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The lymphatic system transports dietary lipids absorbed and packaged as chylomicrons
by enterocytes, for delivery to the bloodstream. Once considered a passive drainage,
chylomicron entry into intestinal lymphatic vessels, or lacteals, is now emerging to be
an active process controlled by a dynamic and complex regulation. Vascular endothelial
growth factor (VEGF)-C, a major lymphangiogenic factor, regulates lacteal maintenance
and function. Little is known about the role of its cognate tyrosine kinase VEGF
receptor 3 (VEGFR-3) during lipid absorption. Here we investigated role of VEGFR-3
signaling in triglyceride (TG) absorption and distribution into tissues using the Chy mouse
model, which bears an inactivating mutation in the tyrosine kinase domain of VEGFR-
3 (heterozygous A3157T mutation resulting in I1053F substitution). Our data show that
inactivation of VEGFR-3 tyrosine kinase motif leads to retention of TGs in the enterocytes
of the small intestine, decreased postprandial levels of TGs in the plasma and increased
excretion of free fatty acids (FFAs) and TGs into their stools. We further show that
levels of nitric oxide (NO), required for chylomicron mobilization into the bloodstream,
are significantly reduced in the Chy intestine after a fat bolus suggesting a critical role
for VEGFR-3 signaling in the generation of NO during lipid absorption. Our data support
the hypothesis that VEGFR-3 signaling plays an important role in chylomicron-TG entry
into lacteals, possibly affecting TG trafficking to peripheral tissues.
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INTRODUCTION

Dietary long-chain fatty acids (FAs) and monoacylglycerols are absorbed on the apical membrane
of enterocytes, repackaged into triglyceride (TG)-rich lipoproteins, or chylomicrons (CMs), and
secreted into the intestinal lymphatic vessels, referred to as lacteals (Tso and Balint, 1986; Kohan
et al., 2010; Mansbach and Siddiqi, 2010; Cifarelli and Abumrad, 2018). Recent reports have
shown that chylomicron trafficking into lacteals is regulated by vascular endothelial growth factors
(VEGFs), hormones, transcription factors and requires activation of specific signaling pathways
(Van Dyck et al., 2007; Dixon, 2010; Choe et al., 2015; Bernier-Latmani and Petrova, 2017; Zhang
et al., 2018) challenging the view of gut lymphatic endothelium being a passive barrier.

Defective growth of lymphatic vessels, or lymphangiogenesis, in the lacteals impairs lipid
absorption and metabolism, as reported in several mice models of dysfunctional gut lymphatics
due to genetic deletion of prospero homeobox gene Prox1 (Harvey et al., 2005), VEGF-C
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(Nurmi et al., 2015), Notch ligand delta-like ligand 4 (DLL4)
(Bernier-Latmani et al., 2015), and adrenomedullin (Davis
et al., 2017). VEGF-C, a major lymphangiogenic factor during
embryonic development (Makinen et al., 2001; Karkkainen
et al., 2004), regulates maintenance and function of intestinal
lymphatics in adult mice (Nurmi et al., 2015) by binding
its cognate tyrosine kinase VEGF receptor 3 (VEGFR-3),
highly expressed in lymphatic endothelial cell (LECs). Upon
binding with VEGF-C, VEGFR-3 forms homodimers (R3/R3)
and undergoes intrinsic autophosphorylation on at least five
cytoplasmic tyrosine residues (Dixelius et al., 2003). VEGFR-
3 activation leads to protein kinase C-dependent activation of
ERK1/2, implicated in cell proliferation (Pajusola et al., 1994;
Fournier et al., 1995). VEGF-C can also bind to VEGFR-2,
inducing formation of heterodimers between VEGFR-3 and
VEGFR-2 (R3/R2) through a different autophosphorylation
pattern (Dixelius et al., 2003; Nilsson et al., 2010). Postnatal
deletion of Vegfc in mice leads to lacteal regression, defective
lipid absorption and protects from diet-induced obesity and
insulin resistance (Nurmi et al., 2015), without affecting
any other lymphatic beds. Similar to Vegfc deletion, genetic
ablation of Vegfr3 in adult mice affects lacteal maintenance
and function (Nurmi et al., 2015) although impact in lipid
absorption was not investigated. Whether VEGFR-3 signaling
affects TG absorption and distribution remains unclear. Here
we investigate the role of VEGFR-3 signaling in TG trafficking
from enterocyte into the circulation. We used the Chy mutant
mouse, which carries an inactivating mutation in VEGFR-
3 tyrosine kinase domain (heterozygous A3157T mutation
resulting in I1053F substitution). Chy mutant mice present
defective lymphatic vessels and develop lipid-rich chylous
ascites at birth that resolves upon weaning (Karkkainen
et al., 2001). To our knowledge, the mechanisms through
which inactivation of VEGFR-3 signaling pathways affects
lipid absorption and trafficking to blood circulation remains
unknown.

MATERIALS AND METHODS

Mice
All studies followed guidelines of the animal ethics committee
of Washington University School of Medicine (St Louis, MO,
United States). Chy mutant mice and littermate controls (gift
from Dr. Gwendalyn Randolph, Washington University in St.
Louis), all on the C57BL/6 background (Platt et al., 2013)
were housed in a facility with a 12-h light-dark cycle and
fed chow ad libitum (Purina, St Louis, MO, United States)
or when indicated fasted for 12 h with ad libitum access to
water.

Triglyceride, Cholesterol, and Free Fatty
Acid Measurements
Small intestines were collected at 120 min after intragastric
administration of triolein (10 µL/g body weight) to 12-
h fasted mice, divided into three equal parts (proximal,
middle, and distal) and processed as previously described

(Cifarelli et al., 2017). Total triglyceride, cholesterol, and free
fatty acids were determined by homogenizing 50 mg of tissue in
2 ml of chloroform:methanol (2:1 v/v). Samples were centrifuged
at 12,000 rpm for 10 min at 4◦C. An aliquote, 50 µl, was
evaporated in a 1.5 ml microcentrifuge tube. Triglyceride and
cholesterol were determined by adding 100 µL of reagent
to dried lipid extracts followed by incubation for 30 min
at room temperature. Level of triglyceride and cholesterol in
plasma was determined using Fisher Scientific kits (Fisher
Scientific, PA, United States). Non-esterified fatty acid levels
in plasma were determined using Wako kit (Wako Chemicals,
Richmond, VA, United States) according to the manufacturer’s
protocol.

Immunohistochemistry
Small intestines were collected at 120 min after intragastric
administration of triolein, opened longitudinally, divided
into three equal parts (proximal, middle and distal), fixed
in 10% formalin and embedded in paraffin. Cut sections
(5 µm) were processed as previously described (Cifarelli
et al., 2017). Sections were incubated in donkey serum
(2%) and BSA (3%) for 1h at room temperature to block
non-specific binding and then incubated overnight (4◦C)
with perilipin 3 primary antibody (Wolins et al., 2005)
(1:1000), followed by fluorescently labeled (Alexa Fluor)
secondary antibody (1:250). DAPI staining was used to identify
nuclei. Images were taken using Nikon Eclipse TE2000-U
microscope.

Thin Layer Chromatography
Mice were monitored for stool excretion for 5h, continuously
collected from 2 to 5 h of intragastric administration of
triolein (10 µL/g body weight) and frozen until day of
analysis. Stool samples were weighed, dispersed in PBS
and lipids extracted as described previously (Schwartz and
Wolins, 2007). The extracted lipids from 5 mg of feces
were dissolved in hexane/ether (1:1) and loaded on Silica
Gel HL chromatography plate (Analtech). The lipids were
resolved in hexane/ether/acetic acid (70:30:1.2) and detected
with iodine vapor as previously described (Skinner et al.,
2009).

Nitric Oxide Assay
Nitrite and nitrate levels were measured in small intestine
using a fluorometric kit employing the Griess reaction (Cayman
Chemical, Ann Harbor, MI, United States). After a 12-h fast,
mice received intragastric triolein (10 µL/g body weight).
Small intestines, collected at 120 min post gavage were
gently washed in cold PBS, and snap frozen until samples
(100 mg) were further processed following the manufacturer’s
protocol.

Statistical Analyses
Results are presented as means ± standard error (SE).
Statistical significance is calculated using unpaired Student’s
t-test. Statistically significant difference is defined as a p-value
of ≤0.05.
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FIGURE 1 | Chy mice have decreased TG and cholesterol level in plasma after a bolus of fat. An oral bolus of triolein (10 µl/g body weight) was administered to mice
after an overnight fast. Plasma TG clearance was blocked by injection of Triton WR 1339, an inhibitor of lipoprotein lipase activity. Plasma was collected at the
indicated times for TG (A), FFA (B), and cholesterol (C) measurements. Data are means ± SEM. ∗p < 0.05 by 2-tailed Student’s t-test.

RESULTS

Inactivation of VEGFR-3 Signaling
Decreases Plasma Triglyceride (TG)
Levels After Lipid Bolus
Chy and control mice received an intra-gastric administration
of triolein (10 µL/g body weight) after an overnight fast (12-h).
Thirty minutes prior lipid bolus, both mouse groups received
Triton WR 1339 by i.v. to block lipoprotein lipase activity
(Otway and Robinson, 1967). Plasma TG levels were significantly
decreased in Chy mice (83.7 ± 17 mg/dL) compared with control
group (344.1 ± 35 mg/dL; p = 0.0006) at 30 min post gavage
and remained lower at 120 min post gavage (203.9 ± 31 mg/dL
as compared with 748.9 ± 78 mg/dL for Chy and control mice,
respectively; p < 0.001) (Figure 1A). Level of FFAs in the
plasma did not differ between the two mouse groups before and
after intra-gastric administration of triolein (Figure 1B). The
Chy mice exhibits decreased level of cholesterol in the plasma
following intragastric administration of triolein, and this reached
significance at 120 min post gavage (45.18 ± 2 mg/dL) compared
with control group (58.64 ± 3.1 mg/dL; p = 0.029) (Figure 1C).

TGs Both Accumulate in the Small
Intestine and Is Excreted in the Feces in
Chy Mice Following a Bolus of Lipids
We next examined intestine TG distribution in Chy mice before
and after an intra-gastric bolus of triolein. In unchallenged
conditions, TG accumulates in the small intestine of Chy mice
with a significant shift toward the middle (6.3 ± 0.45 mg/dL vs.
3.1 ± 0.8 mg/dL in control group; p = 0.035) and distal sections
(10.5 ± 2 mg/dL vs. 5.6 ± 0.9 mg/dL in control group; p = 0.007)
(Figure 2A). Following intra-gastric administration of triolein,
control mice show increased TG levels primarily in the proximal
section (9.4 ± 0.4 mg/dL after bolus vs. 4.7 ± 0.5 mg/dL in
unchallenged condition; p < 0.01) whereas the Chy mice present
increased accumulation of TGs in the three different sections of
the intestine (Figure 2A). Defective intestinal lipid processing in

Chy mice is further shown by presence of larger cytoplasmic lipid
droplets in enterocytes of the proximal small intestine, stained for
Perilipin 3, compared with control mice (Figure 2B). In contrast,
increased excretion of TGs, FAs and 1,2 Diacylglycerol (DAG) is
observed in the feces of the Chy mice, collected at 5 h post gavage,
compared with controls (Figure 2C).

Mobilization of postprandial chylomicrons from enterocytes
into the circulation is initiated upon induction of nitric oxide
(NO) signaling (Hsieh et al., 2015), although it is still not
understood whether NO regulates chylomicron trafficking from
enterocyte-to-lacteal or from lymph-to-blood. Chy mice intestine
displayed lower levels of NO (nitrite/nitrate) measured at baseline
(13.19 ± 1 µM/100 mg of tissue) as compared to WT mice
(27.9 ± 2 µM/100 mg of tissue; p = 0.022), and after 120 min
post fat bolus (30.09 ± 4 µM/100 mg of tissue) as compared
with control mice (70.2 ± 3 µM/100 mg of tissue; p < 0.05)
(Figure 2D).

DISCUSSION

Our data show the novel finding that VEGFR-3 signaling
regulates absorption and trafficking of dietary lipids from the
enterocytes to the circulation. VEGFR-3 is initially expressed
in all embryonic endothelia, but becomes highly restricted
to the lymphatic endothelium in adult tissues (Kaipainen
et al., 1995). However, VEGFR-3 can be found at sites of
inflammation and tumor in non-endothelial bone marrow-
derived cells (Skobe et al., 2001), stromal dendritic cells (Hamrah
et al., 2004) and some VEGFR-3 expression has been described
in angiogenic blood endothelial cells (Valtola et al., 1999). The
Chy mutant mouse model carries an inactivating mutation in
the tyrosine catalytic domain of VEGFR-3. We show that Chy
mice have markedly decreased postprandial levels of TGs in
the circulation, as compared with controls. Since lipoprotein
lipase (LPL) activity was inhibited as previously reported
(Otway and Robinson, 1967), the decrease in postprandial
TG levels mainly reflects input from the small intestine.
Surprisingly, cholesterol levels were also significantly decreased
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FIGURE 2 | Chy mice accumulate TGs in the small intestine after a bolus of fat. Mice received an oral bolus of triolein (10 µl/g body weight) after overnight fasting
(12-h). (A) Different sections of the intestine (proximal, middle, and distal) were collected from both mice groups at 120 min post gavage and analyzed for TG
content. (B) Proximal small intestines were stained for Perilipin 3 (P3, green) a protein that coats lipid droplets (LD) and for DAPI (blue, nuclei). (C) Lipids were
extracted from stool continuously for 5-h following an oral bolus of fat (10 µl/g of body weight) and analyzed by TLC. Stool from Chy mice show increased content of
TG, FA and 1,2 DAG compared with stool from control mice. (D) Level of nitric oxide (nitrite/nitrate) measure by Griess reaction in intestine of Chy and littermate
controls at baseline and after 120 min post lipid bolus. Scale bar is 30 µm. (E) Schematic model showing potential mechanism. Data are means ± SEM. ∗p < 0.05
by 2-tailed Student’s t-test.

in plasma of Chy mice compared with littermate controls
(Figure 1). The significance of this change is unclear and
might reflect abnormality of systemic cholesterol metabolism.
The lymphatic vasculature regulates removal of cholesterol from
peripheral tissues (Lim et al., 2013; Randolph and Miller, 2014)
and defective lymphatics impair reverse cholesterol transport
(Martel et al., 2013).

Distribution of TGs in different sections of the intestine
was strikingly altered in the Chy mouse. Under unchallenged
12-h fasting conditions, there was significant accumulation of
TGs in the middle and distal sections of the Chy mouse as
compared with control group (Figure 2). Following intragastric
administration of triolein, intestines of control mice showed
TGs accumulation in the proximal small intestine at 120 min
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post triolein gavage, about doubled those in fasting. However, in
the Chy mouse, TG accumulation (∼threefold compared with
fasting levels) was observed throughout the length of the small
intestine (Figure 2). This was consistent with impaired proximal
TG absorption resulting in more TGs reaching the middle and
distal sections. In line with this, enterocytes contained larger
cytoplasmic lipid droplets, visualized by Perilipin 3 staining
supporting a defect in transfer of the TGs from the enterocyte
to the lymphatic system and resulting in increased lipid (TGs
and FFAs) excretion in the feces of Chy mice as compared with
controls (Figure 2C). VEGF-C in the gut is manly produced by
smooth muscle cell and muscle fibers surrounding the lacteals
(Nurmi et al., 2015). Postnatal deletion of Vegfc causes atrophy
of the lacteal, impairs lipid absorption and associates with
increased lipid excretion in the feces (Nurmi et al., 2015). In the
case of the Chy mouse, the intestinal lymphatics are enlarged
(Karkkainen et al., 2004) and our data suggest that they are
not functioning in TG transport. Thus, VEGFR-3 signaling in
the small intestine appears important during lipid absorption.
Individuals with hereditary or primary lymphedema (Milroy’s
disease) due to an inactivating mutation in VEGFR-3 kinase
domain (Irrthum et al., 2000) often present steatorrhea, which
reflects the failure of intestinal lymphatics to adequately transport
chylomicrons, with chylous ascites and lymphopenia due to
loss of lymph retention (Lee and Young, 1953; Gerstein et al.,
1957; Alexander et al., 2010). Retention of chylomicrons in the
enterocytes is reported in individuals carrying mutations in the
SAR1B gene that encodes for sar1b, a GTP-binding protein
important for chylomicron trafficking in the enterocytes (Cifarelli
and Abumrad, 2018); however, the lymphatic function in these
individuals is not affected. VEGFR-3 is highly expressed in
LECs and upon binding VEGF-C it dimerizes and undergoes
autophosphorylation leading to activation of ERK1/2. It also
heterodimerizes with VEGFR-2 leading to activation of AKT
(Pajusola et al., 1994; Dixelius et al., 2003; Nilsson et al., 2010).
Although VEGF-C can still signal via VEGFR-2 it is possible
that the magnitude of VEGF-C/VEGFR-2 signaling might be
altered by absence of a functional VEGFR-3. Zhang et al. (2018)
have elegantly shown that chylomicron uptake by the lacteals is
regulated by dynamic changes of cell-cell junctions via VEGF-
A signaling through VEGFR-2. Zippering of lacteal junctions
prevents chylomicron uptake and protects mice from diet-
induced obesity (Zhang et al., 2018). It is possible that inhibition
of VEGFR-3 signaling in the Chy mouse increases VEGFR-2
signaling leading to inhibition of TG uptake by lacteals.

The retention of TGs in enterocytes of the Chy mouse suggests
that VEGFR-3 signaling might be involved in promoting efficient
TG transfer from enterocytes to lacteals. This is further suggested
by our data showing reduced nitric oxide generation in the
Chy mouse (Figure 2D). Nitric oxide regulates mobilization
of postprandial chylomicrons from the enterocytes into the
bloodstream (Hsieh et al., 2015). Disruption of this pathway
could be responsible for the accumulation of TGs observed in
the enterocytes and mucosa and the subsequent lipid excretion
into the feces. Furthermore, VEGF-C binding to VEGFR-
3 selectively phosphorylates endothelial nitric oxide synthase
(eNOS) at Ser 1177 via the PI3K/Akt pathway in LECs and
this effect is not mediated via VEGFR-1 and/or VEGFR-2
(Coso et al., 2012). We hypothesized that generation of nitric
oxide followed by VEGF-C binding to VEGFR-3 might affect
lacteal permeability, favoring mobilization of TGs from the
enterocytes into the lacteals, as it has been proposed (Hsieh
et al., 2015). In summary, our study show the novel finding
that VEGFR-3 signaling is an important regulator of dietary
TG absorption and retention in the enterocytes possibly via
generation of NO.

AUTHOR CONTRIBUTIONS

TS, NW, and VC ran the experiments and collected and analyzed
the data. VC designed the work and wrote the manuscript. All
authors critically revised and approved the manuscript.

FUNDING

This work was supported by the Nutrition Obesity Research
Center Pilot & Feasibility Award P30 DK056341 and by the
Digestive Diseases Research Center Pilot & Feasibility Award P30
DK052574 (both to VC).

ACKNOWLEDGMENTS

We thank Dr. Gwendalyn Randolph (Washington University in
St. Louis) for the generous gift of the Chy mice and littermate
controls. We acknowledge Dr. Nada Abumrad and Dr. David
Alpers for valuable discussion and input.

REFERENCES
Alexander, J. S., Ganta, V. C., Jordan, P. A., and Witte, M. H. (2010).

Gastrointestinal lymphatics in health and disease. Pathophysiology 17, 315–335.
doi: 10.1016/j.pathophys.2009.09.003

Bernier-Latmani, J., Cisarovsky, C., Demir, C. S., Bruand, M., Jaquet, M.,
Davanture, S., et al. (2015). DLL4 promotes continuous adult intestinal lacteal
regeneration and dietary fat transport. J. Clin. Invest. 125, 4572–4586. doi:
10.1172/JCI82045

Bernier-Latmani, J., and Petrova, T. V. (2017). Intestinal lymphatic vasculature:
structure, mechanisms and functions. Nat. Rev. Gastroenterol. Hepatol. 14,
510–526. doi: 10.1038/nrgastro.2017.79

Choe, K., Jang, J. Y., Park, I., Kim, Y., Ahn, S., Park, D. Y., et al. (2015). Intravital
imaging of intestinal lacteals unveils lipid drainage through contractility. J. Clin.
Invest. 125, 4042–4052. doi: 10.1172/JCI76509

Cifarelli, V., and Abumrad, N. A. (2018). Intestinal CD36 and other key proteins
of lipid utilization: role in absorption and gut homeostasis. Compr. Physiol. 8,
493–507. doi: 10.1002/cphy.c170026

Cifarelli, V., Ivanov, S., Xie, Y., Son, N. H., Saunders, B. T., Pietka, T. A.,
et al. (2017). CD36 deficiency impairs the small intestinal barrier and induces
subclinical inflammation in mice. Cell. Mol. Gastroenterol. Hepatol. 3, 82–98.
doi: 10.1016/j.jcmgh.2016.09.001

Coso, S., Zeng, Y., Opeskin, K., and Williams, E. D. (2012). Vascular endothelial
growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase

Frontiers in Physiology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 1783

https://doi.org/10.1016/j.pathophys.2009.09.003
https://doi.org/10.1172/JCI82045
https://doi.org/10.1172/JCI82045
https://doi.org/10.1038/nrgastro.2017.79
https://doi.org/10.1172/JCI76509
https://doi.org/10.1002/cphy.c170026
https://doi.org/10.1016/j.jcmgh.2016.09.001
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01783 December 7, 2018 Time: 16:19 # 6

Shew et al. Regulation of Lipid Absorption by VEGFR-3 Signaling

to regulate lymphangiogenesis. PLoS One 7:e39558. doi: 10.1371/journal.pone.
0039558

Davis, R. B., Kechele, D. O., Blakeney, E. S., Pawlak, J. B., and Caron, K. M. (2017).
Lymphatic deletion of calcitonin receptor-like receptor exacerbates intestinal
inflammation. JCI Insight 2:e92465. doi: 10.1172/jci.insight.92465

Dixelius, J., Makinen, T., Wirzenius, M., Karkkainen, M. J., Wernstedt, C.,
Alitalo, K., et al. (2003). Ligand-induced vascular endothelial growth factor
receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic
endothelial cells regulates tyrosine phosphorylation sites. J. Biol. Chem. 278,
40973–40979. doi: 10.1074/jbc.M304499200

Dixon, J. B. (2010). Lymphatic lipid transport: sewer or subway? Trends Endocrinol.
Metab. 21, 480–487. doi: 10.1016/j.tem.2010.04.003

Fournier, E., Dubreuil, P., Birnbaum, D., and Borg, J. P. (1995). Mutation at
tyrosine residue 1337 abrogates ligand-dependent transforming capacity of the
FLT4 receptor. Oncogene 11, 921–931.

Gerstein, M. C., Lindsay, W. K., and Mckendry, J. B. (1957). Congenital defects of
lymphatics in infancy. Pediatrics 19, 21–35.

Hamrah, P., Chen, L., Cursiefen, C., Zhang, Q., Joyce, N. C., and Dana, M. R.
(2004). Expression of vascular endothelial growth factor receptor-3 (VEGFR-
3) on monocytic bone marrow-derived cells in the conjunctiva. Exp. Eye Res.
79, 553–561. doi: 10.1016/j.exer.2004.06.028

Harvey, N. L., Srinivasan, R. S., Dillard, M. E., Johnson, N. C., Witte, M. H.,
Boyd, K., et al. (2005). Lymphatic vascular defects promoted by Prox1
haploinsufficiency cause adult-onset obesity. Nat. Genet. 37, 1072–1081. doi:
10.1038/ng1642

Hsieh, J., Trajcevski, K. E., Farr, S. L., Baker, C. L., Lake, E. J., Taher, J.,
et al. (2015). Glucagon-like peptide 2 (GLP-2) stimulates postprandial
chylomicron production and postabsorptive release of intestinal triglyceride
storage pools via induction of nitric oxide signaling in male hamsters
and mice. Endocrinology 156, 3538–3547. doi: 10.1210/EN.2015-
1110

Irrthum, A., Karkkainen, M. J., Devriendt, K., Alitalo, K., and Vikkula, M. (2000).
Congenital hereditary lymphedema caused by a mutation that inactivates
VEGFR3 tyrosine kinase. Am. J. Hum. Genet. 67, 295–301. doi: 10.1086/303019

Kaipainen, A., Korhonen, J., Mustonen, T., Van Hinsbergh, V. W., Fang, G. H.,
Dumont, D., et al. (1995). Expression of the fms-like tyrosine kinase 4 gene
becomes restricted to lymphatic endothelium during development. Proc. Natl.
Acad. Sci. U.S.A. 92, 3566–3570. doi: 10.1073/pnas.92.8.3566

Karkkainen, M. J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T. V.,
et al. (2004). Vascular endothelial growth factor C is required for sprouting
of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80.
doi: 10.1038/ni1013

Karkkainen, M. J., Saaristo, A., Jussila, L., Karila, K. A., Lawrence, E. C.,
Pajusola, K., et al. (2001). A model for gene therapy of human hereditary
lymphedema. Proc. Natl. Acad. Sci. U.S.A. 98, 12677–12682. doi: 10.1073/pnas.
221449198

Kohan, A., Yoder, S., and Tso, P. (2010). Lymphatics in intestinal transport of
nutrients and gastrointestinal hormones. Ann. N. Y. Acad. Sci. 1207(Suppl. 1),
E44–E51. doi: 10.1111/j.1749-6632.2010.05753.x

Lee, C. H., and Young, J. R. (1953). Chylous ascites in siblings. J. Pediatr. 42, 83–86.
doi: 10.1016/S0022-3476(53)80113-7

Lim, H. Y., Thiam, C. H., Yeo, K. P., Bisoendial, R., Hii, C. S., Mcgrath, K. C.,
et al. (2013). Lymphatic vessels are essential for the removal of cholesterol
from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 17,
671–684. doi: 10.1016/j.cmet.2013.04.002

Makinen, T., Jussila, L., Veikkola, T., Karpanen, T., Kettunen, M. I., Pulkkanen,
K. J., et al. (2001). Inhibition of lymphangiogenesis with resulting lymphedema
in transgenic mice expressing soluble VEGF receptor-3. Nat. Med. 7, 199–205.
doi: 10.1038/84651

Mansbach, C. M., and Siddiqi, S. A. (2010). The biogenesis of chylomicrons. Annu.
Rev. Physiol. 72, 315–333. doi: 10.1146/annurev-physiol-021909-135801

Martel, C., Li, W., Fulp, B., Platt, A. M., Gautier, E. L., Westerterp, M., et al. (2013).
Lymphatic vasculature mediates macrophage reverse cholesterol transport in
mice. J. Clin. Invest. 123, 1571–1579. doi: 10.1172/JCI63685

Nilsson, I., Bahram, F., Li, X., Gualandi, L., Koch, S., Jarvius, M., et al. (2010). VEGF
receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic
sprouts. EMBO J. 29, 1377–1388. doi: 10.1038/emboj.2010.30

Nurmi, H., Saharinen, P., Zarkada, G., Zheng, W., Robciuc, M. R., and Alitalo, K.
(2015). VEGF-C is required for intestinal lymphatic vessel maintenance and
lipid absorption. EMBO Mol. Med. 7, 1418–1425. doi: 10.15252/emmm.
201505731

Otway, S., and Robinson, D. S. (1967). The effect of a non-ionic detergent (Triton
WR 1339) on the removal of triglyceride fatty acids from the blood of the rat.
J. Physiol. 190, 309–319. doi: 10.1113/jphysiol.1967.sp008210

Pajusola, K., Aprelikova, O., Pelicci, G., Weich, H., Claesson-Welsh, L., and
Alitalo, K. (1994). Signalling properties of FLT4, a proteolytically processed
receptor tyrosine kinase related to two VEGF receptors.Oncogene 9, 3545–3555.

Platt, A. M., Rutkowski, J. M., Martel, C., Kuan, E. L., Ivanov, S., Swartz, M. A., et al.
(2013). Normal dendritic cell mobilization to lymph nodes under conditions
of severe lymphatic hypoplasia. J. Immunol. 190, 4608–4620. doi: 10.4049/
jimmunol.1202600

Randolph, G. J., and Miller, N. E. (2014). Lymphatic transport of high-density
lipoproteins and chylomicrons. J. Clin. Invest. 124, 929–935. doi: 10.1172/
JCI71610

Schwartz, D. M., and Wolins, N. E. (2007). A simple and rapid method to assay
triacylglycerol in cells and tissues. J. Lipid Res. 48, 2514–2520. doi: 10.1194/jlr.
D700017-JLR200

Skinner, J. R., Shew, T. M., Schwartz, D. M., Tzekov, A., Lepus, C. M., Abumrad,
N. A., et al. (2009). Diacylglycerol enrichment of endoplasmic reticulum or lipid
droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. J. Biol.
Chem. 284, 30941–30948. doi: 10.1074/jbc.M109.013995

Skobe, M., Hamberg, L. M., Hawighorst, T., Schirner, M., Wolf, G. L., Alitalo, K.,
et al. (2001). Concurrent induction of lymphangiogenesis, angiogenesis, and
macrophage recruitment by vascular endothelial growth factor-C in melanoma.
Am. J. Pathol. 159, 893–903. doi: 10.1016/S0002-9440(10)61765-8

Tso, P., and Balint, J. A. (1986). Formation and transport of chylomicrons by
enterocytes to the lymphatics. Am. J. Physiol. 250, G715–G726. doi: 10.1152/
ajpgi.1986.250.6.G715

Valtola, R., Salven, P., Heikkila, P., Taipale, J., Joensuu, H., Rehn, M., et al. (1999).
VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast
cancer. Am. J. Pathol. 154, 1381–1390. doi: 10.1016/S0002-9440(10)65392-8

Van Dyck, F., Braem, C. V., Chen, Z., Declercq, J., Deckers, R., Kim, B. M.,
et al. (2007). Loss of the PlagL2 transcription factor affects lacteal uptake of
chylomicrons. Cell Metab. 6, 406–413. doi: 10.1016/j.cmet.2007.09.010

Wolins, N. E., Quaynor, B. K., Skinner, J. R., Schoenfish, M. J., Tzekov, A., and
Bickel, P. E. (2005). S3-12, Adipophilin, and TIP47 package lipid in adipocytes.
J. Biol. Chem. 280, 19146–19155. doi: 10.1074/jbc.M500978200

Zhang, F., Zarkada, G., Han, J., Li, J., Dubrac, A., Ola, R., et al. (2018). Lacteal
junction zippering protects againstdiet-induced obesity. Science 361, 599-603.
doi: 10.1126/science.aap9331

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Shew, Wolins and Cifarelli. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Physiology | www.frontiersin.org 6 December 2018 | Volume 9 | Article 1783

https://doi.org/10.1371/journal.pone.0039558
https://doi.org/10.1371/journal.pone.0039558
https://doi.org/10.1172/jci.insight.92465
https://doi.org/10.1172/jci.insight.92465
https://doi.org/10.1074/jbc.M304499200
https://doi.org/10.1016/j.tem.2010.04.003
https://doi.org/10.1016/j.exer.2004.06.028
https://doi.org/10.1038/ng1642
https://doi.org/10.1038/ng1642
https://doi.org/10.1210/EN.2015-1110
https://doi.org/10.1210/EN.2015-1110
https://doi.org/10.1086/303019
https://doi.org/10.1073/pnas.92.8.3566
https://doi.org/10.1038/ni1013
https://doi.org/10.1073/pnas.221449198
https://doi.org/10.1073/pnas.221449198
https://doi.org/10.1111/j.1749-6632.2010.05753.x
https://doi.org/10.1016/S0022-3476(53)80113-7
https://doi.org/10.1016/j.cmet.2013.04.002
https://doi.org/10.1038/84651
https://doi.org/10.1146/annurev-physiol-021909-135801
https://doi.org/10.1172/JCI63685
https://doi.org/10.1038/emboj.2010.30
https://doi.org/10.15252/emmm.201505731
https://doi.org/10.15252/emmm.201505731
https://doi.org/10.1113/jphysiol.1967.sp008210
https://doi.org/10.4049/jimmunol.1202600
https://doi.org/10.4049/jimmunol.1202600
https://doi.org/10.1172/JCI71610
https://doi.org/10.1172/JCI71610
https://doi.org/10.1194/jlr.D700017-JLR200
https://doi.org/10.1194/jlr.D700017-JLR200
https://doi.org/10.1074/jbc.M109.013995
https://doi.org/10.1016/S0002-9440(10)61765-8
https://doi.org/10.1152/ajpgi.1986.250.6.G715
https://doi.org/10.1152/ajpgi.1986.250.6.G715
https://doi.org/10.1016/S0002-9440(10)65392-8
https://doi.org/10.1016/j.cmet.2007.09.010
https://doi.org/10.1074/jbc.M500978200
https://doi.org/10.1126/science.aap9331
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles

	VEGFR-3 Signaling Regulates Triglyceride Retention and Absorption in the Intestine
	Introduction
	Materials and Methods
	Mice
	Triglyceride, Cholesterol, and Free Fatty Acid Measurements
	Immunohistochemistry
	Thin Layer Chromatography
	Nitric Oxide Assay
	Statistical Analyses

	Results
	Inactivation of VEGFR-3 Signaling Decreases Plasma Triglyceride (TG) Levels After Lipid Bolus
	TGs Both Accumulate in the Small Intestine and Is Excreted in the Feces in Chy Mice Following a Bolus of Lipids

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


