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Abstract: α-Fe2O3 fusiform nanorods were prepared by a simple hydrothermal method employing
the mixture of FeCl3·6H2O and urea as raw materials. The samples were examined by X-ray
diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron
microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV–vis diffuse reflectance
spectra (UV–DRS). Its visible-light photocatalytic performances were evaluated by photocatalytic
decolorization methylene blue (MB) in visible light irradiation. It was found that pure phase α-Fe2O3

nanorods with a length of about 125 nm and a diameter of 50 nm were successfully synthesized.
The photocatalytic decolorization of MB results indicated that α-Fe2O3 nanorods showed higher
photocatalytic activity than that of commercial Fe2O3 nanoparticles—these are attributed to its unique
three-dimensional structure and lower electron-hole recombination rate.

Keywords: α-Fe2O3 nanorods; photocatalysis; visible-light; decolorization methylene blue

1. Introduction

Environmental pollution has severely threatened human survival and prevented social
development. However, semiconductor photocatalysis is regarded as a latent approach to
solving current environmental issues [1–3]. Recently, the use of visible light and semicon-
ductor photocatalysts to promote the degradation of environmental pollutants has attracted
more and more attention [4,5]. In addition, available semiconductor photocatalysts (such
as TiO2 and ZnO) are usually limited by either low efficiency in utilizing visible light or a
high charge recombination rate. Hence, alternative strategies have been put forward to
enhance their photocatalytic activity under visible light.

Among various metal oxide nanostructures, the scientific community has paid more
attention to three-dimensional iron oxide and hydroxyl oxide nanostructures due to their
inherent magnetic, morphological and phase-dependent features; they are applied in many
fields such as biomedical treatment, water treatment and gas sensors. Hematite (α-Fe2O3)
is considered to be one of the main forms of pure phase iron oxide, which is able to maintain
the highest thermodynamic stability possible; thus it is usually used as a sensitizer for
wide-bandgap semiconductors [6–11]. α-Fe2O3 has aroused great attention as a conse-
quence of its abundant availability, environmental compatibility and very stable corundum
structure [5,12,13]. However, its low conductivity, short carrier diffusion length and rela-
tively high potential, limit the saturation current and current development potential [14].
α-Fe2O3 is prepared by methods such as chemical vapor deposition (CVD) [15–17], spray
pyrolysis [18], hydrothermal methods [19], and precipitation [20]. Shape, size, surface
structure and microstructure are the main factors which affect the chemical and physi-
cal properties of nanomaterials. Recently, different morphology types of α-Fe2O3 have
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been extensively studied. For instance, nanocrystals [21,22], polyhedral nanoparticles [23],
nanorods [24], nanoribbons [25], nanotubes [26], nanostructured microspheres [27,28],
hollow nanostructures [29,30] and nanoplates [31] are used to heighten the photocatalytic
performance of α-Fe2O3. Cha et al. reported on the synthesis of α-Fe2O3 nanorods with ef-
ficient photocatalytic and magnetic properties [32]. Hao et al. synthesized single-crystalline
α-Fe2O3 nanoplates, exhibiting excellent photocatalytic properties towards RhB and weak
ferromagnetic behavior [33]. Chen et al. synthesized α-Fe2O3 crystals with nanoparticle,
nanotube, and nanorod-like morphologies by employing a facile hydrothermal method
and examined their photocatalytic activity [34]. However, there are few reports on the
use of hematite with special spindle morphology as photocatalysts. Liu et al. synthe-
sized porous fusiform-Fe2O3 (hematite) by hydrothermal synthesis assisted by a simple
surfactant sodium dodecyl sulfate (SDS) [35].

Herein, we report a facile route to prepare α-Fe2O3 nanorods. The spindle β-FeOOH
nanorods are firstly obtained via a water bath treatment of aqueous solution containing
FeCl3·6H2O, urea and polyethylene glycol-2000. α-Fe2O3 nanorods are prepared by the
calcination of β-FeOOH at 400 ◦C for 2 h and their photocatalytic activity is explored
by degradation of the pollutant methylene blue (MB). Compared to commercial Fe2O3
nanoparticles, the α-Fe2O3 nanorods showed higher photocatalytic properties towards MB
in visible light irradiation.

2. Experimental Section
2.1. Synthesis of α-Fe2O3 Nanorods

In this work, a facile hydrothermal method was used to obtain α-Fe2O3 nanorods. In a
typical procedure, 4 g of FeCl3·6H2O, 1 g of urea and 2 g of polyethylene glycol-2000 were
dissolved in 70 mL distilled water under vigorous stirring. After stirring, the resulting
mixture was heated to 85 ◦C in a water bath for 2 h. Then, the mixture was separated by
means of a centrifuge at 8000 rpm/min and washed sequentially with distilled water and
ethanol repeatedly. The β-FeOOH precursor (P85) was obtained and sintered at 400 ◦C
for 2 h in the air in a pipe furnace; then it was cooled down to obtain the final α-Fe2O3
nanorod (P85-1) sample.

2.2. Characterization

The phase composition of the samples was characterized by means of X-ray diffrac-
tion (XRD) (X’Pert Pro, PANalytical) operaing at 40 kV and 40 mA with Cu-Kα radiation
(λ = 1.5406 Å). The morphology and structure of as-prepared samples were observed by
HRTEM (JEM-2100) with an acceleration voltage of 200 kV. Carbon-coated copper grids
were used as the sample holders. SEM was carried out using a Hitachi S-4800 instrument
operating at 5 kV. FT-IR of the samples were collected with a PE Spectrum One B IR spec-
trometer. UV-DRS were determined by a UV-vis spectrophotometer (Shimadzu UV-2550).

2.3. Photocatalytic Experiments

The photo degradation experiments were performed in a quartz reactor (using a small
magneton for stirring) containing 40 mL (10 mg/L) of MB solution and 0.1 g of catalyst.
During the process of photocatalysis, all other lights were insulated. The high-pressure
Xenon lamp (150 W, GYZ220, China) was used as a visible-light source, which was placed
at about 10cm from the reactor. A 410 nm cut off filter was placed above the reactor
to cut off UV light; the average light intensity was 50 mW/cm2. Prior to irradiation, the
suspension was kept in the dark under stirring for 60 min in order to ensure the establishing
of an adsorption/desorption equilibrium. At given time intervals, 4mL of aliquots were
collected from the suspension and immediately centrifuged and analyzed by means of
recording variations of the maximum absorption band (664 nm) of MB using a UV-visible
spectrophotometer (UV 2550, Shimadzu).
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3. Results and Discussion

Figure 1 demonstrates the typical XRD patterns of the precursor β-FeOOH (P85) and
α-Fe2O3 (P85-1). From Figure 1a, there are peaks at 11.83◦, 16.74◦ and 26.85◦, and so on,
which are in good agreement with the JCPDS file of β-FeOOH (JCPDS 34-1266) [36,37]. As
is shown in Figure 1b, the diffraction peaks at 24.0◦, 33.0◦, 35.5◦, 40.7◦, 49.3◦, 54.0◦, 57.6◦,
62.3◦, 63.9◦, 71.8◦ and 75.3◦ were attributed to (012), (104), (110), (113), (024), (116), (018),
(214), (300), (1010) and (220) facets of α-Fe2O3 nanopolyhedrons, respectively, which is
consistent with the JCPDS file of α-Fe2O3 (JCPDS 33-0664) [27,38]; this is consistent with
the XRD results of commercial Fe2O3 nanoparticles (Figure S1 in Supplementary Materials).
In addition, characteristic peaks of impurities could not be observed; this indicates the
phase transition from β-FeOOH to α-Fe2O3. The augmented peak sharpness in Figure 1b
indicates that α-Fe2O3 is well crystallized.
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Figure 1. XRD patterns of the precursor (a) and as-prepared α-Fe2O3 (b).

The morphology of the samples was detected by SEM. Figure 2 demonstrates the
SEM images of the precursor P85, sample P85-1 and commercial Fe2O3 nanoparticles.
Figure 2a and Figure S2 (Supplementary Materials) show the images of the precursor,
which clearly demonstrate that the nanorods were of a length of about 200 nm and a
diameter of about 60 nm. The surface of the nanorods was smooth and the smooth-
surfaced particles were similar in size. Figure 2b,c shows the images of P85-1, which had
changed following sintering, from a fusiform shape to irregular rods. The rod-shaped
particles were polymerized, with a length of about 125 nm and a diameter of 50 nm.
Figure 2d shows the images of commercial Fe2O3 nanoparticles were near-spherical. It can
be concluded from Figure 2 that Fe2O3 nanoparticles with different morphologies were
prepared under different experimental conditions, and the prepared Fe2O3 exhibited a
more regular fusiform-like structure.
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Figure 2. SEM images of (a) β-FeOOH, (b,c) α-Fe2O3 and (d) commercial Fe2O3 nanoparticles.

The size and microstructure of the prepared β-FeOOH and α-Fe2O3 samples were
further examined with TEM in Figure 3a,c. Furthermore, Figure 3b demonstrates a lattice
fringe of 0.74 nm corresponding to the (110) facet of β-FeOOH, which further confirmed
that P85 is β-FeOOH. Besides this, the distance of 0.35 nm of α-Fe2O3 could clearly identify
lattice spacing, which corresponds to interplane distances of (012) plane in Figure 3d,
consistent with the XRD results [27,38].

The infrared spectrum of β-FeOOH in Figure 4a demonstrates that the precursor P85
showed absorption peaks at 3440 cm−1 and 1600 cm−1, 850 cm−1, 700 cm−1. Of these, the
peaks at 3440 cm−1 and 700 cm−1 showed strong absorption, and the peak at 3440 cm−1

corresponded to symmetric and anti-symmetric stretching vibrations of O–H group. The
peak at 1600 cm−1 corresponded to the bending vibration of O–H bond, while the other
two peaks at 850 cm−1 and 700 cm−1 corresponded to the stretching vibration of Fe–O
bond [30,38]. Figure 4b demonstrated that the strong absorption peaks of α-Fe2O3 only
emerge at 508 cm−1 and 480 cm−1. In addition, the two stretching vibration peaks for Fe–O
at 3440 cm−1 and 1600 cm−1 only appeared as weak absorption peaks, which is consistent
with commercial Fe2O3 results (Figure S3 in Supplementary Materials). This is because
the O–H bond absorption had disappeared completely, which indicated that the precursor
β-FeOOH had transformed to α-Fe2O3 [23,38,39].
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UV–Vis diffuse reflectance was measured through ultraviolet and visible light ab-
sorption technology. It can be seen from Figure 5 that the commercial Fe2O3 showed a
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narrow absorption of visible light with an edge that occurred at around 450 nm. However,
compared with the commercial Fe2O3 and the P85 precursor, the photo absorption edge of
the prepared α-Fe2O3 nanorods showed a more obvious redshift from 450 nm to 550 nm, so
that the optical absorption of α-Fe2O3 nanorods was significantly stronger in visible-light
regions [4,10,40]. Furthermore, the increase of light absorption range was conducive to the
enhancement of photocatalytic activity. In addition, the UV–Vis diffuse reflectance was
further combined and the band gap diagram was calculated via Tauc plot (Figure S4 in
Supplementary Materials). Compared with the band gap of commercial Fe2O3 (2.2 eV), the
band gap (1.95 eV) of P85-1 was significantly shorter, indicating that P85-1 has a stronger
light utilization efficiency and enhanced photocatalytic ability.
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Methylene blue (MB) is a highly significant dye and has been extensively applied in
industrial production, which inevitably pollutes the environment. Therefore, the photocat-
alytic performance of prepared α-Fe2O3 was evaluated by degradation of MB under visible
light irradiation. Before the photocatalytic process, the solution containing MB and cata-
lysts were agitated to reach the adsorption equilibrium in the dark. Figure 6 demonstrates
the photocatalytic evaluation curve of the prepared α-Fe2O3 under visible light. The figure
clearly shows the variation of MB solution concentrations with degradation time and the
fitting result of degradation kinetics. With the extension of light time, the MB solution
concentration gradually decreased and the degradation process conformed to a first-order
kinetic model. After 60 min of light, the degradation rate of MB of α-Fe2O3 reached 83%,
which is better than that of commercial Fe2O3 and the P85 precursor. Moreover, the catalyst-
free condition was also used as a comparative experiment and its degradation rate was
only about 25%. This further confirms that the prepared α-Fe2O3 exhibits remarkably high
photocatalytic activity, which is consistent with the results on photocurrent (Figure S5
in Supplementary Materials). The repeated degradation experiments of α-Fe2O3 (P85-1)
showed a slight decrease in MB degradation rate after four cycles, indicating that it had
high stability (Figure S6 in Supplementary Materials). Besides this, there were no signifi-
cant differences in the XRD spectra of α-Fe2O3 before and after four cycles of use, which
further proves its stability (Figure S7 in Supplementary Materials).
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Figure 6. Photocatalytic degradation of methylene blue (MB) solution (40 mL, 10 mg/L) with no
catalyst, P85, P85-1, and commercial Fe2O3 under visible light irradiation (λ > 410 nm).

4. Conclusions

In conclusion, a simple one-step hydrothermal method was used to prepare three-
dimensional fusiform-like α-Fe2O3, which was applied to photocatalytic degradation of
MB. It could be seen through SEM and TEM that the three-dimensional fusiform-like
α-Fe2O3 was about 125 nm in length and 50 nm in diameter. In addition, the prepared
α-Fe2O3 showed excellent degradation efficiency of MB solution under visible light illu-
mination, which reached 83% after 60 min sunlight illumination. This is far superior to
traditional commercial Fe2O3 and further proves α-Fe2O3’s excellent photocatalysis per-
formance. As a result, α-Fe2O3 has a wider visible light absorption edge, which promotes
the improvement of photocatalytic activity, thereby showing better degradation perfor-
mance. Furthermore, the as-prepared samples exhibited more advantages such as being
low cost, environmentally friendly and low risk. Therefore, this work provides a promising
and constructive theoretical support for solving problems such as energy shortages and
environmental pollution in the future.
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.3390/nano11102650/s1, Figure S1: XRD pattern of the commercial Fe2O3; Figure S2: SEM images
of β-FeOOH; Figure S3: FT-IR image of the commercial Fe2O3; Figure S4: The band gaps of P85-1
and commercial Fe2O3 determined from Tauc plots; Figure S5: IT-curves of P85-1; Figure S6: Cycle
stability experiment of P85-1; Figure S7: XRD pattern of P85-1 after four cycle times.
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