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Abstract
Background: Microarray experiments are often performed with a small number of biological
replicates, resulting in low statistical power for detecting differentially expressed genes and
concomitant high false positive rates. While increasing sample size can increase statistical power
and decrease error rates, with too many samples, valuable resources are not used efficiently. The
issue of how many replicates are required in a typical experimental system needs to be addressed.
Of particular interest is the difference in required sample sizes for similar experiments in inbred vs.
outbred populations (e.g. mouse and rat vs. human).

Results: We hypothesize that if all other factors (assay protocol, microarray platform, data pre-
processing) were equal, fewer individuals would be needed for the same statistical power using
inbred animals as opposed to unrelated human subjects, as genetic effects on gene expression will
be removed in the inbred populations. We apply the same normalization algorithm and estimate
the variance of gene expression for a variety of cDNA data sets (humans, inbred mice and rats)
comparing two conditions. Using one sample, paired sample or two independent sample t-tests, we
calculate the sample sizes required to detect a 1.5-, 2-, and 4-fold changes in expression level as a
function of false positive rate, power and percentage of genes that have a standard deviation below
a given percentile.

Conclusions: Factors that affect power and sample size calculations include variability of the
population, the desired detectable differences, the power to detect the differences, and an
acceptable error rate. In addition, experimental design, technical variability and data pre-processing
play a role in the power of the statistical tests in microarrays. We show that the number of samples
required for detecting a 2-fold change with 90% probability and a p-value of 0.01 in humans is much
larger than the number of samples commonly used in present day studies, and that far fewer
individuals are needed for the same statistical power when using inbred animals rather than
unrelated human subjects.

Background
Microarray technology has become an important tool for
studying gene expression levels on the whole genome

scale [1]. One important objective of many microarray
studies is to identify differentially expressed genes
between different conditions. Despite the effectiveness of
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the technology, microarray experiments are usually done
with very few replicates due to budgetary constrains,
which often results in high false positive (Type I error)
and false negative rates (Type II error). For many microar-
ray experiments, once a list of genes has been identified,
intensive follow-up investigations of these genes using
traditional molecular tools are often pursued. Hence, val-
uable resources can be wasted in pursuing genes from
experiments with a high false positive rate. Increasing the
sample size increases the statistical power to detect expres-
sion differences in microarray analysis while also decreas-
ing the error rate. However, it is important to balance
sample size with other experimental goals so as not to
waste resources. An important issue that concerns many
biologists is, therefore "how many replicates are needed to
obtain a given type of result?"

In general, the required sample size depends on the mag-
nitude of the variability of the population, the magnitude
of the expression change that is biologically meaningful
(or desirable to detect), the power to detect the expression
change, and the P-value/significance level/false positive
rate. However, power and sample size have been viewed
as complicated and difficult issues for microarray studies
due to the large number of genes being investigated and
little knowledge of the degree of natural expression varia-
tion within a population. To date, very few studies have
assessed power and sample size requirements in microar-
ray experiments. Pan et al. [2] proposed a normal mixture
model to calculate the number of replicates required. In
this study, the parameters were estimated using a subset of
a real data set generated by cDNA arrays. This paper
assumed that the replicates were independent of each
other, whether they were drawn from the same individual
or multiple individuals. Lee and Whitmore [3] discussed
conceptual issues and presented computational methods
(Analysis of Variance) for statistical power and sample
size for different types of experimental designs, taking
multiple testing into account. However, the data sets used
to demonstrate these models contained a single pooled
sample for each treatment/time point but not true biolog-
ical replicates. Zien et al. [4] proposed a complex model
that applies only to Affymetrix data to estimate biological
variation and measurement error (normal additive and
multiplication measurement error) for two sample com-
parisons. This study was based on 5 real Affymetrix data
sets where the minimum required sample size was esti-
mated based on a simulation study. Zien et al. [4]
assumed a normal distributed additive measurement
error and lognormal distributed measurement error.
However, in real data, the functional form of the distribu-
tion of gene expression levels is generally unknown. The
most common practice in microarray experiments is to
assume normality of log transformed intensities or ratios.
Pavlidis et al. [5] used a random sampling approach to

evaluate the stability of the genes found to be differen-
tially expressed between two groups from 16 published
data sets; they found that the stability of some of the
smaller data sets with fewer than 10 replicates was incon-
clusive. This approach is sound for the purpose of plan-
ning a study when pilot data is available with a large
number of replicates. However, a pilot study is usually
done with a small number of replicates where this is not
feasible.

Pair-wise comparisons between conditions/groups/treat-
ments are frequently used in microarray studies. Paramet-
ric and nonparametric statistical methods have been
proposed to identify differentially expressed genes,
among which t-tests are most commonly used. This paper
is intended to provide some guidelines for sample size
planning for pair-wise comparisons. Normalization is an
essential and important pre-processing step in microarray
data analysis. To our knowledge, no previous studies
using multiple data sets have pre-processed the data sets
in a comparable way. In addition, previous studies did not
look at the effect of inbred vs outbred populations on the
variation of gene expression. In order to make the results
more comparable, we make use of 7 cDNA microarray
data sets and apply the same normalization method (spa-
tial lowess).

We estimate the variance by one sample t-test, paired t-
tests or two sample t-tests on a gene-by-gene basis using
several large expression data sets from both human, rats
and mice. We then calculate the sample size required to
detect a 1.5-, 2-, and 4-fold change in expression levels for
the 90th, 75th, 50th and 25th percentile of genes ranked by
variability at fixed settings for false positive and false neg-
ative rates. The sample size calculation provides the
approximate but not exact number of replicates required
for a given set of criteria.

Results
Data sets
We estimate the standard deviation and required sample
size from 1 unpublished and 6 published cDNA data sets
(Table 1). Data set A-C and E are from human samples.
Data sets D and F-G are from mouse or rat samples. Data
set F is from a study that is not yet published. The raw and/
or pre-processed data for the unpublished dataset with
gene order randomized and without the original gene/
probe identifications can be downloaded from http://
expression.washington.edu/publications/caimiao/
power&samplesize/samplesize.html. Removing the gene
IDs does not affect the analysis in this paper in any way.
The same website also provides the links for the published
data sets. In addition, all the control genes were removed
from the data analysis for the cDNA data sets.
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Data set A comprises data generated from 40 liver RNA
samples isolated from paired liver hepatocellular carci-
noma (HCC) tumor and adjacent cirrhotic non-tumor tis-
sue from 20 HCV infected Caucasian patients [6]. The
objective of this study was to identify potential hepatocel-
lular carcinoma markers. The microarray analysis was per-
formed using in-house spotted human cDNA arrays
containing 15,592 genes split between and spotted in
duplicate on arrays HHD1 and HHD2. The duplicate sets
of cDNAs within each slide were spotted side by side (pan-
els A, B). RNA from tumor and adjacent non-tumor tissue
from individual patients was co-hybridized to 2 slides
(one was a dye flip of the other).

Data set B was generated from 41 matched pairs of pros-
tate tumor and non-tumor tissue hybridized to arrays
spotted with 38627 cDNAs. All samples were labeled with
Cy5 and co-hybridized with a common reference labeled
in Cy3 [7]. The purpose of this study was to identify the
difference in expression levels between normal and pros-
tate tumor tissues.

Data set C was generated from RNA isolated from paired
HCC tumor and adjacent non tumor liver from 41 HBV
infected patients [8,9] hybridized to cDNA arrays. Each
RNA sample was labeled with either Cy5 and co-hybrid-
ized with Cy3-labeled reference RNA. The purpose of this
study was to identify gene expression differences between
HCC tumor and non-tumor liver tissue.

Data set D was generated from RNA isolated from paired
liver and kidney tissue from 6 male C57BL6 mice [9]
hybridized to cDNA arrays. Each RNA sample was labeled
with Cy5 and co-hybridized with Cy3-labeled amplified

RNA from Universal Human Reference to total RNA
(Stratagene). The purpose of this study was to identify
gene expression differences between tissue types.

Data set E was generated from RNA isolated from 36
breast ductal tumor and 16 lobular tumor tissues [10]
hybridized to cDNA arrays. Each RNA sample was split in
two and labeled with either Cy5 or Cy3, and co-hybrid-
ized with a common reference RNA as color flips with two
replicates (4 arrays/tissue/mouse). The purpose of this
study was to identify gene expression differences between
ductal carcinoma and lobular carcinoma.

Data set F consists of data generated from 24 liver tissue
samples from 12 inbred mice (unpublished data). One
third or two thirds of the liver was removed from each
mouse and used as the baseline samples. At 12 hours post
operation, the mice were sacrificed and the remaining
liver tissue was used as the experimental sample. The aim
of this study was to screen for genes potentially related to
liver regeneration after hepatectomy. RNA samples from
the 12 hour post-operation livers were co-hybridized with
their own baseline liver samples. A total of four DNA
arrays were used for each sample comparison. Two sets of
arrays (MOD1 and MOD2), each containing 6528
different cDNAs spotted in duplicate (A and B) on each
array were used. In addition, each comparison was done
with a dye flip pair of slides. This data set made use of
arrays generated at the University of Washington Center
for Expression Arrays.

The goal of data set G was to identify genes with altered
expression in the liver tissues of two mouse models with
very low HDL cholesterol levels (treatment groups) as

Table 1: cDNA microarray data sets used in the study

Data set Reference # Rep # Genes Tissue type Description Hybridization

A Smith et al. 2003 20 15,592 Human liver Paired HCC tumor vs 
adjacent non-tumor

Direct hyb between 
tumor and non tumor

B Lapointe et al. 2004 41 38627 Human prostate Paired prostate tumor 
vs adjacent non-tumor

Indirect hyb using 
common reference

C Chen et al 2002 48 22618 Human liver Paired HCC+HBV vs 
HBV

Indirect hyb using 
common reference

D Pritchard et al. 2001 6 5281 Mouse liver and kidney Paired liver vs kidney Indirect hyb using 
common reference

E Zhao et al. 2004 36 ductal + 21 lobular 44549 Human breast lobular and ductal tumor 
tissue

Indirect hyb using 
common reference

F NA 6 13, 056 Mouse liver One third vs two thirds 
hepatectomy

Indirect hyb using 
individual baseline

G Callow et al. 2000 8 5548 Mouse liver ApoAI knock-out vs 
normal

Indirect hyb using 
common reference 

(pool)
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compared to inbred control mice. The mouse model con-
sidered in this study is the Apolipoprotein AI (ApoAI)
knock-out, where ApoAI is a gene known to play a pivotal
roles in HDL metabolism [11,12]. Each cDNA array con-
tained 5548 non-control genes or ESTs. A pool of normal
RNA samples labeled with Cy3 served as the reference for
all the arrays.

In summary, three of the data sets (D, F-G) are from
inbred mouse and rat strains respectively, and the other
four data sets (A-C, and E) are from large scale studies of
gene expression in humans. If all other factors (assay pro-
tocol microarray platform, data pre-processing) were
equal, one might anticipate that fewer individuals would
be needed for the same statistical power using inbred ani-
mals as opposed to unrelated human subjects.

Background adjustment and normalization
Background adjustment and normalization is necessary to
remove systematic biases of non-biological origin in
microarray studies. A number of methods of background
correction and normalization have been proposed
[13,14]. We used the locally written program "spot-on
Image" to analyze the cDNA array data for data sets A and
F. Spot-on uses a local background for each spot. The
background subtracted intensity of all cDNA data sets
were normalized by the spatial lowess method using the R
add on package MAANOVA written by the Jackson Lab,
which is available at http://www.jax.org/staff/churchill/
labsite/software/index.html.

Estimates of standard deviation and sample size 
calculation
The distribution of the standard deviations estimated
from these 7 data sets are presented in Figure 1. All data
are log2 transformed prior to data analysis. Figure 1A
shows the standard deviation of the log ratio of the 4
paired cDNA data sets (A-D). The standard deviations of
data sets E-G in Figure 1B are the common standard devi-
ation of the log2 ratio (sample/reference) of two inde-
pendent groups.

The required sample size of an experiment depends on the
variance component (σ), the desired detectable fold
change (δ), the power to detect this change (1-β, the like-
lihood of detecting the change or the true positive rate),
and a chosen type I error rate (α). For microarrays, a com-
bination of fold-change and test p-value is commonly
used for selecting differentially expressed genes between
two groups or conditions. In this study, sample sizes were
calculated in R using the function of power.t.test. The
required input parameters are the log scale fold change of
interest δ (δ = 1 in log transformed data translates into a 2
fold change in expression level, δ = 2 in log transformed
data translates into a 4 fold change in expression level,

etc), significance level, power, and the standard deviation
(common standard deviation for two sample t-test, the
standard deviation of the difference within subject for
paired t-test, or the standard deviation of one sample t-
test), the type of t-tests (one sample, two sample, or paired
t-test), and the type of test (two sided or one sided).

For example, in the case of data set A (one sample t-test),
if we wish to find out the approximate sample size to
detect a 2 fold change (δ = 1) in expression level between
tumor and non-tumor tissue in the 75% least variable
genes (σ <= 0.5884) with a two sided 0.001 significance
level test with 90% power, we could use the following R
function

power.t.test(n = NULL, delta = 1, sd = 0.5584, sig.level =
0.001, power = 0.9, type = "one.sample", alternative =
"two.sided")

Where sd = 0.5584 is the 75th percentile of the standard
deviation of log ratio.

In the case of data set G (two sample t-test), if we wish to
find the approximate sample size to detect a 2 fold change
(δ = 1) in expression level between knock-out and control
mice in the 75% least variable genes (σ <= 0.3102) with a
two sided 0.001 significance level test with 90% power,
we could use the following R function

power.t.test(n = NULL, delta = 1, sd = 0.3102, sig.level =
0.001, power = 0.9, type = "two.sample", alternative =
"two.sided")

Where sd = 0.3102 is the 75th percentile of the common
standard deviation of log (sample/reference).

In R, for a one sample t-test or a paired t-test to have power
1-β to reject for a two sided testing and strict interpreta-
tion of tail probability with significance level α for detect-
ing a difference of δ, the minimum number of samples or
pairs is obtained by solving the following equation
iteratively

Power = Pr(tv, ncp < tv, α/2) + Pr(tv, ncp > tv, 1-α/2)

Where ncp is the noncentrality parameter of the non-cen-
tral t-distribution, and is estimated by

tv, α/2 is the α/2 quantile of a central t-distribution with v
degrees of freedom and v = n-1. tv, ncp follows a non-central

ncp = δ

σ 1
n

Page 4 of 10
(page number not for citation purposes)

http://www.jax.org/staff/churchill/labsite/software/index.html
http://www.jax.org/staff/churchill/labsite/software/index.html


BMC Genomics 2004, 5:87 http://www.biomedcentral.com/1471-2164/5/87
Histogram of standard deviationFigure 1
Histogram of standard deviation The X axis is the standard deviation, and the Y axis is the percentage of genes that has stand-
ard deviation below the value of X. All data sets were normalized by spatial lowess; (A) Data set A-standard deviation of log 
ratio of two groups (direct hybridization); data set B-D standard deviation of the difference of log (sample/reference) of the 
two groups (indirect hybridization); (B) Data sets E-G common standard deviation of (sample/reference) of the two independ-
ent groups (indirection hybridization).
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t-distribution with v degrees of freedom and a non-cen-
trality parameter of ncp.

For a two sample t-test with equal sample sizes, if we wish
to have a large enough sample to detect a difference δ
(with a two-sided test and strict interpretation of tail prob-
ability with α significance level test with 1-β power), then
the sample size (n) for each group is obtained by solving
the following equation iteratively

Power = Pr(tv, ncp < tv, α/2) + Pr(tv, ncp > tv, 1-α/2)

Where ncp is the noncentrality parameter of non-central t-
distribution, and is estimated by

tv, α/2 is the α/2 quantile of a central t-distribution with v
degrees of freedom and v = 2n - 2. tv, ncp follows a non-cen-
tral t-distribution with v degrees of freedom and a non-
centrality parameter of ncp.

Microarray experiments usually involve a large number of
genes, with variance components varying greatly across
the genes. In general, the variance is higher for low
expressors which make up of a large percentage of the
genes (Figure 2). Approximately 50% of genes are called
absent on the Affymetrix full genome GeneChips. It is rea-
sonable to choose a value of variance, e.g. the median or
the upper 75th percentile of variance across all genes, and
to use this as the value in the power calculations. For
example, if we use the variance for the 50th percentile,
then the sample size calculations will assure us of having
the desired power to detect a chosen n-fold change for all
but the 50% most variable genes. In Figure 1, we show
horizontal lines at the 25th, 50th, 75th and 90th percentiles.
The intersection of these lines with the "cumulative per-
centage of genes" provides the value of α for each data set.
Additional file 1 shows the estimated sample size required
to detect a 1.5-, 2-, and 4-fold change in expression level
for the 90th, 75th, 50th, and 25th percentile genes for a
given setting of false positive rate and power. As is
expected, the required sample size increases with increas-
ing variance, increasing power, and decreasing fold-
change and false positive rate.

A significance level (the probability of making a type I
error, that is getting a false positive) of 0.05 is often
employed in hypothesis testing. Thousands of genes are
usually studied in microarray experiments. When more
than 10,000 genes are tested independently, we would
expect more than 500 genes to appear as false positives
when the 0.05 significance level is applied. Hence, a

smaller cut-off p-value should be used in order to reduce
the number of false positives. Many multiple testing cor-
rection methods have been proposed. The simplest one is
the Bonferroni correction (family wise error control)
where the nominal significance level is divided by the
number of tests. The Bonferroni correction is very strin-
gent. False discovery rate (FDR) [15], the proportion of
false positives among the genes that are identified as dif-
ferentially expressed, is a post-data measure for control-
ling false positive. For the purpose of sample size
planning, we suggest using the family wise type of error
control. A higher false positive rate (lower false negative
rate) can be employed for studies aiming to eliminating
non-significant differentially expressed genes, and a
smaller false positive rate can be used for those studies
involving costly follow-up research.

For reference, Table 2 lists the number of genes/ESTs/
probes found to be differentially expressed between two
conditions by different significance levels and fold
changes. The number of significant genes in data sets F
and G are small, possibly due to the relatively fewer
number of genes included in the study and the homoge-
neity between conditions (data set F compare in-bred
mice with two different volumes of hepatectomy; data set
G compares ApoAI knock-out versus normal mice).

Discussion
Factors that affect sample size calculation include the
magnitude of the variability of the population, the magni-
tude of the desired detectable expression change, the cho-
sen power to detect the expression change, and the cut-off
P-value/significance level/false positive rate. For a given
study, the variability of the population being studied is
fixed, and once researchers have identified the desired
detectable expression change, the required sample size
depends on the chosen false positive and false negative
rates. The variability of human subject data is typically
larger than that seen with laboratory animals and cell
lines due to genetic influences on gene expression. Hence,
more replicates are needed for studies that involve human
subjects (or any other outbred population) than for stud-
ies with samples from an inbred population. This is read-
ily apparent in the cDNA data in Additional file 1 (data
sets A-C, and E are human samples while D and F-G are
from mice). With the cDNA array data, one needs roughly
5 times as many human samples relative to mouse to
detect the same magnitude of change with the same statis-
tical power at the same significance level. This increase in
the required number of samples for an outbred popula-
tion has not been discussed before and has practical
implications for those wishing to translate gene expres-
sion work from animal models to studies in human
populations.

ncp = δ

σ 2
n
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Multiple levels of replicates are common in two color
microarray experiments. Multiple arrays probed with RNA
samples isolated from multiple individuals of a popula-
tion/treatment/group are referred to as biological repli-
cates. Multiple arrays hybridized using the same RNA or
multiple replicates of the same gene within an array are

referred to as technical replicates. Although technical rep-
licates can improve the precision and the reliability of the
measurement and provide information for quality con-
trol, biological replicates are most effective in reducing the
variance of the estimate of mean difference. Biological
replicates therefore increase the power to detect

Standard deviation versus log intensityFigure 2
Standard deviation versus log intensity Standard deviations are based on one sample t-test (data set A), paired t-test (data sets 
B-D), or two independent t-test (data sets E-G).
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biologically significant gene expression differences. More
importantly, when trying to identify differences between a
treatment and a control group, accurate estimates of the
biological variability within the groups is essential to
determine if the between group differences are meaning-
ful (by a t-test, Analysis of Variance (ANOVA) or other
method).

Careful experimental design is necessary to maximize the
statistical power of the test [16-18] while balancing
resource allocation. For example, dye swapping (in which
pairs of RNA samples are hybridized twice with reverse
dye labeling) is common in two color array experiments
and is a great help in removing dye bias. However, if the
experiments involve a common reference sample, which
is not of biological interest and the goal is to identify gene
expression differences between two groups (both of
which are co-hybridized again the common reference),
using twice as many independent biological replicates is
preferable to dye swapped technical replicates.

Caveats
This paper is intended to give some guidance to those
planning microarray experiments. The sample size calcu-
lations we performed provide an approximate number of
replicates for a given set of criteria. Our studies were lim-
ited to a small number of published microarray studies for
which the following criteria were true:

1) A reasonably large number of biological replicates were
analyzed.

2) Raw data was readily available so that we could reproc-
ess all data with the same algorithms.

3) Other potentially large sources of variability such as
flow sorting, laser micro-dissection and/or multiple
rounds of amplification were not present.

We have only analyzed date from a limited number of tis-
sue types – liver, prostate, breast and blood in human,

liver and kidney in mouse, and mammary gland in rat. It
is entirely possible that different tissue types will have
larger or smaller degrees of biological variation and hence
will require more or fewer samples to reach a given con-
clusion. In addition, lab or experiment specific methods
of obtaining and processing samples may induce greater
degrees of expression variation than seen in our sample
data. As more large data sets become available, it will be
useful to extend these studies to better define the magni-
tude of gene expression variation in purebred animals and
in outbred humans across a variety of tissues.

However, the data shown in Additional file 1 however
should be sobering to those planning or reviewing an
experimental protocol for microarray analysis. In these
limited data sets with human samples hybridized to
cDNA arrays with a common reference (B-C, E), we show
that 32 samples for each group are required to detect a 2-
fold change in the 75% least variable genes with 90%
power and a p-value of 0.001. With a p-value of 0.01 and
90% power, at least 20 samples are required to detect a 2-
fold change in the 75% least variable genes. This is a much
larger number of samples than is frequently used in
human microarray case-control studies designed to iden-
tify gene expression differences between two groups.

Methods
Data set selection, pre-processing and normalization
Background adjustment and normalization is needed in
microarray data analysis in order to remove non-biologi-
cal variation. Intensity based normalization methods such
as locally weighted least square polynomial regression
(lowess) is commonly used in cDNA microarray experi-
ments. The background subtracted intensities were nor-
malized by the spatial lowess method using the R add on
package MAANOVA written by the Jackson Lab. For the
two cDNA experiments with replicate panels within each
array, we normalized the two panels separately. All con-
trol genes were excluded from data analysis for data sets A-
G.

Table 2: Significant genes/ESTs/probes called by methods used in the studies using different criteria (combination of significance level 
and fold changes)

Data set Reference P <= 0.001 and the 
estimated fold change >=2

P <= 0.001 only P <= 0.01 only

A Smith et al. 2003 183 1783 3590
B Lapointe et al. 2004 609 6549 10153
C Chen et al 2002 1253 4187 6197
D Pritchard et al. 2001 479 1557 1845
E Zhao et al. 2004 270 1050 3821
F NA 16 145 723
G Callow et al. 2000 6 11 77
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Estimate of variance components
Pair-wise comparisons among conditions/groups/treat-
ments of gene expression levels are common goals of
microarray studies. Simultaneous comparison of more
than two treatments/conditions using one way ANOVA
can be advantageous. However, a significant F for a com-
parison of several treatments does not provide
information about which particular groups differ from
each other. In addition, one way ANOVA is not sensitive
to treatment effects when only one or two samples out of
many are quite different. T-tests are commonly used to
compare individual treatments in pairs.

In order to calculate power and plan sample size, one
must first estimate the variance. We applied paired or two
sample t-tests in this study based on the correlation
between the two groups. For data set A, as the pairs of
tumor and adjacent non-tumor tissue are highly corre-
lated, we used two tailed one sample t-tests with the nor-
malized log2 ratio of tumor/non-tumor as the response
variable. Data sets B-D were generated from paired sam-
ples using a reference design on cDNA arrays; Paired t-
tests are appropriate for these three data sets. We per-
formed two tailed, two sample (or independent) t-tests on
data sets E-G with normalized log ratio as the response
variable. The two sample t-tests are based on unequal var-
iances for the two groups of samples.

The variances of the data sets with paired samples are the
variance of the difference. The common variance of the
datasets with independent samples was estimated by the
following formula:

Where n1, n2 are the number of observations for group 1,
and group 2, respectively; and S1 and S2 are the standard
deviation for group 1, and group 2, respectively.

To simplify power and sample size calculation, and to
focus our calculation on biological variance, the log ratios
of the 4 technical replicates of data sets A, E, and G were
averaged for each RNA pair (data set A) or sample (data
sets E and G). The standard deviations across biological
replicates were estimated on a gene-by-gene basis. Sample
sizes were calculated using R for detecting a 1.5-, 2- or 4-
fold change for the 90%, 75%, 50%, and 25% least varia-
ble genes with a range of power (0.70, 0.80, 0.90) and
confidence level (0.01, 0.001, 0.0001), assuming equal
sample size for the two groups. The numbers for sample
size are rounded to integers.
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