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Group 2 innate lymphoid cells (ILC2s) are typically known for their ability to respond rapidly
to parasitic infections and play a pivotal role in the development of certain allergic
disorders. ILC2s produce cytokines such as Interleukin (IL)-5 and IL-13 similar to the
type 2 T helper (Th2) cells. Recent findings have highlighted that ILC2s, together with IL-33
and eosinophils, participate in a considerably broad range of physiological roles such as
anti-tumor immunity, metabolic regulation, and vascular disorders. Therefore, the focus of
the ILC2 study has been extended from conventional Th2 responses to these unexplored
areas of research. However, disease outcomes accompanied by ILC2 activities are
paradoxical mostly in tumor immunity requiring further investigations. Although various
environmental factors that direct the development, activation, and localization of ILC2s
have been studied, IL-33/ILC2/eosinophil axis is presumably central in a multitude of
inflammatory conditions and has guided the research in ILC2 biology. With a particular
focus on this axis, we discuss ILC2s across different diseases.

Keywords: group 2 innate lymphoid cell, interleukin-5, interleukin-33, eosinophil, anti-tumor immunity, obesity,
cardiovascular disease
INTRODUCTION

Recent expansion in our understanding of innate lymphoid cells (ILCs) began with several epoch‐
making reports in 2010 (1–4). The ILCs were originally indicated as interleukin (IL)-25 responsive
non-B/non-T lymphocytes (5). ILCs are classified into five distinct cell populations based on their
characteristics, including the profile of cytokines produced and the key transcription factors
involved in their major immunological functions. These are the natural killer (NK) cells, group 1
org June 2022 | Volume 13 | Article 9393781
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ILC (ILC1), ILC2, ILC3, and lymphoid tissue inducer (LTi) cells
(6). This classification should be observed with caution because
ILCs possess a unique plastic ability to adapt to the surrounding
milieu and can undergo transdifferentiation into another group
of ILCs (7–9). ILC2s are tissue-resident cells (10), preferentially
inhabiting the mucosal organs such as lung and intestine, and
display tissue-specific transcriptional features influenced by the
surrounding environment (11). The mucosal surface is the first
line of defense against infectious pathogens; hence, ILC2s
inherently display a prompt response through the secretion of
IL-5 and IL-13. Unlike T cells, ILC2s lack antigen-specific
receptors and instead express receptors for epithelial-derived
cytokines such as thymic stromal lymphopoietin (TSLP), IL-25,
and IL-33, thereby ensuring signal recognition from exogenous
agents. ILC2s not only participate in acute responses but also in
the subsequent antigen-specific adaptive immune responses in
cooperation with type 2 T helper (Th2) cells (12, 13). In addition
to Th2 cytokines, ILC2s in the lung were found to produce IL-10
(14–16) and IL-10-producing ILCs, so-called ILCreg, have been
reported in the intestine (17). Interestingly, like other antigen-
p r e s e n t i n g c e l l s , I LC 2 s c ommun i c a t e t h r o u g h
major histocompatibility complex class II molecules to activate
acquired immune response (18). Thus, ILC2s provide a link
between innate and acquired immunity (19).

ILC2s are involved in various immunological disorders and
host defense (20). Asthma is a chronic airway inflammatory
disease and one of the best-characterized allergic disorders
associated with ILC2s (21, 22). ILC2s serve to establish
predominant Th2 inflammation synergistically and/or
competitively by interacting with other ILC subsets and
immune cells (23). ILC2s in respiratory diseases are also
evident in humans (24). To eliminate invading parasites, ILC2s
mediate Th2 immune response in collaboration with adaptive
Th2 cells (25, 26). In anti-viral immunity, although ILC2s
exacerbate airway hyperreactivity through IL-13 production
(27), they contribute to tissue repair by producing a wound-
healing protein, amphiregulin (28). In most cases, IL-33 is
considered a central cytokine for such ILC2-mediated
immune responses.

Although the functions of IL-33 in allergies are well known
(29, 30), the focus has currently shifted to its role in cancer (31–
33) and cardiovascular diseases (34–36). IL-33 is one of the most
effective cytokines for regulating ILC2s. In a steady state, IL-33
resides in the nucleus and is released by necrotic cells within
damaged tissue (29, 37). When a tissue is injured/infected by
pathogens, IL-33 acts by alarming the immune cells in the
vicinity to mediate immune responses, and is thus called an
“alarmin” or damage-associated molecular pattern. The IL-33
receptor comprises ST2 (IL-1 receptor-like 1) and IL-1 receptor
accessory protein (38–40) which is expressed on various immune
cells (41, 42). The binding of IL-33 to ST2 on the cell surface
ensures Th2 responses, whereas soluble ST2 (sST2) in circulation
inhibits excess IL-33-mediated responses and protects against
disease development (29). In an allergic inflammation, platelets
act as reservoirs and suppliers of IL-33 (43) and are capable of
boosting ILC2 activities through direct interaction (44). In the
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lung tissue, platelets are supplied by the resident megakaryocytes
(45) and may participate in regulation of ILC2 function.

IL-5 is a homodimeric cytokine and its engagement with its
receptor, comprising an IL-5Ra and a common b-chain, plays
critical roles in eosinophil biology starting from the early phase
of its ontogeny in bone marrow (46, 47). Eosinophils store
mediators such as major basic protein (MBP) in granules and
are involved in both health and disease (48, 49). Genetic blockade
of IL-5 signaling results in severe defects in eosinophil regulation
(50, 51), and therefore treatments with anti-IL-5 or anti-IL-5Ra
monoclonal antibodies (mAb) have been promising in patients
with severe eosinophilic asthma (52–54).

In this review, we will discuss recent findings describing
ILC2s in different types of disorders, such as cancer, obesity,
and cardiovascular diseases. These findings suggest that roles of
ILC2s are pleiotropic and diverse, largely depending on the
surrounding environment. An ILC2-targeted therapeutic
approach effective for one disease might be deleterious for
another. This highlights the requirement for a detailed
investigation and verification of the association and
mechanisms of ILC2s.

Contradictory Roles of ILC2s in
Tumor Immunity
Recent findings have shed light on both anti- and pro-tumor
activities of ILC2s (55–60). The anti-tumorigenic activity of
ILC2s appears to be largely dependent on the requirement of
eosinophils at the site of malignancy. Histological evidence for
the involvement of eosinophils in human cancers exists (61–63),
however, the findings are controversial (64, 65). The number of
infiltrated eosinophils in colonic or colorectal carcinomas
significantly correlates with improved prognosis (63, 66–70).
Conversely, in cervical cancer (71), nasopharyngeal carcinoma
(72), and lymph node metastasis or lymphatic invasion (73),
eosinophils were associated with unfavorable prognoses. In
addition to the direct cytotoxic activity of the granules
containing MBP on tumor cells (74, 75), eosinophils in tumor
microenvironment (TME), when activated by interferon (IFN)-g
and tumor necrosis factor (TNF)-a efficiently promote
mobilization of CD8+ cytotoxic T cells from circulation (76).
Eosinophils, however, display functional and phenotypical
heterogeneity and their influence seems to rely on tumor types,
TME, and cancer stages (64).

Involvement of IL-5-producing ILC2s in antitumorigenic
activities was reported using an IL-5 reporter mouse (77),
wherein lung ILC2s were required to retain sufficient number
of eosinophils against tumor metastasis, and a blockade of IL-5
signaling resulted in an increased B16F10 metastasis. This is
supported by the findings from a study that included three
groups of mice deficient in C-C motif chemokine ligand 11
(CCL11), both CCL11 and IL-5, and eosinophils, respectively; all
the three groups of mice exhibited increased tumor growth in
chemically-induced fibrosarcoma (78). Antitumorigenic ILC2s
are primed by their environment modulated by IL-33 (31–33).
Mice inoculated with IL-33-expressing tumor cell lines,
including EL4, CT26, and B16F10, resulted in a substantial
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expansion of intertumoral ILC2, which inhibited tumor growth
and induced apoptosis of tumor cells through the production of
CXC chemokine receptor 2 ligands (79). IL-33-expressing A9, a
murine lung tumor cell line, was also reported to augment the
antimetastatic functions of ILC2s (80). Although ILC2s were not
investigated in mice administered with IL-33, tumor growth and
metastasis were inhibited via eosinophil recruitment (81). Mice
deficient in ILC2s failed to control the incidence of
experimentally induced colorectal cancers, whereas ILC2
infiltration correlated with better overall survival of patients
with colorectal cancers (82). TME induces the expression of
programmed cell death-1 (PD-1) on CD8+ T cells as well as
ILC2s, which results in the inhibition of cytokine production
from these cells. Importantly, a blockade of PD-1 on the surface
of ILC2s leads to revival of their antitumorigenic properties (83,
84). Interestingly, both serum IL-5 and IFN-g levels are useful in
predicting the efficacy of anti-PD1 mAb treatment in patients
with non-small-cell lung and gastric cancer (85).

Accumulating evidence has also suggested pro-tumorigenic roles
of ILC2s. In contrast to the previous study (77), IL-5 was reported to
facilitate tumor metastasis (86). Additionally, IL-5 was suggested to
enhance the migration of bladder cancer cells (87), and esophageal
squamous cell carcinoma (88) in humans. Furthermore, IL-5
enhanced metastasis of breast cancer cells in obese mice (89).
Consistent with these reports, ILC2s facilitated tumor metastasis
in IL-33-treated animals by limiting cytotoxic activity of NK cells
(90). Moreover, IL-13 derived from ILC2s promoted differentiation
of myeloid-derived suppressor cells and were pro-tumorigenic in
acute promyelocytic leukemia (91), bladder cancer recurrence (92),
and metastasis of breast cancer (93).

Roles of ILC2s, eosinophils and IL-33 in tumor immunity show
contrasting results, which poses a difficulty in understanding the
distinct roles of these players in deciding the fate of tumor cells.
However, the possibility of environmental cues as a key determinant
for ILC2s to be antitumorigenic or pro-tumorigenic can be
envisaged. For instance, lactic acid from tumor cells is pro-
tumorigenic (94) whereas higher levels of IL-33 in TME are
shown to induce antitumorigenic activities of ILC2s (81). This
suggests that an assessment of the regulation of ILC2s by TME is
essential for therapeutic intervention.

Anti-Inflammatory and Thermogenic Roles
of ILC2 in Obesity
Obesity is a highly prevalent condition worldwide in which
excess fat accumulates in the body. It is often associated with
type 2 diabetes, high blood pressure, hyperlipidemia, and
cardiovascular diseases (95). Apart from the roles of ILC2s in
typical Th2 immune responses, they also contribute to
homeostatic and metabolic regulation in adipose tissues (96,
97). Adipose tissues are categorized into white, brown, and beige.
In comparison to white, beige and brown adipose tissues display
higher and the highest thermogenic activity, respectively, and are
thus specialized in generating heat. Initially, eosinophils were
demonstrated to be the major IL-4-producing cells in white
adipose tissue involved in inducing anti-inflammatory M2
macrophages (98) which prevents weight gain. Furthermore,
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ILC2s in adipose tissues were the major sources of IL-5 and
IL-13 and recruited eosinophils to produce an anti-obese
environment (99). Conversely, ILC2s in the small intestine
were reported to induce obesity through the production of IL-2
(100), indicating the importance of the interplay between
distal organs.

ILC2s also directly regulate adipocytes and participate in
thermogenesis (101, 102). Adipose ILC2s promote beiging,
conversion from white to beige, through production of
methionine-enkephalin peptide, which can directly affect the
adipocytes and upregulate the expression of uncoupling protein 1
(101), which was brought about by IL-33 (103). In response to cold
stimuli, ILC2s are responsible for proliferation of platelet-derived
growth factor receptors (PDGFR)-a+ adipocyte progenitors and
subsequent differentiation to beige adipocytes (102). IL-13 from
ILC2s and/or IL-4 from eosinophils have been shown to stimulate
PDGFRa+ progenitors through their surface IL-4R.

Cell-cell interaction is important for the activation of adipose
ILC2s. Both glucocorticoid-induced TNF receptor (104) and death
receptor 3 (105) belong to the TNFR superfamily and are expressed
on adipose ILC2s. Post ligand binding, ILC2s accelerate the
production of IL-5 and IL-13 and improve glucose tolerance and
insulin sensitivity, demonstrating their potential to be used in type 2
diabetes therapy. In contrast, IL-33 in the presence of TNF-a in
obese conditions upregulates PD-1 expression on adipose ILC2s
and limits their production of IL-5 and IL-13 (106). Recently,
regulation of ILC2s by sympathetic nerves via adipose
mesenchymal stromal cells was observed (107). Elucidation of the
precise regulatory mechanism and knowledge on the specific
activators of adipose ILC2s will aid in therapy for obesity or type
2 diabetes.

Reparative Roles of ILC2s in
Cardiac Dysfunction
ILC2s are involved in healing cardiac tissue with cooperation
from various types of immune cells to recover and regenerate
cardiac tissue damage caused by myocardial infarction (MI)
(108). ST2 is expressed on cardiomyocytes, and levels of sST2
in serum from animals and humans were elevated after MI (109).
Therefore, IL-33 being the only known ligand of ST2 (38), its role
in cardiovascular and vascular diseases (34–36) was investigated.
In contrast to the known pro-inflammatory functions of IL-33,
IL-33/ST2 signaling protected animals from experimentally
induced cardiac failure by antagonizing angiotensin II-induced
cardiomyocyte hypertrophy (110). Furthermore, IL-33 also
dictates healing processes indirectly via ILC2s.

Under physiological conditions, ILCs reside in heart and
display a progenitor-like phenotype (111). These heart resident
ILCs are evident in biopsy samples from animals and humans
with ischemic cardiomyopathy and myocarditis and are fated to
differentiate to ILC2s in response to cardiac failure (111). ILC2s
in pericardial adipose tissue (PcAT) proliferate in an IL-33
dependent manner in response to MI, and animals deficient in
ILC2 exhibited incomplete recovery from heart dysfunction and
a worsened mortality rate post-MI (112). Although the precise
mechanism of ILC2s is unknown, the recruitment of eosinophils
June 2022 | Volume 13 | Article 939378
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by IL-5 is considered in the recovery of cardiac function. This is
supported by the observation that animals deficient in
eosinophils failed to ameliorate cardiac functions after MI and
that IL-4 from eosinophils was essential for recovery (113).
However, the infiltration of eosinophils into heart needs to be
regulated in order to avoid eosinophilia which induces
inflammatory dilated cardiomyopathy (114).

Interestingly, low-dose IL-2 (aldesleukin) administration in
patients with acute coronary syndrome exhibited transient
activation of blood ILC2s, with a concomitant increase in
serum IL-5 and eosinophil counts, demonstrating recovery of
cardiac function (112). Further research on ILC2s in cardiac
diseases will provide beneficial insights into developing
unprecedented therapies.

Protective Roles of ILC2s in
Atherosclerosis
Atherosclerosis is an arterial disease characterized by the
deposition of plaques on inner walls; and lipid modifications in
plaques result in the generation of non-self-antigens, causing
chronic inflammation. Atherosclerosis is the primary cause of
most cardiovascular diseases. Administration of cytokines
related to ILC2 activation were effective in reducing
atherosclerosis in animals (115). TSLP (116), IL-25 (117), and
IL-33 showed protective effects, and the effectiveness of IL-33
was largely dependent on IL-5 (118). ILC2s that were
experimentally expanded with IL-2/IL-2R complexes protected
from the development of atherosclerosis, although, the
contribution of IL-5/eosinophils was limited (119). In contrast,
ILC1 and NK cells were shown to play etiologic roles in disease
development (120). This correlated well with a significantly high
ILC1/ILC2 ratio in patients with acute cerebral infarction,
commonly caused by rupture of atherosclerotic plaques (121).
By selectively depleting ILC2s in an animal model of
atherosclerosis, regional ILC2s that were in proximity to
atherosclerotic lesions, sufficiently reduced atherosclerosis,
possibly through phenotypic alteration of macrophages to anti-
inflammatory M2 macrophages (122). Furthermore, transfer of
ILC2s into mice that developed atherosclerosis led to an increase
in B1 cell-derived atheroprotective IgM antibodies with
reduction in plaque deposition (123). Collectively, ILC2s
appear to be protective against atherosclerosis.

Etiologic Roles of ILC2s in Pathogenesis
of Pulmonary Arteries
In contrast to the protective roles of ILC2s in cardiac failure and
atherosclerosis, chronic inflammation in lungs possibly drives
ILC2s to act in mediating disorders of blood vessels, including
pulmonary arterial hypertension (PAH). PAH is a progressive
vascular disease characterized by a severe obstruction such as
hypertrophy of small pulmonary arteries with high pulmonary
arterial pressure, thereby resulting in right ventricular failure. It
is categorized as one of the five groups of clinical classification for
pulmonary hypertension (PH) (124). PAH is an intractable rare
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disease and its development is multifactorial. Although the
investigation of causative factors of PAH is ongoing, chronic
inflammation may have a plausible role in the underlying
mechanism (125). Evidence suggests chronic allergic
conditions in mice, concomitant with eosinophilia, lead to the
induction of vessel remodeling with remarkable collagen
deposition and enhanced proliferation of a-smooth muscle
cells (126, 127). Subsequently, Th2 cytokines (128) or IL-5 and
eosinophils (129) were reported to be necessary for the initiation
of arterial remodeling. In humans, parasitic infection, in which
Th2 cytokines such as IL-4 and IL-13 are predominant, is
believed to be the most common cause of PAH (130, 131),
with Th2 cytokines inducing arterial hypertrophy and other
arterial modifications (131, 132).

Pulmonary arterial hypertrophy can also be experimentally
induced by prolonged administration of IL-33 in mice (133).
Histological examination revealed that perivascular ILC2s and
eosinophils were evident around hypertrophied arteries, and this
hypertrophy was ameliorated with anti-IL-5Ra mAb that
depleted eosinophils (134). The proximity of ILC2s to blood
vessels in lungs, as visualized in collagen-rich (135) adventitial
niches (136), may facilitate their vascular regulation through
eosinophil recruitment. In this region, ILC2s are maintained by
IL-33-expressing stromal cells (136) which possibly regulate
ILC2s in case of arterial hypertrophy. Thus, elucidation of the
precise regulatory mechanism will help to understand the initial
phase of disease development.

Because of the lack of histological evidence in humans on
initial phase of arterial hypertrophy, animal models of PAH are
essential to reveal causative factors. Despite reports of advanced
arterial hypertrophy in animal studies, severe PH or right
ventricular hypertrophy is not evident (101, 102, 105). The
establishment of animal models that are more relevant to
human PAH will not only help us to understand the
underlying mechanism but is also imperative in developing a
therapeutic strategy.
DISCUSSION/CONCLUSION

Recent advances in ILC2 research have revealed their pleiotropic
roles in various diseases (Figure 1). Due to heterogeneity in the
function of ILC2s in various disease conditions, their clinical
application faces many obstacles. A treatment that targets ILC2s
in one disease may be detrimental to another. For example,
therapy for obesity by activating ILC2s with low doses of IL-2
may result in excess amounts of IL-5 from the ILC2s and
facilitate tumor metastasis (89). These may present a similar
effect in related diseases such as atherosclerosis (119) and MI
(112). Thus, understanding the precise action of ILC2s in a
particular disease and the extent of its effect on other diseases is
indispensable. Delicate procedures for regulating ILC2s are
required in addition to careful analyses of experimental and
clinical observations, which will ultimately lead to efficient
therapeutic regimes.
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