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Summary

Aging is the single largest risk factor for chronic disease. Studies

in model organisms have identified conserved pathways that

modulate aging rate and the onset and progression of multiple

age-related diseases, suggesting that common pathways of aging

may influence age-related diseases in humans as well. To

determine whether there is genetic evidence supporting the

notion of common pathways underlying age-related diseases, we

analyzed the genes and pathways found to be associated with

five major categories of age-related disease using a total of 410

genomewide association studies (GWAS). While only a small

number of genes are shared among all five disease categories,

those found in at least three of the five major age-related disease

categories are highly enriched for apoliprotein metabolism

genes. We found that a more substantial number of gene

ontology (GO) terms are shared among the 5 age-related disease

categories and shared GO terms include canonical aging path-

ways identified in model organisms, such as nutrient-sensing

signaling, translation, proteostasis, stress responses, and genome

maintenance. Taking advantage of the vast amount of genetic

data from the GWAS, our findings provide the first direct

evidence that conserved pathways of aging simultaneously

influence multiple age-related diseases in humans as has been

demonstrated in model organisms.
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Introduction

Aging is a complex process of progressive functional decline influenced

by environmental, genetic, and stochastic factors (Lopez-Otin et al.,

2013). Genetic approaches to studying aging using yeast, nematode, fly,

and rodent models have identified conserved genetic factors that

modulate aging (Kenyon, 2010; Vijg & Suh, 2013). These include

genome and epigenome maintenance; nutrient-sensing signaling

through insulin/IGF-1, mTOR, and AMP kinase; regulation of proteostasis

through cellular degradation pathways and activity of the unfolded

protein responses; inflammation and senescence pathways; and key

transcriptional regulators such as the Foxo transcription factors. In model

organisms, alterations to these conserved genetic modifiers of aging can

impact both survival (lifespan) and health span, the percentage of life

spent free from significant pathology. Alterations to genome mainte-

nance, inflammation, or proteostasis can result in shortened lifespan and

symptoms of rapid aging (Merkwirth et al., 2012; Schleit et al., 2013;

Jurk et al., 2014), while genetic, dietary, and pharmacological interven-

tions that reduce growth signaling through IIS, mTOR, and AMPK tend

to increase lifespan and delay and reduce the frequency and severity of

aging-related pathologies. Thus, interventions designed to target the

underlying mechanisms of aging are expected to provide great benefit to

human health by attenuating a broad range of pathologies (Fontana

et al., 2010; Berry & Cirulli, 2013; Johnson et al., 2013; Torgovnick

et al., 2013; Sikora, 2014). While the notion that age-related diseases

are driven by common underlying pathways of aging is supported by

model organism studies (Fig. 1), whether it remains true in human aging

is unclear.

Genomewide association studies (GWAS) have provided unprece-

dented opportunities to identify genes and genomic regions associated

with complex traits in human populations, including disease risk. At the

time of this study, 1738 GWAS had been conducted for 816 human

traits (including human diseases), together reporting 11 533 trait-

associated single-nucleotide polymorphisms (SNPs) reaching a suggestive

association threshold of P < 1 9 10�5 (see the Web resource of GWAS

catalog: http://www.genome.gov/gwastudies). These results have

greatly contributed to our understanding of biological pathways involved

in individual human traits. In contrast, little insights have been gained

from GWAS regarding the genetic pathways regulating human longev-

ity. To date, 5 GWAS of longevity, involving long-lived individuals

compared to control populations, have been reported in the catalog of

published GWAS. Among these studies, the APOE gene has emerged as

the only consistently replicated locus associated with human lifespan.

Human health span has not been studied by GWAS, and human age-

related diseases have been studied only as independent traits. Here, we

have taken a novel approach to jointly analyzing a large set of GWAS

data to directly address the question of whether human age-related

diseases are linked by common underlying pathways of aging as has

been demonstrated in model organisms.

Results

To approach the question of whether age-related diseases are influenced

by common genetic pathways, we downloaded all available GWAS data

from the complete (November 9, 2013) release of the NHGRI GWAS

database (Welter et al., 2014). To focus our analysis on traits that have

been sufficiently studied, as well as to address computational limitations

in downstream analyses, we chose to restrict our analyses to traits that

have been examined in a minimum of five independent GWAS, resulting

in a total of 410 GWAS in the 5 age-related disease categories.

Furthermore, in each GWAS, we only considered SNPs with P-value less
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than 1 9 10�5 as trait associated. The combination of these two criteria

ensures that only significant SNPs from well-studied traits are repre-

sented in the work presented here. We defined each trait meeting these

criteria as either age-associated (Table 1) or non-age-associated (Table

S1, Supporting information). Age-associated traits were then assigned to

one of five broad and well-established age-related disease categories:

cardiovascular disease, metabolic disease, neurodegenerative disease,

cancer, and collectively other age-related traits [see (Perez-Lopez et al.,

2009; Walter et al., 2011; Martin, 2012; Johnson et al., 2013; Brunet &

Berger, 2014)]. The other age-related trait category includes traits

conventionally associated with aging, such as telomere length and

inflammation, as well as related age-associated diseases including

rheumatoid arthritis and age-related macular degeneration. GWAS

traits, properties, and assignments are indicated in Table 1 (age-

associated traits).

A gene-based assessment of age-related diseases

GWAS SNPs were assigned to genes (see Methods) resulting in a total

number of 1975 unique genes among all five categories (Fig. 2). Only

three genes (0.15% of total genes) were shared among all the five

age-related diseases categories (Fig. 2A, Table 2). All three shared

genes fell in the MHC locus, a highly variable region over-represented

in GWAS studies. Clustering of age-related disease groups by gene list

similarity (fraction of genes shared vs. total) indicates that cardiovas-

cular disease, metabolic disease, and other age-related trait categories

cluster more closely, while cancer and neurodegenerative diseases

represent the most distinct group with the least overlap between

the two (Fig. 2B). Metabolic disease and other age-related diseases

show the highest similarity between two groups at an overlap of

0.083 (fraction of all genes), whereas metabolic disease and

neurodegenerative disease show the least overlap at 0.029 (fraction

of total genes).

The low number of shared genes among all age-related disease

groups is likely in part a result of the stringent statistical cut-offs of

GWAS. To broaden our analysis to include genes that are shared in at

least the majority of age-related disease categories, we assessed the

genes shared by at least three of the five age-related categories resulting

in a total of 50 genes (2.5% of unique genes, listed in Table 2), including

12 MHC genes as well as a number of genes involved in inflammation,

cell cycle regulation, and cholesterol/apolipoprotein metabolism

(Fig. 2C, Table 2). Notably, both TOMM40/APOE, the highly reproduc-

ible longevity-associated locus, and p16INK4a, a cell cycle/senescence

regulator gene locus previously identified to be associated with multiple

diseases (Jeck et al., 2012), are represented in this gene set. A Gene

Ontology (GO) analysis of these 50 genes against the baseline set of the

total 1975 unique genes revealed a significant enrichment of GO terms

in the apolipoprotein metabolism pathway (Fig. 2D, Table S2, Support-

ing information). Strikingly, apolipoprotein metabolism is the only

biological process significantly enriched in the gene-based overlap

between the age-related disease categories defined in this work.

A pathway approach to age-related disease

To test whether age-related diseases share common underlying genetic

mechanisms and pathways, we next utilized a novel approach of

assessing the pathway-based overlap between disease categories. For

Table 1 Genomewide association studies diseases used in this study

Disease

Number

of GWAS

Significant

SNPs Disease category

Adiponectin levels 9 44 Metabolic

Age-related macular degeneration 9 66 Other

Alzheimer’s disease 18 64 Neurodegenerative

Alzheimer’s disease (late onset) 9 35 Neurodegenerative

Amyotrophic lateral sclerosis 12 54 Neurodegenerative

Atrial fibrillation 5 20 Cardiovascular

Blood pressure 5 57 Cardiovascular

Body mass index 17 124 Other

Bone mineral density 12 97 Other

Breast cancer 26 122 Cancer

C-reactive protein 8 46 Other

Colorectal cancer 14 47 Cancer

Coronary heart disease 17 133 Cardiovascular

Endometriosis 5 26 Cancer

Fasting plasma glucose 8 11 Metabolic

Glaucoma (primary open-angle) 5 12 Other

HDL cholesterol 12 100 Metabolic

Hypertension 8 33 Cardiovascular

LDL cholesterol 12 76 Metabolic

Longevity 5 43 * (longevity)

Lung cancer 10 24 Cancer

Mean platelet volume 5 51 Other

Melanoma 7 18 Cancer

Metabolite levels 8 98 Metabolic

Multiple sclerosis 16 162 Neurodegenerative

Myopia (pathological) 7 76 Other

Obesity 7 77 Metabolic

Osteoarthritis 5 8 Other

Pancreatic cancer 5 39 Cancer

Parkinson’s disease 13 67 Neurodegenerative

Prostate cancer 19 104 Cancer

Pulmonary function 5 55 Cardiovascular

QT interval 8 76 Cardiovascular

Rheumatoid arthritis 14 78 Other

Telomere length 7 16 Other

Triglycerides 12 79 Metabolic

Type 2 diabetes 32 141 Metabolic

Urate levels 9 68 Metabolic

Uric acid levels 5 34 Metabolic

Diseases/traits that met the criteria for inclusion in this study are indicated with the

number of GWAS studies, number of GWAS significant SNPs, and disease category

assignment as indicated. The trait longevity, while meeting our criteria for

inclusion, was not included.

Fig. 1 Common pathways in aging and age-related disease. Aging is the single

greatest risk factor for age-related disease, and it is well established that conserved

genetic pathways of aging impact multiple age-related pathologies in model

organisms, but the role of conserved pathways of aging in human age-related

disease is unclear.

Common pathways in aging and disease, S. C. Johnson et al.810
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this purpose, we compiled GO terms for each identified gene in each

group and assessed the overlap of GO terms between disease groups

(Fig. 3A). Assignment of GO terms resulted in a total list of 2734 unique

GO terms among all 5 age-related disease genes (Fig. 3B). Of these, 209

GO terms (7.6% of total) were shared among all five groups. Clustering

of disease groups by similarity resulted in a pattern identical to that

observed using gene-based clustering, indicating that the use of GO

terms did not alter the qualitative comparisons between diseases. As

with a gene-based approach, we found cardiovascular disease and

metabolic disease are more closely related while cancer and neurode-

generative disease are the most distantly related (Fig. 3C). Among the

7.6% of GO terms overlapped among all five age-related disease

categories, there is a significantly higher than random similarity between

terms based on the background (P < 1 9 10�15, one-sided Wilcoxon

rank-sum test, see Methods for more details). Among the overlapping

GO terms, we found clusters of terms related to nutrient-sensing

signaling, translation, genome maintenance, proteostasis, oxidative

stress responses, inflammation, and, as in the gene-based assessment,

lipoprotein metabolism, and most of them are known to be canonical

pathways of aging (Tables S3 and S4, Supporting information, Fig. 4). A

principle component analysis of these shared GO terms using REViGO

term clustering and analysis further indicated the presence of shared

canonical aging pathways in the 5 age-related disease categories (Fig.

S2, Supporting information). Considering the stringent criteria for

inclusion of individual GWAS traits and the use of only genes with

significant trait-associated SNPs, the significant enrichment of canonical

pathways of aging among the pathways shared in all 5 age-related

disease categories is striking.

For reference, we examined the genes associated with the GWAS trait

longevity at P < 1 9 10�5 and the GO terms associated with this gene

set (Tables S5 and S6, Supporting information). Lipoprotein metabolism

pathways reach nominal significance for enrichment among this gene

set, although no GO term is significant after multiple testing correction.

Statistical assessment

Our approach of identifying genes associated with a significance level of

P < 1 9 10�5 in multiple independent GWAS traits is amenable to the

Fisher’s combined probability test (Li et al., 2014). This test indicates that

the combined P-value for 3 independent tests with a cut-off of

P < 1 9 10�5 each is equal to 6.32 9 10�13, while the combined P-

value for 5 independent tests each with a cut-off of P < 1 9 10�5 is

4.9 9 10�20. Furthermore, a comparison of genes or GO terms

identified using the GWAS cut-off of P < 1 9 10�5 vs. a GWAS cut-

off of P < 1 9 10�7 indicates that using a more stringent GWAS

threshold prevents the identification of any overlapping genes but has

little impact on the number of identified GO terms (Fig. S3, Table S7,

Supporting information).

Discussion

It is widely accepted among gerontologists that common processes

mechanistically underlie both aging and the pathogenesis of multiple

age-related diseases and that targeting common factors in aging will

have a significant benefit to human health (Berry & Cirulli, 2013;

Torgovnick et al., 2013; Fontana et al., 2014; Sikora, 2014). A wealth of

experimental data from lower organism studies supports this concept,

and human progeroid syndromes indicate that disruption of key

biological processes can result in the premature onset of multiple age-

related pathologies (Ghosh & Zhou, 2014). There has, however, been

(C)(A)

(B)

(D)

Fig. 2 Genomewide association studies (GWAS) significant genes shared among age-associated diseases. Age-related disease categories show very little overlap of

GWAS significant genes (A), with only 3 (0.15%) of genes identified shared among all groups, while the majority of genes appear to be detected in only one group. (B)

Clustering of age-related disease categories by similarity shows that cardiovascular disease, metabolic disease, and other age-related pathologies are closely related, while

cancers and neurodegenerative diseases represent the most distinct groups. (C) Number and category of genes shared among at least 3 age-related disease categories

represent those predominately involved in immunity, inflammation, cell cycle regulation, and cholesterol metabolism. (D) GO analysis of these genes compared to the

background set of all 1975 GWAS detected genes revealed that apolipoprotein metabolism is significantly and specifically enriched in this gene set.

Common pathways in aging and disease, S. C. Johnson et al. 811
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little direct evidence that this is true in normal human aging and age-

related disease, and the role of canonical aging pathways in human age-

related pathologies has not been established.

Genomewide association studies, a common approach to identify-

ing genetic loci of importance to human complex traits in large

populations, have led to the discovery of key genes in a variety of

individual age-related diseases such as Alzheimer’s disease (Kim et al.,

2014), cardiovascular disease (Sayols-Baixeras et al., 2014), and a

variety of age-associated cancers (Monteiro & Freedman, 2013;

Barbieri & Tomlins, 2014; Veron et al., 2014), but GWAS meta-

analyses have also yielded little in regards to identifying shared genes

and pathways, identifying only APOE, 9P21, and the HLA loci (Jeck

et al., 2012). The failure to identify canonical aging pathways by

GWAS and GWAS meta-analyses has called into question whether

these pathways are important to human longevity and health span.

Determining whether age-related pathologies share common path-

ways is important given that current strategies aimed at developing

interventions against age-related disease are based on the model that

targeting underlying processes of aging can impact multiple diseases

simultaneously.

Table 2 Genomewide association studies associated genes shared among 3 or

more age-related disease categories

Gene ID Gene name Function

3118 Major histocompatibility complex,

class II, DQ alpha 2

MHC

3119* Major histocompatibility complex,

class II, DQ beta 1

MHC

3120 Major histocompatibility complex,

class II, DQ beta 2

MHC

3122* Major histocompatibility complex,

class II, DR alpha

MHC

3123 Major histocompatibility complex,

class II, DR beta 4

MHC

100507714 HLA class II histocompatibility

antigen, DQ beta 1 chain-like

MHC

100507709 HLA class II histocompatibility

antigen, DRB1-7 beta

chain-like

MHC

101060835* HLA class II histocompatibility

antigen, DQ beta 1 chain-like

MHC

100509457 HLA class II histocompatibility

antigen, DQ alpha 1 chain-like

MHC

3117 Major histocompatibility complex,

class II, DQ alpha 1

MHC

56244 Butyrophilin-like 2 (MHC class II

associated)

MHC

84166 NLR family, CARD domain

containing 5

MHC Regulation

7940 Leukocyte specific transcript 1 Immune Regulation

80740 Lymphocyte antigen 6 complex,

locus G6C

Immune Regulation

80741 Lymphocyte antigen 6 complex,

locus G5C

Immune Regulation

1379 Complement component

(3b/4b) receptor 1-like

Immune Regulation

1460 Lymphocyte antigen 6 complex,

locus G5B

Immune Regulation

199 Allograft inflammatory factor 1 Immune Regulation

259197 Natural cytotoxicity triggering

receptor 3

Immune Regulation

259215 Lymphocyte antigen 6 complex,

locus G6F;

Immune Regulation

5819 Poliovirus receptor-related 2 Immune Regulation

58496 Lymphocyte antigen

6 complex, locus G5B

Immune Regulation

58530 Lymphocyte antigen

6 complex, locus G6F

Immune Regulation

6934 Transcription factor 7-like

2 (T-cell specific)

Immune Regulation

10665 Erythroid Differentiation-

Related Factor 1

Immune Regulation

28 ABO blood group Immune Regulation

5089 Pre-B-cell leukemia

homeobox 2

Immune Regulation

63940 G-protein signaling

modulator 3

Immune Regulation

177 Advanced glycosylation end

product specific receptor

Inflammation

4050 Lymphotoxin beta (TNF

superfamily, member 3)

Inflammation

10019 SH2B adaptor protein 3 Inflammation

(Continued)

Table 2 (Contd.)

Gene ID Gene name Function

10554 Lysophosphatidic acid

acyltransferase, alpha

Inflammation/Lipid Signaling

64116 Solute carrier family 39

(zinc transporter),

member 8

Other

1029† Cyclin-dependent kinase

inhibitor 2A (p16)

Cell Cycle Regulation

(p16 INK4a)

1030 Cyclin-dependent kinase i

nhibitor 2B (p15)

Cell Cycle Regulation

2262 Glypican 5 Cell Signaling

4855 Notch homolog 4 Cell Signaling

6311 Ataxin 2 Cell Signaling/

Intracellular

Trafficking

57827 Apoliprotein M Cholesterol Metabolism/

Cell Signaling

60526 Apolipoprotein B Cholesterol Metabolism/

Other

1071 Cholesteryl ester transfer

protein, plasma

Cholesterol Metabolism

341 Apolipoprotein C-I Cholesterol Metabolism

348 Apolipoprotein E Cholesterol Metabolism

55937 Apolipoprotein M Cholesterol Metabolism

217 Aldehyde dehydrogenase

2 family

Metabolism

3990 Lipase, hepatic Metabolism

6048 Ring finger protein 5 Histone modification

6838 Surfeit 6 Nucleolar Protein/Ribosome

Biogenesis

79068 Fat mass and obesity

associated (FTO)

mRNA Regulation

10452† TOM40 Mitochondrial Protein

Import (APOE LOCUS)

Gene ID, name, and generic function, based on NCBI gene description, are

indicated. *—Genes associated with all five disease categories. †—Genes

previously reported to associate with multiple age-related diseases.

Common pathways in aging and disease, S. C. Johnson et al.812
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(C)

(A) (B)

Fig. 3 A pathway-based analysis of age-

related diseases. (A) Age-related disease

groups were analyzed using a pathway-

based approach by examining the GO terms

associated with genomewide association

studies identified genes rather than the

genes themselves. (B) A comparison

between age-related disease categories

shows a more significant similarity between

ontology terms than was observed using

individual genes (7.6% vs. 0.15%). (C)

Although the relative percentage of

overlapping terms is greater the relative

similarities between disease categories are

unchanged as determined by unsupervised

clustering.

Fig. 4 Pathway analysis identified shared pathways among age-related diseases. Visualization of the GO terms shared by all five age-related disease categories reveals

common pathways in human age-related disease. These include many canonical aging pathways identified in model organisms, such as nutrient-sensing signaling,

proteostasis, and stress responses, as well as cholesterol metabolism, as was identified in the gene-based analysis. GO terms shared among age-related diseases are

significantly enriched for similar terms compared to the background (P-value < 10�15, one-sided Wilcoxon rank-sum test, see Methods).

Common pathways in aging and disease, S. C. Johnson et al. 813
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Genomewide association studies approach has proven invaluable in

identifying genes and regions of putative importance to human

phenotypes and pathologies, but attempts to use GWAS to identify

genetic variation that influences human longevity and health span

have largely been unsuccessful (Newman et al., 2010) (Beekman

et al., 2010) (Deelen et al., 2014). Among known genetic modifiers of

human aging, only the APOE locus has been reproducibly associated

with both lifespan and health span by GWAS (Deelen et al., 2011,

2014). The APOE locus is also strongly associated with neurological

disease (particularly Alzheimer’s disease) (Naj et al., 2014; Wang

et al., 2014), cardiac, metabolic, and vascular diseases (Maxwell et al.,

2013; Hellwege et al., 2014), plasma C-reactive protein levels (Ellis

et al., 2014; Schick et al., 2014), and, in a recent study, nonpatho-

logical cognitive aging (Davies et al., 2014). Thus, while GWAS have

generally had difficulty in identifying genetic modulators of aging,

apolipoprotein metabolism is an exception and appears to be a

genuine GWAS detectable common pathway in human age-related

disease. A more recent GWAS meta-analysis took a unique approach

to studying aging by considering overall ‘wellness’, a surrogate for

health span, based on the concept that successful aging would be

related to broad resistance to disease (Jeck et al., 2012). These

authors assessed bins of GWAS SNPs, by chromosome location,

according to the number of unique diseases they are associated with

in an attempt to identify genes common to many diseases and, by

inference, general health span although, importantly, it should be

noted that the analysis was inclusive of all disease-associated SNPs

rather than considering only age-related diseases. This approach

identified a set of regions associated with immune function, including

the ubiquitous MHC locus, as well as the 9p21 senescence-associated

locus, both also identified in our study (Fig. 2), but failed to provide

evidence supporting the role of conserved pathways such as IIS,

mTOR, oxidative stress response, or genome maintenance.

Our gene-based findings suggest that while inflammation, immune

regulation, and cholesterol metabolism are all broadly important in

human aging, cholesterol metabolism genes alone are strikingly

enriched among multiple age-related diseases. Multiple apolipoproteins

have been associated with disease, and APOE is a particularly notable

genetic loci in human health, as discussed. Consistent with these prior

findings, our data suggest that apolipoprotein metabolism is a key

underlying pathway in multiple human age-related diseases. Apolipo-

protein genes have been associated with GWAS significance to a

remarkable array of age-related pathologies including chronic renal

disease, cardiovascular disease, inflammation, metabolic disease,

hepatic dysfunction, alzheimer’s, dementia, and cognitive decline

(Melegh et al., 2012; Schmidt et al., 2012; Wasser et al., 2012; Imes

& Austin, 2013; Tosto & Reitz, 2013). Our findings suggest that

apolipoprotein metabolism may represent a mammalian-specific under-

lying pathway in aging and age-related disease, supporting the notion

that interventions in lipoprotein metabolism will provide significant

benefits to human health. Epidemiological studies already support the

adoption of earlier and more widespread statin use, and least one study

has suggested that statins broadly affect the aging process (Boccardi

et al., 2013; Robinson, 2014). Clearly, apolipoprotein metabolism

warrants continued attention as a safe and efficacious clinical target

in aging.

In addition to providing further evidence supporting the critical

importance of apolipoprotein metabolism in human age-related disease,

here, we provide evidence supporting for the model that common,

evolutionarily conserved pathways influence many age-related diseases.

The data presented here provide new evidence supporting the continued

pursuit of interventions designed to combat age-related disease based

on genetic pathways of aging discovered in lower organisms. While

many of these pathways, such as genome maintenance and IIS/mTOR

signaling, have already been implicated in human health, our study

provides the first evidence that GWAS of age-related diseases show a

signature of conserved pathways of aging. Finally, while our study

focused on age-related disease, our novel pathway-based approach

using gene ontology terms for comparison provides a new method for

identifying shared pathways of disease. We anticipate that this approach

can be applied to traits that are mechanistically poorly defined to provide

novel insight into the pathogenesis of human diseases.

While our findings are supported by the previously published literature

described our approach is not without limitations. The primary limitation

of this study is the GWAS catalog itself—only SNPs identified in published

GWAS at the significance level cut-off of P < 10�5 are included in this

analysis. Therefore, our results only represent the portion of all genes

important for age-related diseases that have been successfully identified

by GWAS. An additional caveat of our approach is that the initial step of

assigning GWAS traits to disease and age-related vs. non-age-related

categories introduces some interpretation in the analysis. While each

subsequent step is completely unbiased differences in trait assignment

may slightly affect the result. Fortunately, given the scarcity of overlapping

genes and the weak impact that decreasing the P-value cut-off to

P < 10�7 has on the identified overlapping GO terms, it appears that

minor alterations to trait assignment will have no major impact on the

outcome using this approach. Finally, while our approach involved a

GWAS P-value cut-off in the initial stage of analysis, it may also be possible

to examine all GWAS SNPs for association with multiple age-related

disease categories and rank them by Fisher’s combined probability test P-

value. This approach would likely identify additional associations.

Methods

GWAS data and associated genes

The GWAS catalog was downloaded from the National Human Genome

Research Institute (http://www.genome.gov/26525384) (Welter et al.,

2014). At the time of download on November 9, 2013, the catalog

contained 1738 GWAS, reporting 11 533 SNPs with assigned ‘rs’

numbers associated with 816 diseases/traits. To prevent bias due to

limited numbers of studies for some diseases/traits, we limited our

analyses to those with at least 5 independent GWAS reports resulting in

39 age-related diseases. This dataset includes a total of 410 independent

GWAS (Table 1). SNPs were assigned to genes based if they are located

on a gene or they are in high linkage disequilibrium (LD) with SNPs on a

gene. The LD information is calculated using SCAN database (http://

www.scandb.org/newinterface/about.html) (Gamazon et al., 2010).

These assignments produced 1975 protein-coding genes in high or

complete LD or overlap with the diseases/trait-associated SNPs. Individ-

ual traits were assigned to one of five age-related disease categories, or

determined to be non-age-associated, based on established criteria (see

Results and (Perez-Lopez et al., 2009; Martin, 2012; Johnson et al.,

2013; Brunet & Berger, 2014)).

GO enrichment analysis and visualization

Gene ontology (GO) analysis was performed using the Gene Ontology

enRIchment anaLysis and visuaLizAtion tool (GORILLA) (http://cbl-

gorilla.cs.technion.ac.il/) (Eden et al., 2009), with graphical representa-

tions of gene ontology trees and enrichment P-values produced using

Common pathways in aging and disease, S. C. Johnson et al.814
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the linked REViGO tool (http://revigo.irb.hr/) (Supek et al., 2011).

Genes appearing 3 or more categories were analyzed against the

background set of the entire gene list using the two unranked lists of

genes analysis mode. Visualizations of GO terms found in the overlap

between all age-related disease groups (Figs 4 and S2) were produced

using REViGO.

GO term similarity measurement

Given that standard gene ontology enrichment analyses cannot be

performed on this data, as there is no standardized approach to

determining pathway enrichment from a GO term set (GO term

enrichment is typically measured against a gene set), we considered

the statistical value of this result using an ad hoc assessment. If the GO

terms appearing in the overlapping term set represents an enrichment of

specific processes, then we would expect the GO terms to be closely

related as defined by their proximity in an ontology tree (Wang et al.,

2007). Briefly, we (i) aggregated the contributions of each GO term

based on ancestor terms in the gene ontology tree to give a semantic

value for the term; and (ii) we calculated the semantic similarity of each

pair of GO terms based on these values (detailed method in (Wang et al.,

2007)). Adopting this method, pairwise similarities of GO terms in the

overlap between the five disease groups, and in the background set,

were estimated separately using an R package ‘GOSemSim’ based on

GO biological process tree (Yu et al., 2010). The significance of the

mean value difference between the GO terms in the disease group

overlap compared to the background set was determined using one-

sided Wilcoxon rank-sum test.

P-value calculation in pathway-based approach

We calculated the pairwise similarity of this GO term group and

compared it to the baseline set. The calculated similarity for the

overlapping set was determined to be 0.15 � 0.13, with the back-

ground set similarity calculated as 0.13 � 0.1 (P-value is < 1E-15, one-

sided Wilcoxon rank-sum test), indicating that the relative similarity of

GO terms in the overlapping set could not be achieved by random

selection.

Funding

This work was supported by NIH grants AG017242, GM104459, and

CA180126 (awarded to YS). SCJ was supported by NIH 5T32HL007675-

25 training grant and an American Federation for Aging Research (AFAR)

Postdoctoral Fellowship.

Conflict of Interest

None declared.

References

Barbieri CE, Tomlins SA (2014) The prostate cancer genome: perspectives and

potential. Urol. Oncol. 32, 53 e15–22.
Beekman M, Nederstigt C, Suchiman HE, Kremer D, van der Breggen R, Lakenberg

N, Alemayehu WG, de Craen AJ, Westendorp RG, Boomsma DI, de Geus EJ,

Houwing-Duistermaat JJ, Heijmans BT, Slagboom PE (2010) Genome-wide

association study (GWAS)-identified disease risk alleles do not compromise

human longevity. Proc. Natl Acad. Sci. USA 107, 18046–18049.
Berry A, Cirulli F (2013) The p66(Shc) gene paves the way for healthspan:

evolutionary and mechanistic perspectives. Neurosci. Biobehav. Rev. 37, 790–
802.

Boccardi V, Barbieri M, Rizzo MR, Marfella R, Esposito A, Marano L, Paolisso G

(2013) A new pleiotropic effect of statins in elderly: modulation of telomerase

activity. FASEB J. 27, 3879–3885.
Brunet A, Berger SL (2014) Epigenetics of aging and aging-related disease. J.

Gerontol. 69(Suppl 1), S17–S20.
Davies G, Harris SE, Reynolds CA, Payton A, Knight HM, Liewald DC, Lopez LM,

Luciano M, Gow AJ, Corley J, Henderson R, Murray C, Pattie A, Fox HC,

Redmond P, Lutz MW, Chiba-Falek O, Linnertz C, Saith S, Haggarty P, McNeill G,

Ke X, Ollier W, Horan M, Roses AD, Ponting CP, Porteous DJ, Tenesa A, Pickles

A, Starr JM, Whalley LJ, Pedersen NL, Pendleton N, Visscher PM, Deary IJ (2014)

A genome-wide association study implicates the APOE locus in nonpathological

cognitive ageing. Mol. Psychiatry 19, 76–87.
Deelen J, Beekman M, Uh HW, Helmer Q, Kuningas M, Christiansen L, Kremer D,

van der Breggen R, Suchiman HE, Lakenberg N, van den Akker EB, Passtoors

WM, Tiemeier H, van Heemst D, de Craen AJ, Rivadeneira F, de Geus EJ, Perola

M, van der Ouderaa FJ, Gunn DA, Boomsma DI, Uitterlinden AG, Christensen K,

van Duijn CM, Heijmans BT, Houwing-Duistermaat JJ, Westendorp RG,

Slagboom PE (2011) Genome-wide association study identifies a single major

locus contributing to survival into old age; the APOE locus revisited. Aging Cell

10, 686–698.
Deelen J, Beekman M, Uh HW, Broer L, Ayers KL, Tan Q, Kamatani Y, Bennet AM,

Tamm R, Trompet S, Guethbjartsson DF, Flachsbart F, Rose G, Viktorin A, Fischer

K, Nygaard M, Cordell HJ, Crocco P, van den Akker EB, Bohringer S, Helmer Q,

Nelson CP, Saunders GI, Alver M, Andersen-Ranberg K, Breen ME, van der

Breggen R, Caliebe A, Capri M, Cevenini E, Collerton JC, Dato S, Davies K, Ford

I, Gampe J, Garagnani P, de Geus EJ, Harrow J, van Heemst D, Heijmans BT,

Heinsen FA, Hottenga JJ, Hofman A, Jeune B, Jonsson PV, Lathrop M, Lechner

D, Martin-Ruiz C, McNerlan SE, Mihailov E, Montesanto A, Mooijaart SP,

Murphy A, Nohr EA, Paternoster L, Postmus I, Rivadeneira F, Ross OA, Salvioli S,

Sattar N, Schreiber S, Stefansson H, Stott DJ, Tiemeier H, Uitterlinden AG,

Westendorp RG, Willemsen G, Samani NJ, Galan P, Sorensen TI, Boomsma DI,

Jukema JW, Rea IM, Passarino G, de Craen AJ, Christensen K, Nebel A,

Stefansson K, Metspalu A, Magnusson P, Blanche H, Christiansen L, Kirkwood

TB, van Duijn CM, Franceschi C, Houwing-Duistermaat JJ, Slagboom PE (2014)

Genome-wide association meta-analysis of human longevity identifies a novel

locus conferring survival beyond 90 years of age. Hum. Mol. Genet. 23, 4420–
4432.

Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery

and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics

10, 48.
Ellis J, Lange EM, Li J, Dupuis J, Baumert J, Walston JD, Keating BJ, Durda P, Fox

ER, Palmer CD, Meng YA, Young T, Farlow DN, Schnabel RB, Marzi CS, Larkin E,

Martin LW, Bis JC, Auer P, Ramachandran VS, Gabriel SB, Willis MS, Pankow JS,

Papanicolaou GJ, Rotter JI, Ballantyne CM, Gross MD, Lettre G, Wilson JG,

Peters U, Koenig W, Tracy RP, Redline S, Reiner AP, Benjamin EJ, Lange LA

(2014) Large multiethnic Candidate Gene Study for C-reactive protein levels:

identification of a novel association at CD36 in African Americans. Hum. Genet.

133, 985–995.
Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to

humans. Science 328, 321–326.
Fontana L, Kennedy BK, Longo VD, Seals D, Melov S (2014) Medical research: treat

ageing. Nature 511, 405–407.
Gamazon ER, Zhang W, Konkashbaev A, Duan S, Kistner EO, Nicolae DL, Dolan

ME, Cox NJ (2010) SCAN: SNP and copy number annotation. Bioinformatics 26,
259–262.

Ghosh S, Zhou Z (2014) Genetics of aging, progeria and lamin disorders. Curr.

Opin. Genet. Dev. 26C, 41–46.
Hellwege JN, Palmer ND, Raffield LM, Ng MC, Hawkins GA, Long J, Lorenzo C,

Norris JM, Ida Chen YD, Speliotes EK, Rotter JI, Langefeld CD, Wagenknecht LE,

Bowden DW (2014) Genome-wide family-based linkage analysis of exome chip

variants and cardiometabolic risk. Genet. Epidemiol. 38, 345–352.
Imes CC, Austin MA (2013) Low-density lipoprotein cholesterol, apolipoprotein B,

and risk of coronary heart disease: from familial hyperlipidemia to genomics.

Biol. Res. Nurs. 15, 292–308.
Jeck WR, Siebold AP, Sharpless NE (2012) Review: a meta-analysis of GWAS and

age-associated diseases. Aging Cell 11, 727–731.
Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of

ageing and age-related disease. Nature 493, 338–345.
Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C,

Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, Nelson G, Mann J, van de

Sluis B, Mann DA, von Zglinicki T (2014) Chronic inflammation induces telomere

dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172.
Kenyon CJ (2010) The genetics of ageing. Nature 464, 504–512.

Common pathways in aging and disease, S. C. Johnson et al. 815

ª 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

http://revigo.irb.hr/


Kim DH, Yeo SH, Park JM, Choi JY, Lee TH, Park SY, Ock MS, Eo J, Kim HS, Cha HJ

(2014) Genetic markers for diagnosis and pathogenesis of Alzheimer’s disease.

Gene 545, 185–193.
Li Q, Hu J, Ding J, Zheng G (2014) Fisher’s method of combining dependent

statistics using generalizations of the gamma distribution with applications to

genetic pleiotropic associations. Biostatistics 15, 284–295.
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks

of aging. Cell 153, 1194–1217.
Martin GM (2012) Stochastic modulations of the pace and patterns of ageing:

impacts on quasi-stochastic distributions of multiple geriatric pathologies. Mech.

Ageing Dev. 133, 107–111.
Maxwell TJ, Ballantyne CM, Cheverud JM, Guild CS, Ndumele CE, Boerwinkle E

(2013) APOE modulates the correlation between triglycerides, cholesterol, and

CHD through pleiotropy, and gene-by-gene interactions. Genetics 195, 1397–
1405.

Melegh BI, Duga B, Sumegi K, Kisfali P, Maasz A, Komlosi K, Hadzsiev K, Komoly S,

Kosztolanyi G, Melegh B (2012) Mutations of the apolipoprotein A5 gene with

inherited hypertriglyceridaemia: review of the current literature. Curr. Med.

Chem. 19, 6163–6170.
Merkwirth C, Martinelli P, Korwitz A, Morbin M, Bronneke HS, Jordan SD, Rugarli

EI, Langer T (2012) Loss of prohibitin membrane scaffolds impairs mitochondrial

architecture and leads to tau hyperphosphorylation and neurodegeneration.

PLoS Genet. 8, e1003021.
Monteiro AN, Freedman ML (2013) Lessons from postgenome-wide association

studies: functional analysis of cancer predisposition loci. J. Intern. Med. 274,
414–424.

Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, Beecham GW,

Rajbhandary RA, Hamilton-Nelson KL, Wang LS, Kauwe JS, Huentelman MJ,

Myers AJ, Bird TD, Boeve BF, Baldwin CT, Jarvik GP, Crane PK, Rogaeva E,

Barmada MM, Demirci FY, Cruchaga C, Kramer PL, Ertekin-Taner N, Hardy J,

Graff-Radford NR, Green RC, Larson EB, St George-Hyslop PH, Buxbaum JD,

Evans DA, Schneider JA, Lunetta KL, Kamboh MI, Saykin AJ, Reiman EM, De

Jager PL, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang

DW, Hakonarson H, Kukull WA, Foroud TM, Martin ER, Haines JL, Mayeux

RP, Farrer LA, Schellenberg GD, Pericak-Vance MA, the Alzheimer Disease

Genetics C (2014). Effects of multiple genetic loci on age at onset in late-

onset Alzheimer disease: a genome-wide association study. JAMA Neurol. 11,
1394–1404.

Newman AB, Walter S, Lunetta KL, Garcia ME, Slagboom PE, Christensen K,

Arnold AM, Aspelund T, Aulchenko YS, Benjamin EJ, Christiansen L, D’Agostino

RB Sr, Fitzpatrick AL, Franceschini N, Glazer NL, Gudnason V, Hofman A, Kaplan

R, Karasik D, Kelly-Hayes M, Kiel DP, Launer LJ, Marciante KD, Massaro JM,

Miljkovic I, Nalls MA, Hernandez D, Psaty BM, Rivadeneira F, Rotter J, Seshadri S,

Smith AV, Taylor KD, Tiemeier H, Uh HW, Uitterlinden AG, Vaupel JW, Walston

J, Westendorp RG, Harris TB, Lumley T, van Duijn CM, Murabito JM (2010) A

meta-analysis of four genome-wide association studies of survival to age

90 years or older: the Cohorts for Heart and Aging Research in Genomic

Epidemiology Consortium. J. Gerontol. 65, 478–487.
Perez-Lopez FR, Chedraui P, Haya J, Cuadros JL (2009) Effects of the Mediterra-

nean diet on longevity and age-related morbid conditions. Maturitas 64, 67–79.
Robinson JG (2014) Starting primary prevention earlier with statins. Am. J. Cardiol.

114, 1437–1442.
Sayols-Baixeras S, Lluis-Ganella C, Lucas G, Elosua R (2014) Pathogenesis of

coronary artery disease: focus on genetic risk factors and identification of

genetic variants. Appl. Clin. Genet. 7, 15–32.
Schick UM, Auer PL, Bis JC, Lin H, Wei P, Pankratz N, Lange LA, Brody J, Stitziel NO,

Kim DS, Carlson CS, Fornage M, Haessler J, Hsu L, Jackson RD, Kooperberg C,

Leal SM, Psaty BM, Boerwinkle E, Tracy R, Ardissino D, Shah S, Willer C, Loos R,

Melander O, McPherson R, Hovingh K, Reilly M, Watkins H, Girelli D, Fontanillas

P, Chasman DI, Gabriel SB, Gibbs R, Nickerson DA, Kathiresan S, Peters U,

Dupuis J, Wilson JG, Rich SS, Morrison AC, Benjamin EJ, Gross MD, Reiner AP,

on Behalf of the Cohorts for H, Aging Research in Genomic E, the National Heart

L, Blood Institute GOESP (2014) Association of exome sequences with plasma C-

reactive protein levels in >9000 participants. Hum. Mol. Genet. 24, 559–571.
Schleit J, Johnson SC, Bennett CF, Simko M, Trongtham N, Castanza A, Hsieh EJ,

Moller RM, Wasko BM, Delaney JR, Sutphin GL, Carr D, Murakami CJ, Tocchi A,

Xian B, Chen W, Yu T, Goswami S, Higgins S, Holmberg M, Jeong KS, Kim JR,

Klum S, Liao E, Lin MS, Lo W, Miller H, Olsen B, Peng ZJ, Pollard T, Pradeep P,

Pruett D, Rai D, Ros V, Singh M, Spector BL, Vander Wende H, An EH, Fletcher

M, Jelic M, Rabinovitch PS, MacCoss MJ, Han JD, Kennedy BK, Kaeberlein M

(2013) Molecular mechanisms underlying genotype-dependent responses to

dietary restriction. Aging Cell 12, 1050–1061.

Schmidt H, Freudenberger P, Seiler S, Schmidt R (2012) Genetics of subcortical

vascular dementia. Exp. Gerontol. 47, 873–877.
Sikora E (2014) Aging and longevity. Postepy Biochem. 60, 125–137.
Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes

long lists of gene ontology terms. PLoS ONE 6, e21800.
Torgovnick A, Schiavi A, Maglioni S, Ventura N (2013) Healthy aging: what can we

learn from Caenorhabditis elegans? Z. Gerontol. Geriatr. 46, 623–628.
Tosto G, Reitz C (2013) Genome-wide association studies in Alzheimer’s disease: a

review. Curr. Neurol. Neurosci. Rep. 13, 381.
Veron A, Blein S, Cox DG (2014) Genome-wide association studies and the clinic: a

focus on breast cancer. Biomark. Med. 8, 287–296.
Vijg J, Suh Y (2013) Genome instability and aging. Annu. Rev. Physiol. 75, 645–
668.

Walter S, Atzmon G, Demerath EW, Garcia ME, Kaplan RC, Kumari M, Lunetta KL,

Milaneschi Y, Tanaka T, Tranah GJ, Volker U, Yu L, Arnold A, Benjamin EJ, Biffar

R, Buchman AS, Boerwinkle E, Couper D, De Jager PL, Evans DA, Harris TB,

Hoffmann W, Hofman A, Karasik D, Kiel DP, Kocher T, Kuningas M, Launer LJ,

Lohman KK, Lutsey PL, Mackenbach J, Marciante K, Psaty BM, Reiman EM,

Rotter JI, Seshadri S, Shardell MD, Smith AV, van Duijn C, Walston J, Zillikens

MC, Bandinelli S, Baumeister SE, Bennett DA, Ferrucci L, Gudnason V, Kivimaki

M, Liu Y, Murabito JM, Newman AB, Tiemeier H, Franceschini N (2011) A

genome-wide association study of aging. Neurobiol. Aging 32, 2109 e2115–
2128.

Wang JZ, Du Z, Payattakool R, Yu PS, Chen C-F (2007) A new method to measure

the semantic similarity of GO terms. Bioinformatics 23, 1274–1281.
Wang X, Lopez OL, Sweet RA, Becker JT, DeKosky ST, Barmada MM, Demirci FY,

Kamboh MI (2014) Genetic determinants of disease progression in Alzheimer’s

disease. J. Alzheimers Dis. 43, 649–655.
Wasser WG, Tzur S, Wolday D, Adu D, Baumstein D, Rosset S, Skorecki K (2012)

Population genetics of chronic kidney disease: the evolving story of APOL1. J.

Nephrol. 25, 603–618.
Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P,

Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS Catalog, a curated

resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006.
Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S (2010) GOSemSim: an R package for

measuring semantic similarity among GO terms and gene products. Bioinfor-

matics 26, 976–978.

Supporting Information

Additional Supporting Information may be found in the online version of this

article at the publisher’s web-site.

Fig. S1 Enriched Biological Process GO terms in genes associated with

multiple age-related diseases. Gene ontology analysis revealed cholesterol

metabolism ontology terms as highly and specifically enriched among genes

associated with multiple age-related disease categories by GWAS (cellular

component terms in Fig. 2).

Fig. S2 Principal component analysis of gene ontology terms appearing in all

5 age-related disease categories. A principal component analysis plotted

using REViGO. Color indicates term uniqueness while size represents the log

size of the term group in the gene ontology tree. Key parent terms are

indicated.

Fig. S3 Venn Diagrams of Genes and SNPs in Age-Related Disease Categories

using an Initial GWAS Cut-off of P < 10�7.

Table S1 GWAS traits not meeting our criteria for study number and

statistical strength but not included in any of the 5 age-related disease

categories.

Table S2 Enriched Gene Ontology Terms In Genes Shared by 3 or More Age-

related Disease Groups. False discovery P-value is calculated using the

Benjamani–Hochberg method.

Table S3 Select GO terms appearing in all 5 age-related disease categories. A

full list of the 209 shared terms is provided in Table S4.

Table S4 A full list of enriched GO terms found in the overlapping term set.
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Table S5 Genes Associated with the GWAS Trait Longevity at P < 1 9 10�5.

See Table 2 for comparison with genes associated with multiple age-related

diseases. Only APOE and APOCI are common between these two gene sets.

Table S6 Biological Process GO Terms Associated with Longevity GWAS Trait.

Only GO terms with nominal P-value < 0.05 listed here. No GO terms remain

significant following Benjamini multiple testing correction. GO terms asso-

ciated with apolipoprotein metabolism indicated in bold. See Table S2 and S3

for comparison with GO terms found in all 5 age-related disease groups.

Table S7 Comparison of SNP, Gene, and GO Term Numbers Identified by

GWAS Cut-off
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