KMT2A-r AML pediatric patients,
unveiling the hyper-activation of BCL-2 antiapoptotic
pathway. We re-analyzed the data of high-throughput drug
screening previously performed on AML cell lines,
identifying AML-KMT2A-r selective drugs. Thus, to tackle
KMT2A-r AML, we tested combinations of the novel
KMT2A-r identified drugs with the BCL-2 inhibitor
venetoclax. Synergistic combinations have been validated in
KMT2A-r AML cell lines and ex vivo primary KMT2A-r
AML samples in a three-dimensional (3D) scaffold
mimicking the bone marrow niche, which strengthen the
drug efficacy prediction. Our results documented that
I-BET151, sunitinib, and thioridazine act synergistically with
venetoclax, all converging in different but mitochondrial
apoptotic network activation, enhancing leukemia cell death.

MATERIALS AND METHODS

Reverse-Phase Protein Arrays
Reverse-phase protein array (RPPA) analysis was performed as
previously described (Sandoval et al., 2012; Aveic et al., 2015).

In Vitro Cell Culture and Treatments
The cell lines NOMO-1, THP-1, and HL-60 (DMSZ,
Braunschweig, DE) were maintained in RPMI 1640 (Thermo
Fisher Scientific, Waltham, MA, United States) and SHI-1
(DMSZ) in Dulbecco’s modified Eagle’s medium (Thermo
Fisher Scientific). All the media were supplemented with 10%
fetal bovine serum (FBS; Thermo Fisher Scientific), 2 mM
glutamine (Gibco, Life Technologies, CA, United States), and
100 U/ml streptomycin/penicillin (Gibco, Life Technologies).

Ex vivo cells were obtained from the bone marrow of pediatric
patients affected by de novo AML with KMT2A rearrangements,
provided by the pediatric OncoHematology Lab of Padova
Hospital. Primary cells were cultured in RPMI Medium 1640
with 10% FBS, 2 mM glutamine, and 100 U/ml streptomycin/
penicillin, supplemented with cytokines (50 ng/ml hTPO, 50 ng/
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ml hSCF, 50 ng/ml hFlt3L, 20 ng/ml hIL-3, and 20 ng/ml hIL-6;
Miltenyi Biotec, Bergisch Gladbach, Germany).

Venetoclax, I-BET 151, sunitinib, quinacrine, thioridazine,
and PD98059 were purchased from Merck Millipore. The
KMT2A-MLLT3-rearranged NOMO-1 and THP-1, KMT2A-
AFDN-rearranged SHI-1, and non-KMT2A-rearranged HL-60
cell lines were treated at a density of 0.5 × 106/ml at
concentrations selected based on the dose–response curve of
each drug. In particular, in synergy evaluation, we tested
multiple doses as follows: for venetoclax, we tested three
doses, including concentrations between IC40 and IC60; for
the KMT2A-r AML cell lines, we used 0.2, 1, and 5 μM; and
for HL-60, we used 1, 10, and 100 nM. For KMT2A-specific drugs
(I-BET151, sunitinib, and quinacrine), we included
concentrations ranging from IC25 to IC50 since these drugs
would be used in combination for the evaluation of their
synergistic abilities. For KMT2A-AFDN-specific drugs,
thioridazine and PD98059, we selected the concentration
based on our previously published data (Manara et al., 2014a;
Tregnago et al., 2020). In the combination experiment, we use one
dose of each selected drug: we used the lower dose that resulted as
synergistic as shown by the red area of the 2-dimensional contour
plot, where we highlighted the selected dose with a yellow star. In
HL-60, since the synergy score never showed synergy, we used
I-BET151, sunitinib, and quinacrine at the same dose previously
selected for the KMT2A-r AML cell lines. The combination index
was calculated as reported by Slinker BK et al. (CI = EA + EB/
EAB, where EAB represents the observed combination effect, E is
the effect, A refers to drug A, and B refers to drug B) (Slinker,
1998).

Cell Viability Assay
Cell viability was evaluated using CellTiter-Glo® assay (Promega
Fitchburg, WI) following the guidelines of the manufacturer.
Briefly, at the experimental endpoint, 100 μl of treated cells was
transferred into the wells of white, flat-bottomed, opaque 96-well
plates (Corning Life Sciences, NY, United States), then 100 μl of
CellTiter-Glo® reagent was added, and the plates were shaken for
2 min and incubated for 20 min at room temperature.
Luminescence was recorded using the Spark® multimode
microplate reader (TECAN, Männedorf, Switzerland), with an
integration time of 0.1 s per well. Cell viability was evaluated up to
72 h after treatment in dose–response curves, 48 h after treatment
in drug combination experiments on AML cell lines, and 24 h
after treatment in drug combination experiments on ex vivo
primary AML cells.

High-Throughput Screening
High-throughput screening (HTS) was performed as previously
described (Tregnago et al., 2020). Drugs specific for KMT2A-
rearranged AML were evaluated as those reducing cell viability
≥60% selectively in (6; 11) ML2, SHI-1, and t (9; 11) NOMO-1
and THP-1, but not in HL60, at 10-µM concentration.

Quantitative Real-Time PCR
Total RNA was isolated using Trizol (Invitrogen—Thermo Fisher
Scientific). Then, 1 μg of RNAwas reverse-transcribed into cDNA

using the SuperScript II system (Invitrogen—Thermo Fisher
Scientific) according to the instructions of the manufacturer.
The expression of BCL2 mRNA was measured by real-time
PCR (RQ-PCR) on an ABI 7900HD platform (Applied
Biosystems, Foster City, CA) using the Platinum™ SYBR™
Green qPCR SuperMix (Invitrogen—Thermo Fisher Scientific)
and normalized on GUS housekeeping gene using the 2̂-ΔΔCt
method. The primers are as follows: BCL2 F: GGCCGTACAGTT
CCACAAA; BCL2 R: AGTACCTGAACCGGCACCT; GUS F:
GAAAATATGTGGTTGGAGAGCTCATT; GUS R: CCGAGT
GAAGATCCCCTTTTTA.

Western Blot
For Western blot analysis, whole cells were lysed in RIPA buffer
(Tris-HCl: 50 mM, pH 8, NaCl: 150 mM, Nonidet-P40 1%,
sodium deoxycolate: 0.5%, and SDS: 0.1%) and processed for
protein expression by Western blot. The following primary
antibodies were used: BCL-2 (D55G8, Cell Signaling
Technology, Danvers, MA, United States), MCL-1 (Cell
Signaling Technology), and GAPDH (GeneTex, Irvine, CA,
United States). The horseradish peroxidase–conjugated
secondary antibody was either anti-rabbit or mouse (Perkin
Elmer, Waltham, MA, United States), and signal was
quantified using ImageJ software.

Mitochondrial Membrane Potential
Mitochondrial membrane potential was measured by using
TMRE Assay Kit (ab113852, Abcam, Cambridge,
United Kingdom), following the instructions of the
manufacturer. Briefly, TMRE (200 nM) diluted in BSA (0.2%)-
PBS 1X was added for 20 min at 37°C. The cells were analyzed by
flow cytometry using FC500 (Beckman Coulter, Brea, CA).

Colony-Forming Unit Assay
At 24 h after treatment, 2 × 103 ex vivoAML cells were seeded into
500 μl of MethoCult™ (H4534, Stemcell Technologies,
Vancouver, Canada) in 24-well plates and incubated at 37°C.
After 2–4 weeks of culture, for colony counting, an adequate
volume of a 1:6 solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (Sigma-Merck Millipore) in
Hanks’ balanced salt solution was added to the semisolid
medium, and images were acquired by an optical microscope
with camera.

In Vitro 3D-AML Treatments
The AML-MSC isolation and culture, 3D scaffold
specifications, and 3D culturing setup were previously
described (Borella et al., 2021). Briefly, AML-MSCs were
seeded in the scaffold and cultured in StemMACSTM MSC
Expansion Media (Miltenyi Biotec) for MSC expansion for
5 days. Then, AML cells were added to the scaffold in proper
medium and exposed to the best drug combinations that
resulted from the monoculture setting. We used the highest
synergistic doses found by ZIP synergy analysis, tested to be
safe in MSCs, that are I-BET151 (2 µM), sunitinib (5 µM), and
thioridazine (10 µM). Venetoclax was used (1 µM). Treatment
was conducted for 48 h.
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3D Cell Viability Assay
Cell viability was measured using CellTiter-Glo® 3D reagent
(Promega) according to the instructions of the manufacturer
at 48 h after treatment. Briefly, the scaffolds were individually
transferred into wells of white, flat-bottomed, opaque 96-well
plates (Corning Life Sciences) with 100 μl of RPMI; then, 100 μl of
CellTiter-Glo® 3D reagent was added into each well. The plates
were shaken for 5 min to induce scaffold and cell lysis. The
samples were then incubated for an additional 20 min in the dark,
at room temperature, to stabilize the bioluminescent signal,
which was then recorded using Spark® multimode microplate
reader (TECAN), with an integration time of 0.1 s per well. Cell
viability was compared to the control sample [scaffold with the
same cells but treated with dimethyl sulfoxide (DMSO)].

In co-treatment experiments, the combination index was
calculated as reported by Slinker BK et al. (CI = EA + EB /
EAB, where EAB represents the observed combination effect, E is
the effect, A refers to drug A, and B refers to drug B) (Slinker,
1998).

Data Evaluation and Statistical Analyses
The t-test was adopted for significance between differences in
means when two groups were evaluated, after a preliminary
testing of normal distribution of data. ANOVA test was
performed when comparing more than two groups, applying
Bonferroni correction for multiple statistical hypotheses testing.
Graphs and associated statistical analyses were generated using

GraphPad Prism 8 (GraphPad, La Jolla, CA). All data are
presented as mean ± standard error of the mean (SEM), with
*p-value <0.05, **p-value <0.01, ***p-value <0.001, and
****p-value <0.0001 considered statistically significant.

RESULTS

BCL-2 Family Antiapoptotic Proteins in
Pediatric AML
We analyzed the BCL-2, BCL-2 S70, and MCL-1 protein levels in
a cohort of 66 pediatric AML by RPPA analysis (Aveic et al.,
2015), and we subdivided the patients by BCL-2 protein
expression quartiles. We found that KMT2A-rearranged AML
patients were prevalent in the higher quartiles Q3 + Q4 with
respect to the lower Q1 and Q2 (KMT2A-r cases: Q3 +Q4, n = 12,
75% vs. Q1 + Q2, n = 4, 25%; Figure 1A, Supplementary Table
S1). Overall, the KMT2A-rearranged AML patients have
significantly high levels of BCL-2, phospho-BCL-2 S70, and
MCL-1 (Figure 2A; **p < 0.01, ***p < 0.001). Of note is the
fact that we found a significant correlation between BCL-2 and
BCL-2S70 (R = 0.76, p < 0.00001) and between BCL-2 andMCL-1
(R = 0.81, p < 0.00001), describing that there was an active anti-
apoptotic pathway in KMT2A-AML (Figure 1B). Conversely,
patients with isolated core binding factor rearrangements that are
well responders to chemotherapy were prevalent in the Q1 + Q2
quartiles (Q1 + Q2, n = 15, 65% vs. Q3 + Q4, n = 8, 35%).

FIGURE 1 | Expression of antiapoptotic proteins of BCL-2 family in pediatric acute myeloid leukemia (AML). (A) Supervised analysis according to BCL-2 expression
(left panel) and dot plots (right panel) showing BCL-2, BCL-2 S70, and MCL-1 protein expression of a cohort of 66 AML pediatric patients subcategorized in KMT2A-
rearranged AML and non-KMT2A-rearranged AML, analyzed with the reverse-phase protein array method. Quartiles refer to BCL-2 expression. Dot plots show the
mean ± SEM. A.U., arbitrary units. (B) Pearson correlation between BCL-2 S70 (X-axis) and BCL-2 (Y-axis) in the upper panel and MCL-1 (X-axis) and BCL-2
(Y-axis) in the lower panel; p < 0.00001. (C) Dose–response curve of growing concentrations of venetoclax in KMT2A-rearranged AML (SHI-1, THP-1, and NOMO-1) and
non-KMT2A-rearranged AML (HL-60) cell lines at 72 h after treatment (n = 2).
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FIGURE 2 | Combination of venetoclax and I-BET151. (A) Dose–response curve of growing concentrations of I-BET151, sunitinib, and quinacrine in KMT2A-
rearranged acute myeloid leukemia (AML; SHI-1, THP-1, and NOMO-1) and non-KMT2A-rearranged AML (HL-60) cell lines at 72 h after treatment (n = 2). (B) Cell viability
of SHI-1 and NOMO-1 (KMT2A-rearranged) or HL-60 (non-KMT2A-rearranged) after treatment with I-BET151 combined with venetoclax at 48 h after treatment. The
synergy scores were represented by pseudocoloring 2-dimensional contour plots over the dose matrix (red indicates synergy and green indicates antagonism) and
calculated using the ZIP model (synergy when >10, n = 2). Stars indicate the concentrations selected for subsequent experiments. (C) Cell viability of SHI-1 and NOMO-1
(KMT2A-rearranged) or HL-60 (non-KMT2A-rearranged) after treatment with venetoclax, I-BET151, or the combination at 48 h after treatment (CI, combination index;

(Continued )
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We tested the BCL-2 inhibitor venetoclax in a panel of three
KMT2A-r AML cell lines, namely, t (6; 11) SHI-1 and t (9; 11)
NOMO-1 and THP1 and in a non-KMT2A cell line, HL60. We
found that the SHI-1 and THP1 cell lines were resistant (IC50
>5 µM) to the treatment compared to the HL60 that was sensitive
(IC50 <0.0016 µM), with NOMO1 cells responding at
intermediate levels (IC50 = 0.05 µM; Figure 1C,
Supplementary Table S2), supporting the KMT2A-rearranged
cells as suitable for the anti-apoptotic pathway to be tackled.

Selection of KMT2A-AML-Specific Drugs
and Combination Strategy
We considered to increase the susceptibility of KMT2A-AML to
venetoclax by combining it with other KMT2A-specific agents.
To identify the most suitable drugs, we re-analyzed the data of the
high-throughput chemical screening previously performed
(Tregnago et al., 2020), filtering 1,280 drugs for being effective
in reducing cell proliferation to ≤60% in KMT2A-AF6- and
KMT2A-AF9-rearranged AML cell lines, but not in HL60
(Supplementary Figure S1). This strategy uncovered three
candidate drugs for KMT2A-AML treatment improvement,
including I-BET 151, a BET bromodomain inhibitor which
inhibits BRD4, BRD2, and BRD3 as previously identified for
KMT2A-r AML (Fu et al., 2015), sunitinib, a multitargeted kinase
inhibitor (Papaetis and Syrigos, 2009), and quinacrine, an
antimalarial drug that inhibits NFκB suppression of p53 (Oien
et al., 2021), both being never explored in the KMT2A-r AML
context. The dose–response curve confirmed the HTS results,
showing a higher sensitivity of the KMT2A-AML cells to all the
three drugs when compared to the HL60 (Figure 2A).

To assess the pharmacological interactions between venetoclax
and KMT2A-specific drugs, incremental doses were applied
based on the IC50 value of each drug (Supplementary Table
S3) on SHI-1 and NOMO1 as representatives of KMT2A-AML
and on HL60 as non-KMT2A-AML. Drug synergy was
interrogated by using SynergyFinder application (Ianevski
et al., 2021) (synergy score <−10: antagonistic interaction;
>−10 and <10: additive interaction; >10: synergistic
interaction). The results showed a strong synergism between
venetoclax and I-BET 151 in reducing KMT2A-AML cell
proliferation (synergy score: 31.461 in SHI-1, 43.499 in
NOMO1, and 2.812 in HL60; Figure 2B), confirmed by a
significant combination index (CI) in all combination
treatments (CI = 0.59 in SHI-1, 0.77 in NOMO1, and >1 in
HL60; Figure 2C; **p < 0.01, ****p < 0.0001). Thus, we explored
BCL-2 RNA and protein expression after I-BET 151 treatment, as
BCL-2 is a direct KMT2A target whose transcription is dependent
on BET family protein placement on chromatin (Dawson et al.,
2011), and we found that during treatment, BCL-2 was

significantly decreased (Figures 2D,E, *p < 0.05, ***p < 0.001)
in both RNA and protein expression, sensitizing KMT2A-AML to
venetoclax treatment.

We tested the venetoclax and sunitinib combination with the
same approach, finding a strong synergism in KMT2A-AML
(Figure 3A; synergy score: 35.446 in SHI-1, 49.556 in NOMO1,
and - 8.517 in HL60), and the combination treatment resulted in
significantly decreasing the cell viability (CI = 0.63 in SHI-1, 0.90
in NOMO1, and >1 in HL60; Figure 3B; *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001). In this case, a more in-depth
molecular analysis of the mechanisms underlying the cellular
response showed that sunitinib decreased the MCL-1 expression
more than the BCL-2 (Figure 3C; *p < 0.05, **p < 0.01, ***p <
0.001), supporting that KMT2A-AML cells were susceptible to
venetoclax treatment due to the effects induced in MCL-1.

Conversely, we found synergism between venetoclax and
quinacrine only in NOMO-1 (Wei et al., 2020b), whereas in
SHI-1 the score was just barely synergistic (Figure 4A; synergy
score: 12.432 in SHI-1, 35.569 in NOMO1, and 2.327 in HL60).
Since quinacrine-induced cell death and mitochondrial
depolarization were described to be mediated by MAPK-
elicited BCL2 downregulation and suppressed by constitutively
active MEK-1 over-expression (Changchien et al., 2015), we
hypothesize that RAS pathway overactivation in t (6; 11)-r
AML (Manara et al., 2014a) might prevent quinacrine-induced
BCL-2 downregulation, thus avoiding synergy.

Consistently, the combination treatment resulted to be
synergistic only in NOMO-1 (Figure 4B; CI >1 in SHI-1, 0.77
in NOMO1, and >1 in HL60; ***p < 0.001, ****p < 0.0001),
excluding this combination of drugs from further analysis.

Combination Strategy in
KMT2A-AF6-Rearranged AML
Since the t (6; 11)-r AML is known to be a peculiar KMT2A-r
subgroup (Balgobind et al., 2009; Pigazzi et al., 2011; Pession
et al., 2013), we previously identified that thioridazine and
PD98059 selectively reduced KMT2A-AF6 AML cell
proliferation and described their mechanism of action
(Manara et al., 2014a; Tregnago et al., 2020). Here we tested
their activity in combination with venetoclax. The results showed
that the combination of venetoclax with thioridazine is strongly
synergic (Figure 5A; synergy score: 22.193 in SHI-1 and -2.473 in
HL60), and the combination treatment resulted in significantly
decreasing the cell viability (CI = 0.83 and >1 in SHI-1 and HL60,
respectively; Figure 5B; **p < 0.01, ***p < 0.001, ****p < 0.0001).
We previously demonstrated that apoptosis was driven by Ca2+

influx-induced mitochondrial depolarization that occurred after
thioridazine treatment. Therefore, we looked at the
mitochondrial potential status, finding that the combined

FIGURE 2 | synergy when CI <1. ANOVA test was performed by applying Bonferroni correction for multiple statistical hypotheses testing. **p < 0.01, ****p < 0.0001; n =
2). (D) BCL2 expression measured by RQ-PCR at 6 and 24 h post-treatment in SHI-1 and NOMO-1 with respect to control. ANOVA test was performed by applying
Bonferroni correction for multiple statistical hypotheses testing. *p < 0.05; n = 2 (E) BCL-2 levels measured at 48 h post-treatment in SHI-1 and NOMO-1. Histograms
report the quantification normalized to GAPDH. ANOVA test was performed by applying Bonferroni correction for multiple statistical hypotheses testing. *p < 0.05, ***p <
0.001; n = 2.
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FIGURE 3 | Combination of venetoclax and sunitinib. (A) Cell viability of SHI-1 and NOMO-1 [both KMT2A-rearranged acute myeloid leukemia (AML)] and HL-60
(non-KMT2A-rearranged AML) after treatment with sunitinib combined with venetoclax at 48 h after treatment. The synergy scores were represented by pseudocoloring
2-dimensional contour plots over the dose matrix (red indicates synergy and green indicates antagonism) and calculated using the ZIP model (synergy when >10, n = 2).
Stars indicate the concentrations selected for subsequent experiments. (B) Cell viability of SHI-1 and NOMO-1 (KMT2A-arranged) or HL-60 (non-KMT2A-
rearranged) after treatment with venetoclax, sunitinib, or the combination at 48 h after treatment (CI, combination index; synergy when CI <1. ANOVA test was performed
by applying Bonferroni correction for multiple statistical hypotheses testing. *p < 0.05; **p < 0.01, ***p < 0.001; ****p < 0.0001; n = 2). (C) MCL-1 and BCL-2 levels
measured at 48 h post-treatment in SHI-1 and NOMO-1. Histograms report the quantification normalized to GAPDH. ANOVA test was performed by applying Bonferroni
correction for multiple statistical hypotheses testing. *p < 0.05, **p < 0.01, ***p < 0.001; n = 2.
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treatment led to a more rapid mitochondrial depolarization,
triggering greater cytotoxicity (cells with depolarized
mitochondria: 5% with DMSO, 9.8% with venetoclax, 7.5%
with thioridazine, and 27.2% with combination; Figure 5C).
Finally, we would consider these novel combination strategies
in ex vivo AML cells derived from de novo AML patient-derived
xenografts (PDXs). A dose–combination curve confirm that the t
(6; 11)-AML samples were more sensitive to thioridazine
treatment compared with the non-t (6; 11) ones
(Supplementary Figure S2, Table S4), and the combination
with venetoclax further and selectively reduced cell viability in
this genetic subgroup (Figure 5D; *p < 0.05, **p < 0.01). Notably,
we revealed that the combination treatment of venetoclax +
thioridazine completely abrogated the cell clonogenic capacity
of t (6; 11)-rearranged AML cells, supporting this strategy to be
useful for a complete blast clearance (Figure 5E).

On the contrary, although the combination of PD98059 +
venetoclax was more effective in the t (6; 11) cell line, it did not
result to be synergistic (Supplementary Figure S3; synergy score:
2.479 in SHI-1 and -3.531 in HL60), and for this reason, we
excluded this combination of drugs from further analysis.

Best Combination Strategy in KMT2A-AML
in a 3D System
To validate our results, we took advantage of an innovative three-
dimensional (3D) culture model that we recently developed; it
consists of a 3D biomimetic scaffold made of hydroxyapatite/
collagen (70/30%) (Tampieri et al., 2008) that allowed long-term
AML co-culture with mesenchymal stromal cells (MSCs) derived
from the bone marrow (BM) of leukemia patients at diagnosis of
de novo AML (namely, AML-MSCs), recapitulating the crucial
physiological aspects of leukemia niche (Borella et al., 2021). This
3D system was demonstrated to be a bona fide model, wherein
robust and reliable drug screening is performed due to the
recapitulation of the BM microenvironment. Therefore, we
tested the drugs selected above in SHI-1 and NOMO-1 cells
seeded in the 3D system together with AML-MSCs, following a
sequential cell seeding schema of long-term AML cultures in 3D
(Figure 6A). Of note is that since we previously documented a
different drug active concentration in 2D or 3D models, with a
generally higher dose needed to induce the same cell death in the
3D model, here we increased the doses of the compounds,
verifying that they did not affect the viability of AML-MSCs

FIGURE 4 |Combination of venetoclax and quinacrine. (A) Cell viability of SHI-1 and NOMO-1 [both KMT2A-rearranged acute myeloid leukemia (AML)] and HL-60
(non-KMT2A-rearranged AML) after treatment with quinacrine combined with venetoclax at 48 h after treatment. The synergy scores were represented by
pseudocoloring 2-dimensional contour plots over the dose matrix (red indicates synergy and green indicates antagonism) and calculated using the ZIP model (synergy
when >10, n = 2). Stars indicate the concentrations selected for subsequent experiments. (B) Cell viability of SHI-1 and NOMO-1 (KMT2A-arranged) or HL-60 (non-
KMT2A-rearranged) after treatment with venetoclax, quinacrine, or the combination at 48 h after treatment (CI, combination index; synergy when CI <1. ANOVA test was
performed by applying Bonferroni correction for multiple statistical hypotheses testing. ***p < 0.001, ****p < 0.0001; n = 2).
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in co-cultures, with MSCs always proliferating >70% with drugs
used alone or in combination (Supplementary Figure S4). Blasts
co-cultured in 3D and treated for 2 days showed that either
venetoclax + I-BET151 or venetoclax + sunitinib was able to
significantly reduce the cell viability of both SHI-1 and NOMO-1
(Figures 6B,C; SHI: CI = 0.27 with Ven + IBET151, CI = 0.18
with venetoclax + sunitinib; NOMO-1: CI = 0.25 with venetoclax
+ IBET151; CI = 0.08 with venetoclax + sunitinib; *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001), confirming the strong synergy
of these drug combinations. Finally, we performed treatments in
the 3D system seeded with ex vivo primary AML samples and
demonstrated a greater effect in reducing leukemia cell
proliferation when drugs are used in combination on t (6; 11)
and t (9; 11) KMT2A-r AML (Figure 6D; t (6; 11)AML: CI = 0.95
with Ven + IBET151, CI = 0.92 with venetoclax + sunitinib,

CI = 0.98 with venetoclax + thioridazine; t (9; 11)AML: CI = 0.32
with venetoclax + IBET151; CI = 0.56 with venetoclax + sunitinib;
*p < 0.05, **p < 0.01, ***p < 0.001; Supplementary Figure S5). All
the combinations tested are summarized in Table 1.

DISCUSSION

In the field of pediatric AML, the need to improve survival while
decreasing relapse occurrence and treatment-related toxicity
dictates the great effort that is continually being spent to find
novel therapeutic approaches. To reach this goal, it is necessary to
consider the high intra- and inter-AML complexity both at the
genetic and clinical points of view.

Here we aimed at identifying new therapeutic strategies for a
specific genetic AML subgroup, taking into account differences at

FIGURE 5 | Combination of venetoclax and thioridazine in t(6;11)-rearranged acute myeloid leukemia (AML). (A) Cell viability of t (6; 11) SHI-1 and non-t (6; 11) HL-
60 after treatment with thioridazine (TDZ) combined with venetoclax (Ven) at 48 h after treatment. The synergy scores were represented by pseudocoloring 2-
dimensional contour plots over the dose matrix (red indicates synergy and green indicates antagonism) and calculated using the ZIP model (synergy when >10, n = 2).
Stars indicate the concentrations selected for subsequent experiments. (B) Cell viability of t (6; 11) SHI-1 and non-t (6; 11) HL-60 after treatment with venetoclax,
thioridazine, or the combination at 48 h after treatment (CI, combination index; synergy when CI <1. ANOVA test was performed by applying Bonferroni correction for
multiple statistical hypotheses testing. **p < 0.01, ***p < 0.001; ****p < 0.0001; n = 2). (C) Mitochondrial depolarization evaluated by tetramethylrhodamine ethyl
fluorescence measurement at 20 h after Ven (5 µM), TDZ (10 µM), or combination treatment compared with dimethyl sulfoxide in SHI-1 (n = 2). (D) Cell viability of PDX-
derived ex vivo t (6; 11) and non-t (6; 11) AML after treatment with venetoclax (1 µM), thioridazine (10 µM) or the combination at 24 h after treatment. ANOVA test was
performed by applying Bonferroni correction for multiple statistical hypotheses testing.*p < 0.05; **p < 0.01. (E) Colony-forming assay performed on viable ex vivo cells
seeded at 24 h after the combination treatment [venetoclax (1 µM) + thioridazine (10 μM), n = 2].
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the molecular and pharmacological levels and regarding cell–cell
interaction using a model that closely resembles the leukemic
niche microenvironment with stromal component. We would
test the possible use of venetoclax in the pediatric AML setting
and evaluated the BCL-2 levels in a cohort of pediatric AML
samples, finding the majority of KMT2A-rearranged AML
patients to be allocated in Q3 + Q4 quartiles and to have
significantly high levels of BCL-2, phospho-BCL-2 S70, and
MCL-1, suggesting that this antiapoptotic signaling is
particularly upregulated in this subgroup. Interestingly, the

BCL-2 S70 phosphorylated form and MCL-1 were also found
to be overexpressed in the same KMT2A-r AML. It was
demonstrated that high levels of phospho-BCL-2 inhibit the
effects of venetoclax on the displacement of BAX and BIM
from BCL-2, thereby suppressing mitochondrial apoptosis, due
to a structural alteration in the BH3-binding groove induced by
the phosphorylation of BCL-2 (Ruvolo et al., 2001; Song et al.,
2016). Moreover, MCL-1 upregulation may serve as one of the
potential mechanisms of cellular resistance to venetoclax (Wei
et al., 2020b). Therefore, we investigated KMT2A-rAML cell lines

FIGURE 6 |Combination treatments in 3Dmodel. (A) Scheme of the in vitro 3D culture setup procedure: hydroxyapatite/collagen scaffolds were allowed to soak for
24 h, then seeded with acute myeloid leukemia (AML)-MSCs (t = 1), and cultured for a further 5 days prior to adding of KMT2A-rearranged AML cells and performing the
drug treatment (t = 6). Cell viability was evaluated in the 3D system at 48 h after treatment (t = 8) by ATP 3D assay. (B–D) Cell viability of 3D system analyzed at 48 h after
drug treatment with venetoclax (1 μM), I-BET151 (2 μM), sunitinib (5 µM), and thioridazine (10 μM) normalized to the respective controls (dimethyl sulfoxide; n = 3) in
SHI-1 and NOMO-1 cell lines (B, C) and AML primary samples (D, E). CI, combination index; synergy when CI <1. ANOVA test was performed by applying Bonferroni
correction for multiple statistical hypotheses testing. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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and found that they were resistant or less responsive to venetoclax
treatment. However, recent studies have shown that, when
combined with either chemotherapy or a panel of targeted
drugs, venetoclax resulted in higher response rates with
encouraging remission durations in adult AML patients, even
when there was a poor response to conventional induction
chemotherapy (Wei et al., 2020a; DiNardo et al., 2020). Here
we applied a strategy that consists in combining venetoclax with
highly selective drugs for KMT2A-r AML. The selective drugs
were identified using HTS of chemical compounds partly
approved by the FDA or in clinical development, filtered with
a very restrictive pipeline that allowed a high refinement to select
the drugs specific for the KMT2A rearrangement. The
compounds that met our criteria, I-BET151, sunitinib, and
quinacrine, rely on different mechanisms of action; however,
they all converge in deregulating BCL-2 family proteins, revealing
that KMT2A-r AML involved antiapoptotic factors and thus their
targeting as a strategy to trigger their death, even more when
combined with BCL-2 inhibitor venetoclax. As a result, we
documented that I-BET151 and sunitinib, in combination with
venetoclax, were selectively synergistic in KMT2A-r cell lines.
Notably, a substantial impairment of cell viability was observed
even if the concentration of the single drugs was lower than the
IC50 value. This is particularly important for venetoclax, for
whom a low concentration is recommended to maintain BCL-2
selectivity over BCL-XL to allow BCL-2 antagonism, thus
avoiding platelet toxicity (Souers et al., 2013). I-BET151 is a
compound that inhibits the bromodomain and extra terminal
(BET) protein BRD4 and was previously reported to be
particularly efficient on KMT2A-r leukemias (Dawson et al.,
2011; Zuber et al., 2011), confirming the robustness of our
high-throughput screening. In our cell lines, drug treatment
inhibits the transcription of the BCL2 gene, lowering the BCL-
2 protein and significantly sensitizing the cells to venetoclax
treatment. Differently, sunitinib is a small molecule with
selectivity for PDGFR, VEGFR1, VEGFR2, KIT, and FLT3
(Mendel et al., 2003; O’Farrell et al., 2003), which is currently
approved for treating renal cell carcinoma, gastrointestinal
stromal tumor, and AML (Wu et al., 2018); however, until
now, it has been considered only for FLT3 mutated AML
patients in combination with chemotherapy (Fiedler et al.,

2015). In this work, we found not only that sunitinib is
selective for KMT2A-r cells but that, when combined with
venetoclax, it was able to further sensitize cells to treatment,
significantly impairing cell viability. We reported that the
underlying mechanism is decreased MCL-1 expression,
mediating the venetoclax effects. This mechanism was
observed also in chronic leukemia cells (Oppermann et al.,
2016) and might represent a notable strategy to overcome
venetoclax resistance, which often depends on MCL-1
upregulation. Overall, in the KMT2A-rearranged subgroup of
pediatric AML, a molecular-based approach may predict the best
combination partner of venetoclax. Briefly, we suggest for AML
patients with high BCL-2 levels the venetoclax + I-BET151
combination, which decreases BCL2 gene transcription and
BCL-2 protein levels, whereas for AML patients with high
MCL-1 levels, the venetoclax + sunitinib combination would
be considered for its ability to affect MCL-1 levels.

A further refinement of KMT2A treatments is based on the
HTS focused on t (6; 11) KMT2A-AFDN-rearranged cases that
allowed the identification of thioridazine as the most selective
compound inducing the cytoskeletal remodeling of blast cells
that led to Ca2+ influx, triggering apoptosis through
mitochondrial depolarization due to chimera-driven AFADIN
delocalization into the nucleus (Tregnago et al., 2020). Given
that venetoclax action converges on the mitochondria which
actively participate in apoptosis, we monitored the
mitochondrial potential after the thioridazine + venetoclax
combined treatment, observing an exacerbation of the
mitochondrial depolarization that resulted in high synergism
of treatment, supporting the combination venetoclax +
thioridazine as a useful strategy to be involved in further
analyses for AML patients with KMT2A-AFDN fusion with
either high BCL-2 or MCL-1 levels. To sustain these findings, we
would comply with the emerging need to study AML and its
pharmacological targeting in suitable models that take into
account the interplay between blasts and the
microenvironment (Fang and Eglen, 2017; Langhans, 2018;
Cartledge Wolf and Langhans, 2019). For this purpose, we
recently developed and characterized a 3D model for AML
long-term treatment cultures by seeding primary
mesenchymal stromal cells derived from the bone marrow of

TABLE 1 | List of the combinations tested, the molecular mechanisms identified for the observed synergy, and the setting where the treatments were performed.

Molecular rearrangement Combination tested Synergy Molecular
mechanism identified

In vitro drug treatment

AML cell lines
(SHI-1, NOMO-1,

HL-60)

3D model

AML cell lines
(SHI-1,

NOMO-1)

Ex vivo primary
AML
cells

KMT2A- rearranged AML Venetoclax + I-BET151 Yes Decreased BCL-2 X X X
Venetoclax + sunitinib Yes Decreased MCL-1 and

BCL-2
X X X

Venetoclax +
quinacrine

No - X - -

KMT2A-AFDN-
rearranged AML

Venetoclax +
thioridazine

Yes Mitochondria depolarization X X X

Venetoclax + PD98059 No - X - -
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AML patients (namely, AML-MSCs) into a scaffold that
resembles the composition and structure of the bone
trabecules of the niche. In this 3D system, we described
interactions between leukemic cells and stromal cells which
play a critical role in AML proliferation and drug response
(Borella et al., 2021). Therefore, we validated novel selected drug
combinations in this setting, either with cell lines or primary
samples, confirming a significant improvement mediated by
combined treatments in reducing leukemia burden.

In summary, the combination of venetoclax with I-BET151,
sunitinib, or thioridazine dramatically decreases cell viability in
KMT2A-r AML. This anti-leukemia efficacy is associated with the
simultaneous inhibition of BCL-2 by venetoclax and the
downregulation of anti-apoptotic proteins or disrupting
mitochondrial homeostasis, supporting that enhancing the
mitochondrial pathway targeting could be a good strategy to
sensitize resistant AML to venetoclax. Our 3D system co-cultured
with primary MSCs and KMT2A-r blasts confirmed that our
combinations are effective and predictable, allowing further rational
prioritization of these compounds to be included in preclinical trials.

Overall, this study provides a rationale for evaluating therapy
cocktails in 3D models and preclinical studies to accelerate the
introduction of new compounds to treat the life-threatening
KMT2A-AML subgroup of pediatric AML.
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