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Abstract: In this study, a novel system was set up by preparing a magnetic flocculant combining with
ultraviolet/H2O2 to realize the rapid enrichment and degradation of diclofenac sodium (DCFS). For the
magnetic flocculant, template anion polyacrylamide (TAPAM) with anion micro-block structure was
prepared. Thereafter, polydopamine was used to modify TAPAM, Fe3O4 nanoparticles was grafted
to the modified TAPAM by chelation, named template anion polyacrylamide-polydopamine-Fe3O4

(TAPAM-PDA-Fe3O4). Furthermore, the TAPAM-PDA-Fe3O4 preparation protocol was optimized by
the response surface method (RSM). In the DCFS enrichment section, the rapid separation of flocs
from water was realized by an external magnetic field and it indicated that the π–π stacking effect
was dominant in neutral/alkaline condition, whereas charge neutralization was favored in acidic
conditions. Meanwhile, a DCFS enrichment kinetic curve was much fitted by the pseudo-second-order
kinetic model and DCFS enrichment isothermal curve was close to the Freundlich isothermal model,
indicating the dependence of DCFS quantity enriched by TAPAM-PDA-Fe3O4 and a multilayer
heterogeneous enrichment process. The degradation experiment confirmed that DCFS was effectively
degraded by ultraviolet/H2O2/TAPAM-PDA-Fe3O4 and the maximum value of DCFS degradation
efficiency reached 98.1%. Furthermore, the regeneration experiment showed that the enrichment and
degradation efficiency of DCFS could maintain a relatively high level in the initial three recycles.

Keywords: diclofenac sodium; π–π stacking; charge neutralization; enrichment; degradation

1. Introduction

Diclofenac sodium (DCFS) represents a rising concern due to its ecotoxicological potential and
current, sustained release into the aquatic environment. Furthermore, many regions and countries,
such as Europe, America, China, and so on, have added DCFS to the priority substances monitoring list
of water policy [1–3]. Approximately a hundred tons of DCFS are sold annually worldwide, about 15%
of which is excreted unchanged by human race and is frequently detected in domestic wastewater [4].
In addition, the ever-increasing global population is expected to cause a sharp increase in the emissions
of DCFS in the future. Several studies have shown that DCFS exposure demonstrates bioaccumulation
in invertebrates, which has an ecotoxicological risk to the aquatic food chain [5]. At present, due to the
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limited biodegradability of sewage treatment plants, DCFS can’t be effectively dislodged by traditional
sewage treatment methods [6–9].

Several technologies have been studied to reduce the DCFS concentration in aqueous environments,
such as photolysis and electro-Fenton based treatments, to give some examples [10,11]. Nevertheless,
the low concentration of DCFS in domestic sewage makes it hard to degrade the pharmaceutical
effectively by using these methods directly [12]. It is suggested that DCFS degradation efficiency would
be enhanced by realizing DCFS enrichment before degradation process. There are also several studies
on the enrichment of DCFS from water, which provide the possibility to realize the combination of
DCFS enrichment and degradation [13–15].

Anion polyacrylamide (APAM) synthesized by acrylamide and 2-acrylamido-2-methyl-1-
propanesulfonic acid (AMPS) is a typical class of organic flocculant with high intrinsic viscosity
and electronegative properties. The molecular chains of APAM could induce charge neutralization to
remove cationic organics from wastewater [16].

Meanwhile, dopamine (DA), which is environment-friendly and energy-efficient, could undergo
self-polymerization by ultraviolet (UV) radiation. So far polydopamine (PDA) has been applied in
various areas, such as wastewater treatment, drug loading capsules and organic catalysts considering
its biocompatible, good thermal stability and amazing adhesion on various materials since its first
report by Messersith and his colleagues in 2007 [17–19]. It is interesting to note that polydopamine and
DCFS are both rich in aromatic rings, which may lead to the π–π stacking effect between them [20].

Moreover, response surface methodology (RSM) is widely adopted in the area of parameter
optimization, which includes Doehlert matrix, central composite designs, and Box-Behnken design
(BBD) [21,22]. Among them, BBD is more efficient and it can be used by relatively few combinations of
variables to determine the complex response function [23].

Given that, in this study, poly(acryloyloxyethyltrimethyl ammonium chloride) (PDAC) was
adopted as a cationic template, and AMPS was used as the anion monomer to react with acrylamide
by copolymerization under UV irradiation, so as to prepare the template anion polyacrylamide
(TAPAM) with anion micro-block structure. After that, polydopamine was used to modify the
TAPAM, where magnetic Fe3O4 nanoparticles was grafted to realize the rapid separation from the
aqueous environment, and then the novel magnetic flocculant was prepared, named template anion
polyacrylamide-polydopamine-Fe3O4 (TAPAM-PDA-Fe3O4) as shown in Figure 1. Moreover, RSM
was employed with BBD to optimize the synthesis of TAPAM-PDA-Fe3O4, and the variables chosen
for the design were pH, mole ratios (PDAC/AMPS, AMPS/AM, AM/DA, DA/Fe3O4) and irradiation
time. The new magnetic flocculant was applied to the treatment of simulated wastewater containing
DCFS, and then the rapid separation of flocs from water was realized by an external magnetic field.
The separated mixture was re-immersed into a lower volume dilute sulfuric acid solution to increase
DCFS concentration and to generate Fe2+ by grafted Fe3O4 nanoparticles. After adding the appropriate
amount of H2O2 to the solution, it was settled in a UV irradiation environment. Finally, it was
expected to realize the rapid enrichment, separation, and degradation of DCFS in order to overcome
the related problems.
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Figure 1. The scheme of preparing TAPAM-PDA-Fe3O4.

2. Materials and Methods

2.1. Materials

Acrylamide (AM) and acryloyloxyethyltrimethyl ammonium chloride (DAC) were purchased
from Chongqing Lanjie Tap Water Company (Chongqing, China). Diclofenac sodium was obtained
from Chengdu Kelong Chemical Reagent Corporation (Chengdu, China). 2-acrylamido-2-methyl-1-
propanesulfonic acid (AMPS) was sourced from Shouguang Chemical Co. Ltd. (Shouguang,
China). Photo-initiator 2,2′-azobis(2-methylpropionamide) dihydrochloride (V-50) was purchased
from Ruihong biological technology Co. Ltd. (Shanghai, China). Dopamine hydrochloride ammonium
persulfate was purchased from Aladdin Industrial Inc. (Shanghai, China). AM and AMPS were
technical grade and the other reagents used in this study were analytical grade. All chemicals were
used without further treatment and all solutions were prepared with ultrapure water (18 MΩ cm).

2.2. TAPAM-PDA-Fe3O4 Synthesis Optimization

The preparation of TAPAM-PDA-Fe3O4 described in Text S1 was optimized by Box-Behnken
Design (BBD) and response surface method (RSM). Six factors: pH (X1), mole ratio of PDAC/AMPS
(X2), AMPS/AM (X3), AM/DA (X4), DA/Fe3O4 (X5) and irradiation time (X6) were selected as the
independent variables. Intrinsic viscosity was chosen as the response variable. As shown in Table 1 and
Supplementary Table S1, B54 (36) was used to improve the experiment and Supplementary Equation
(S1) was used to predict the optimal condition.
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Table 1. The independent variables levels designed in the B54 (36).

Independent Variables Code Levels

−1 0 1

pH X1 5 7.5 10
n1 (PDAC: AMPS) X2 0.5 1.25 2

n2 (AMPS: AM) X3 0.2 2.6 5
n3 (AM: DA) X4 1 3.5 6

n4 (DA: Fe3O4) X5 1 3.5 6
Irradiation time (min) X6 30 75 120

2.3. Analytical Methods

FT-IR spectra were measured by a spotlight 200 FT-IR spectrometer (Nicolet IS10, Thermo
Fisher Scientific, Waltham, MA, USA). X-ray photoelectron spectroscopy spectra was detected by
the ESCALAB250Xi XPS spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Chemical
constituents and thermal stability of the products were analyzed by a DTG-60H synchronal thermal
analyzer (SHIMADZU, Kyoto, Japan). The morphology and fractal dimension of magnetic flocculant
were detected by the high-resolution field emission scanning electron microscope (SEM, Quattro S,
Thermo Fisher Scientific, Waltham, MA, USA) coupled with Image-Pro software (plus 6.0, Media
Cybernetics, Rockville, MA, USA). The magnetic properties and crystal phases of magnetic flocculant
were analyzed by a vibrating sample magnetometer (PPMS DynaCool 9, Quantum Design, San Diego,
CA, USA) and a X-ray diffractometer (7000, Shimadzu, Kyoto, Japan), respectively. A Nano
ZS90Zetasizer (Malvern Instruments Co. Ltd, Malvern, UK) was used to analyze zeta potential
of DCFS aqueous solution.

2.4. Enrichment Experiments

DCFS standard aqueous solution of 2.0 mg L−1 was prepared in the lab, and the corresponding
predetermined concentration (0.1, 1.0, 1.5, 2.0 mg L−1) was accurately prepared by diluting standard
aqueous solution with ultrapure water. Standard TAPAM–PDA-Fe3O4 suspension of 10 mg mL−1

was prepared by adding 0.1 g TAPAM–PDA-Fe3O4 into 10 mL deionized water and then 0.5, 1.0,
1.5, 2.0, 2.5 and 3.0 mL of that were separately added into 250 mL DCFS solution of predetermined
concentration. A program-controlled ZR4-6 jar test apparatus (Shenzhen Zhongrun Water Industry
Technology and Development Co. Ltd, Shenzhen, China) was used to carry out enrichment experiment
at ambient temperature and the mixture was stirred vigorously (300 rpm) for 1 min, then was stirred
moderately (160 rpm) for 4 min, and finally stirred slowly (40 rpm) for 5 min. The rapid separation
of magnetic flocculant from aqueous environment was achieved by settling a circular magnet under
the beaker and the sample was extracted from 1 cm under the aqueous solution surface to detect the
remained concentration by HPLC-UV (WATERS, Milford, MA, USA) combined with the COSMOSIL
3C18-MS-II column (Nacalai Tesque, Inc., Kyoto, Japan) at 276-nm detection wavelength. A mixture
of acetic acid solution (3.0%)/acetonitrile (80:20) was used as the mobile phase, the flow rate and the
largest injection volume of which were 1.0 mL min−1 and 50 µL, respectively. All results of DCFS
remained concentration were averaged with three averaged measurements and the scale bar was
obtained by calculating the standard deviation of the three values. The removal efficiency is described
by Equation (1):

Removal efficiency =

(
1 −

Cf

Ci

)
× 100% (1)

where Ci and Cf are for the initial and the final concentration of DCFS, respectively.
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2.5. Degradation Experiments

The separated magnetic flocculant prepared in Section 2.4 was then added into the 25 mL quartz
conical flask with 10 mL dilute sulfuric acid solution (0.1 M) to generate Fe2+ by grafted Fe3O4

nanoparticles, and the pH was adjusted to 4.5. The concentration of Fe2+ in the sample after 60 min
settlement was measured by the phenanthroline-colorimetric method. Then, a predetermined amount
of H2O2 (n (Fe2+):n (H2O2) = 1:4) was injected into the solution. Meanwhile, the DCFS solution treated
directly with Fe3O4/H2O2/sulfuric acid was used as control. The concentration of Fe2+, H2O2 and
sulfuric acid in the control group was equal to that in the experimental group. The samples were both
irradiated under UV environment at 365 nm wavelength by a GY-500 high-pressure mercury lamp for
60 min. The remaining amount of DCFS before and after irradiation was also detected by HPLC-UV
(WATERS, Milford, MA, USA) and the degradation efficiency was calculated by Equation (1). The
degradation products of DCFS were identified by ultraperformance liquid chromatography coupled
with Vion ion mobility separation quadrupole time-of-flight tandem mass spectrometry (UPLC-Vion
IMS Q-TOF-MS, ACQUITY I class, Waters, Milford, MA, USA).

2.6. Stability and Regeneration of TAPAM-PDA-Fe3O4

Stability and regeneration experiments were carried out to investigate the potential of
TAPAM-PDA-Fe3O4 reutilization. After enrichment and degradation of sections of DCFS, the magnetic
flocculant was extracted by an external magnetic field and revised by ethanol for three times, and it
was used to repeat experiments in Sections 2.4 and 2.5, and processed for five cycles. The removal
and degradation efficiency of DCFS was analyzed by the method mentioned above. Thereafter, the
FT-IR spectra of used TAPAM-PDA-Fe3O4 were obtained and virgin TAPAM-PDA-Fe3O4 was used as
control. Meanwhile, the Fe2+ concentration of the solution settled for 60 min of every cycle containing
sulfuric acid/TAPAM-PDA-Fe3O4 was detected by the method cited in Section 2.5. Further, the original
DCFS solution (equal amount of DCFS) of every cycle, which contained an equal mass of Fe3O4 and
the same concentration of sulfuric acid was used as control.

3. Results and Discussion

3.1. TAPAM-PDA-Fe3O4 Synthesis Optimization

The least square method shown in Supplementary Table S1 was used to measure the intrinsic
viscosity regression model in consideration of the six factors. The regression model variance analysis
and regression equation were presented in Supplementary Table S2 and Supplementary Equation (S2),
respectively. As shown in Supplementary Table S2, the p-value was no more than 0.0001, suggesting
statistical significance. Furthermore, X1, X3, X6, X12, X32, and X62 were significant model terms.
The interaction effects of X1, X3 and X1, X6 on the intrinsic viscosity of TAPAM-PDA-Fe3O4 were
depicted in Figure 2. The intrinsic viscosity TAPAM-PDA-Fe3O4 increased slightly with the increase
of X3 (0.2–1.4) and then decreased as the X3 further increased (1.4–5.0) as shown in Figure 2A. On
the contrary, the intrinsic viscosity increased significantly with the increase of X1 (5.0–8.5), then
decreased slightly as the X1 further increased (8.5–10.0). It was more significant that pH showed on
intrinsic viscosity of TAPAM-PDA-Fe3O4 than mole ratio of AMPS/AM as depicted in Figure 2A. The
intrinsic viscosity of TAPAM-PDA-Fe3O4 strengthened sharply with the increase of X6 (30–75 min)
and then decreased significantly as the X6 further increased (75–120 min) as presented in Figure 2B.
The other factors (X2, X4, X5) had no significant effect on the intrinsic viscosity of TAPAM-PDA-Fe3O4

indicated from Supplementary Table S2. Furthermore, the simulated maximum value of by RSM was
1721.5 mL g−1 (X1 = 8.6, X2 = 0.50, X3 = 1.27 X4 = 1.48, X5 = 3.29, and X6 = 86.0 min). Moreover, six
parallel TAPAM-PDA-Fe3O4 synthesis processes were carried out according to the theoretical optimal
conditions. The actual intrinsic viscosity mean value was 1710.7 mL g−1, which was close to the
simulated value, indicating the appositeness of the theoretical optimal condition.
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3.2. Characterization of Magnetic Flocculant

3.2.1. FT-IR and XPS Spectral Analysis

Figure 3A illustrates the FT-IR spectra of TAPAM-PDA-Fe3O4, TAPAM-Fe3O4, and APAM-Fe3O4,
respectively. As for TAPAM-PDA-Fe3O4, the characteristic peaks at 3336 cm−1 and 3187 cm−1 belong
to the phenolic O–H and N–H stretching vibration, the peak at 1650 cm−1 was attributed to the
aromatic ring stretching vibration and N–H bending vibration, the peak at 1545 cm−1 inclined the
N–H shearing vibration, the peak at 1411 cm−1 was caused by phenolic C–O–H bending vibration,
and the peak at 1117 cm−1 was due to C–O vibration, suggesting that PDA was grafted onto TAPAM
successfully [24,25]. Furthermore, the peak at 1604 cm−1 was due to the C=O stretching vibration
from AM and AMPS. Meanwhile the –SO3H– stretching bands from AMPS was found at 1088 and
1039 cm−1 [26,27]. As for APAM-Fe3O4 and TAPAM-Fe3O4, it was found that the C=O peak area at
1643 cm−1 in TAPAM-Fe3O4 was larger than that at 1636 cm−1 in APAM-Fe3O4. Furthermore, the
wide scan XPS spectra of the TAPAM-PDA-Fe3O4, TAPAM-Fe3O4 and APAM-Fe3O4 was depicted
in Figure 3B for analyzing the Fe3O4 nanoparticles distribution on the flocculants surface. The
photoelectron lines at binding energies of 709.2 eV corresponding to Fe2p were both found in curves
of TAPAM-Fe3O4 and TAPAM-PDA-Fe3O4, but they didn’t exist in the curve of APAM-Fe3O4 (see
dotted circles). As a result, PDAC used as the cationic template made the negative groups of AMPS
more concentrated in the polymer chain and TAPAM grafted by PDA had abandon catechol groups,
which may both contribute to make more Fe3O4 nanoparticles distribute on the flocculant surface and
enhance the flocculant magnetic properties. Meanwhile, the binding energy of 166.3 eV related to S2P

was identified in the XPS spectra of APAM-Fe3O4 and TAPAM-Fe3O4, while that wasn’t recognized
in TAPAM-PDA-Fe3O4 (see dotted circles). It was suggested that –SO3H– groups weren’t exposed
on the surface when PDA grafted onto the TAPAM, which may lead to a multilayer heterogeneous
enrichment process. Furthermore, compared with the C1s spectra of TAPAM-Fe3O4 and APAM-Fe3O4,
the C1s spectra of TAPAM-PDA-Fe3O4 was deconvoluted into five components corresponding to C=C
(283.7 eV), C–C (284.1 eV), C–N (286.0 eV), C–O (287.2 eV) and C=O (288.2 eV), which was depicted in
Figure S1 [28,29]. It was further confirmed that abundant aromastic rings with hydroxyl groups were
grafted on TAPAM.
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3.2.2. TGA-DSC Analysis

Figure 4A–C show the Thermo Gravimetric and differential scanning calorimetry analysis
(TGA-DSC) curves of APAM-Fe3O4, TAPAM-Fe3O4, and TAPAM-PDA-Fe3O4, respectively. It was
observed in the TGA curves that four main stages for A and B and three main stages for C exist. The
initial stages of the three TGA curves ranged 103.0–209.7 ◦C, 119.0–197.0 ◦C, and 164.5–229.6 ◦C with
partial weight loss of about 5.77% for A, 3.29% for B, and 1.32% for C, owing to the confined water
molecules bonded by hydrophilic groups in the molecular chains in the synthesis process, such as
–SO3H– [30]. Thereafter, 10.3% weight loss (209.7–296.4 ◦C) for A and 14.6% weight loss (197.0–305.2 ◦C)
for B were observed in the second stage. These results correspond to the thermal decomposition of
–CO–NH– groups from A and B. The weight loss of 5.87% in the interval of 229.6–313.2 ◦C for C was
corresponding to the thermal decomposition of aromatic rings and –CO–NH– groups [31,32]. In the
third stage, 13.5% weight loss for A (296.4–357.1 ◦C), 14.0% weight loss for B (305.2–348.3 ◦C), and
7.54% weight loss for C (313.2–396.6 ◦C) were ascribed to the thermal decomposition of the –SO3H–
groups [33]. As for the fourth stage of A and B, weight loss of about 26.4% and 35.7% correspond to the
thermal decomposition of the copolymer backbone [34]. It was decomposed completely above 473.9 ◦C
for A, above 485.4 ◦C for B, and above 608.9 ◦C for C. The corresponding residual weight percentage of
44.9%, 31.9% and 78.6% was corresponding to the residual Fe3O4 and carbon black, respectively [35].
The DSC curves of A and B both showed apparent four peaks of heat absorption appearing at 195.2 ◦C,
257.9 ◦C, 329.0 ◦C, 351.3 ◦C and at 159.9 ◦C, 302.8 ◦C, 320.5 ◦C, 366.7 ◦C, respectively. It was the
derivative values of the corresponding TGA curves inflection points. Similarly, three heat absorption
peaks appearing at 177.3, 284.8 and 366.3 ◦C for C were corresponding to the three inflection points of the
TGA curve. These results demonstrated that APAM-Fe3O4, TAPAM-Fe3O4 and TAPAM-PDA-Fe3O4

had thermal stability between 27.9–209.7 ◦C, 28.1–197.0 ◦C and 29.4–229.6 ◦C, respectively.
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3.2.3. Morphological Analysis

A vacuum freeze dryer was used to treat the samples to preserve the surface morphology of
samples. The micro-structures of APAM-Fe3O4, TAPAM-Fe3O4 and TAPAM-PDA-Fe3O4 at a scale of
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10 µm/500 nm were shown in Figure 5. The corresponding fractal dimensions of 1.2786, 1.3154, and
1.3639 are also shown in Figure 5, respectively. Interestingly, the specific surface area of APAM-Fe3O4,
TAPAM-Fe3O4 and TAPAM-PDA-Fe3O4 increased gradually while the average particle size was
reduced in sequence. The surfaces of the three magnetic flocculants were not smooth, which was
caused by the self-assembly of polymer chains to form particles, and the particles are intertwined
to form a porous network structure. It is favorable that enhancing the flocculation and bridging
effect in the flocculation process. Furthermore, the morphology of APAM-Fe3O4, TAPAM-Fe3O4, and
TAPAM-PDA-Fe3O4 changed gradually from fluffy to compact. This was caused by two reasons, on
one hand, the template polymerization made the negative charge distribution more concentrated on
the polymer chain so that the macromolecule backbone was more extended, which was favorable for
the magnetic flocculant to form a lattice-like structure. On the other hand, the catechol groups from
grafted PDA were strongly negative charged in the aqueous environment so that the internal charge
repulsion of the molecular chain was increased, and the abundant aromatic rings from grafted PDA
increased the inner-chain steric hindrance, which made the magnetic flocculant more spread in the
aqueous environment. The lattice-like structure was further enhanced.
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TAPAM-PDA-Fe3O4 (C1,C2,C3). (The dots in A3, B3 and C3 were corresponding to the linear correlation
of the logarithm of projected area A and the characteristic length L).

3.2.4. XRD Patterns

It was shown in Figure 6A that the XRD pattern curves of Fe3O4, TAPAM-PDA-Fe3O4,
TAPAM-Fe3O4 and APAM-Fe3O4, respectively. The characteristic diffraction peaks of Fe3O4 in
TAPAM-PDA-Fe3O4 and TAPAM-Fe3O4 were confirmed, indicating that the Fe3O4 crystal phase was
unchanged after the polymerization section. However, there were not any characteristic peaks of
Fe3O4 observed in APAM-Fe3O4, suggesting that the Fe3O4 nanoparticles were enmeshed into the
polymer chain, which corresponds to the XPS analysis results. In addition, a broad peak at 22.7 ◦C,
was observed, indicating the wrinkled surface structure of organic fraction.
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3.2.5. Magnetic Properties

As shown in Figure 6B, the saturation magnetization value was measured to be 25.3 emu g−1 for
TAPAM-PDA-Fe3O4, 5.7 emu g−1 for TAPAM-Fe3O4, 3.8 emu g−1 for APAM-Fe3O4, and 85.1 emu g-1

for Fe3O4. The saturation magnetization value of TAPAM-PDA-Fe3O4 was relatively much higher
than that of TAPAM-Fe3O4 or APAM-Fe3O4. It suggested that Fe3O4 nanoparticles chelated with
grafted PDA was contributed to enhance the magnetization of flocculant. Although the saturation
magnetization of TAPAM-PDA-Fe3O4 decreased compared with Fe3O4 particles, it could significantly
facilitate the separation of flocs by an external magnetic field.

3.3. Enrichment Properties

3.3.1. DCFS Initial Concentration Effect

The enrichment capability of TAPAM-PDA-Fe3O4 for removing various concentration DCFS was
investigated and APAM-Fe3O4 and TAPAM-Fe3O4 were used as control. For all three kinds of magnetic
flocculants, the removal efficiency was higher as the DCFS initial concentration was 0.1 mg L−1 instead
of 1.0, 1.5 and 2.0 mg L−1, as shown in Figure 7A–C. It was because that steric hindrance between
DCFS and polymer chain was enhanced when DCFS initial concentration exceeded a certain value,
which negatively affected the removal efficiency. It was also found that TAPAM-PDA-Fe3O4 had better
DCFS removal efficiency than APAM-Fe3O4 or TAPAM-Fe3O4. The maximum removal efficiency of
APAM-Fe3O4, TAPAM-Fe3O4 and TAPAM-PDA-Fe3O4 was 49.1%, 66.2%, and 99.1% as the DCFS
concentration was 0.1 mg L−1, respectively. This phenomenon could be explained as follows. On
one hand, the anion block structure made the negative charge more concentrated and strengthened
the charge neutralization effect. On the other hand, the TAPAM modified by PDA had abandoned
aromatic rings and absorbed DCFS through π–π stacking effect, which further improved the DCFS
removal efficiency. As a result, the 0.1 mg L−1 DCFS was used in the following sections.
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Figure 7. Effect of the DCFS initial concentration on enrichment properties ((A) for APAM-Fe3O4,
(B) for TAPAM-Fe3O4, (C) for TAPAM-PDA-Fe3O4).

3.3.2. DCFS Initial pH Effect

The enrichment performance of APAM-Fe3O4, TAPAM-Fe3O4, and TAPAM-PDA-Fe3O4 was
investigated under the conditions of various DCFS initial pH values. As seen in Figure 8A, in the
range of pH 1.0–3.0, the DCFS removal efficiency was increased when the sample was treated by
APAM-Fe3O4. In the interval of pH 3.0–8.0, the DCFS removal efficiency was maintained between
68.2%–72.4%. However, it decreased dramatically to 3.0% when the initial pH further increased
to 12.0. As for TAPAM-Fe3O4 and TAPAM-PDA-Fe3O4, the removal efficiency curves of DCFS
had the similar trend. In the range of pH 4.0–9.0, the enrichment performance of TAPAM-Fe3O4

and TAPAM-PDA-Fe3O4 was both better than that of APAM-Fe3O4. Furthermore, the enrichment
performance of TAPAM-PDA-Fe3O4 was much better in the interval of pH 5.0–9.0, and DCFS removal
efficiency was above 90.0% and the maximum value was above 95.0%. As a result, pH 8.0 was used in
DCFS enrichment kinetics and isotherms analysis.
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3.3.3. Enrichment Mechanism Analysis

The enrichment mechanism of TAPAM-PDA-Fe3O4 was further investigated. It was illustrated
in Figure 8B that DCFS zeta potential obtained both before and after TAPAM-PDA-Fe3O4 treatment
at different pH value. The DCFS isoelectric point was located at pH 4.2 before TAPAM-PDA-Fe3O4

treatment. However, the DCFS isoelectric point was around pH 7.8 after TAPAM-PDA-Fe3O4 addition,
which was ascribed to the charge neutralization between –NH+ groups in DCFS and –SO3H– groups
in TAPAM-PDA-Fe3O4. Furthermore, high DCFS maximum removal efficiency at pH 9.0 known from
Figure 8A indicated the involvement of π–π stacking between DCFS and TAPAM-PDA-Fe3O4. At
pH 10.0, the maximum removal efficiency reached 44.3%, which indicates that under relatively strong
alkaline conditions, the electrostatic repulsion between the negatively charged groups also leads to a
decrease in the π–π stacking efficiency, and the enmeshment/sweeping effect played a considerable
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role. In a nutshell, the whole process is depicted in Figure 9. First, DCFS was absorbed by abundant
aromatic rings in TAPAM-PDA-Fe3O4 through π–π stacking in the interval of 7.0 < pH < 9.0. Second,
it was charge neutralization between DCFS and –SO3H– groups in TAPAM-PDA-Fe3O4 that worked in
the range of 1.0 < pH < 4.2. At last, large flocs were formed by the aggregation of small flocs through
the external magnetic field.
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dotted circles.)

3.3.4. DCFS Enrichment Kinetics Analysis

The DCFS enrichment kinetics treated by TAPAM-PDA-Fe3O4 were investigated by pseudo-first
order (PFO), pseudo-second order (PSO), and intraparticle diffusion models, which were expressed as
Supplementary Equation (S3)–(S5). All the obtained data were simulated by the three kinetic models.
As a result, the simulated parameters were depicted in Table 2. Compared with other two models, the
PSO model correlation coefficients were much closer to 1.0, meanwhile the q value calculated by PSO
model is much closer to the actual value. This confirmed that DCFS removal rate was dependent on the
quantity of DCFS flocculated onto the surface of TAPAM-PDA-Fe3O4 [36,37]. The PSO model simulated
curves of DCFS enrichment kinetics by TAPAM-PDA-Fe3O4 are presented in Figure 10A. The DCFS
removal rate increased sharply in the first 30 min, but slowed down thereafter. The foremost DCFS rapid
enrichment was due to the accessibility of aromatic rings and –SO3H– groups in TAPAM-PDA-Fe3O4.
The succedent DCFS slow enrichment was due to the saturation of the flocculation sites.
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Table 2. DCFS enrichment kinetic parameters at 318.15 K (initial pH 8.0).

Pseudo First-Order Kinetic Model Pseudo Second-Order Kinetic
Model

Intraparticle Diffusion
Kinetic Model

Initial
Concentration

(mg L−1)

qmax,exp
(mg g−1)

qe
(mg g−1)

k1 × 102

(g mg−1 min−1) R2 qe
(mg g−1)

k2 × 104

(g mg−1 min−1) R2 C
(mg g−1)

kp R2

600 561.7 197.5 0.91 0.9799 555.5 1.929 0.9991 351.9 11.57 0.8949
800 672.5 272.5 0.98 0.9887 666.6 1.364 0.9989 382.8 16.22 0.9021
1000 836.1 721.8 1.82 0.9426 909.1 0.5874 0.9986 317.4 30.04 0.8052

Where qe and qmax,exp are the enrichment capacity of the magnetic flocculant at equilibrium and the actual
maximum enrichment capacity of the magnetic flocculant, respectively. k1 and k2 are the rate constant of
first-order and second-order flocculation, respectively. kp is the intraparticle diffusion rate constant and R2 is the
correlation coefficient.
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3.3.5. DCFS Enrichment Isotherms Analysis

The obtained experimental data were simulated by Dubinin-Radushkevich, Freundlich, and
Langmuir isotherm models, which were expressed as Supplementary Equation (S6)–(S8). The final
fitted parameters are all depicted in Table 3. It was conformed that Freundlich model correlation
coefficients were much close to 1.0, suggesting that a multilayer heterogeneous flocculation of DCFS
occurred onto the TAPAM-PDA-Fe3O4 [38,39]. In addition, the Freundlich isotherm simulated curves
of DCFS at different temperatures were depicted in Figure 10B. The DCFS enrichment efficiency
at 318.15 K was better than that at 308.15 K or 328.15 K. This indicated that the Brownian motion
principle between DCFS and TAPAM-PDA-Fe3O4 had a great influence on the enrichment process. To
some extent, it increased the collision possibility between DCFS and TAPAM-PDA-Fe3O4, which was
positively contributed to DCFS enrichment. While beyond a certain limit, confined DCFS molecules by
TAPAM-PDA-Fe3O4 tended to escape, which weakened DCFS enrichment process.

Table 3. Isotherm parameters for DCFS enrichment treated by TAPAM-PDA-Fe3O4 at pH 8.0.

Langmuir Isotherm Model Freundlich
Isotherm Model D-R Isotherm Model

T (K) kL
(L mg−1)

qmax
(mg g−1)

RL
a R2 kF n R2 qd

(mg g−1)
kd × 106

(mol2 kJ−2)
R2

298.15 0.02 144.9 0.048 0.965 7.15 1.81 0.994 124.7 1.74 0.748
308.15 0.044 366.3 0.022 0.946 50.4 2.51 0.997 361.6 1.22 0.862
318.15 0.025 266 0.038 0.935 20.5 1.98 0.998 261.8 1.9 0.806

kL is for the Langmuir isotherm constant, kF is corresponding to the Freundlich isotherm constant, kd is the constant
related to the mean free energy of flocculation and RL

a is the separation factor related to Langmuir model.
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3.4. Degradation Performance

As shown in Figure 11A, the total amount of DCFS in the two samples separately was equal (25 µg)
and when the DCFS simulated wastewater (0.1 mg L−1) was directly treated with UV/H2O2/Fe3O4, the
degradation efficiency was low because of the low DCFS concentration. Meanwhile, the maximum
degradation efficiency was 31.1% and the residual amount of DCFS was 17.2 µg after 30 min UV
irradiation. However, the maximum degradation efficiency reached 98.1% and the DCFS residual
amount was 0.48 µg when it was under UV/H2O2/TAPAM-PDA-Fe3O4 enrichment-degradation (E-D)
treatment. This suggested that DCFS degradation could be realized efficiently when the enriched DCFS
was re-dissolved into the dilute sulfuric acid solution (pH = 4.5) which was 0.04 times the original
wastewater volume. Meanwhile, the degradation products of DCFS were identified by UPLC-Vion
IMS QTOF-MS. Among the products, bis (6-methylheptyl) phthalate and 2, 6-dichloeoaniline were
identified, except diclofenac sodium, which was depicted in Supplementary Figure S2. However, the
degradation pathways of diclofenac sodium need further identification, and will be investigated in
our next study. Moreover, various degradation processes of diclofenac sodium were summarized and
compared in Table 4. It can be seen that the UV/H2O2/TAPAM-PDA-Fe3O4 process is a promising
method to treat low concentration diclofenac sodium solution.

Polymers 2020, 12, 72 15 of 20 

 

3.4. Degradation Performance 

As shown in Figure 11A, the total amount of DCFS in the two samples separately was equal (25 

μg) and when the DCFS simulated wastewater (0.1 mg L−1) was directly treated with UV/H2O2/Fe3O4, 

the degradation efficiency was low because of the low DCFS concentration. Meanwhile, the 

maximum degradation efficiency was 31.1% and the residual amount of DCFS was 17.2 μg after 30 

min UV irradiation. However, the maximum degradation efficiency reached 98.1% and the DCFS 

residual amount was 0.48 μg when it was under UV/H2O2/TAPAM-PDA-Fe3O4 enrichment-

degradation (E-D) treatment. This suggested that DCFS degradation could be realized efficiently 

when the enriched DCFS was re-dissolved into the dilute sulfuric acid solution (pH = 4.5) which was 

0.04 times the original wastewater volume. Meanwhile, the degradation products of DCFS were 

identified by UPLC-Vion IMS QTOF-MS. Among the products, bis (6-methylheptyl) phthalate and 2, 

6-dichloeoaniline were identified, except diclofenac sodium, which was depicted in Supplementary 

Figure S2. However, the degradation pathways of diclofenac sodium need further identification, and 

will be investigated in our next study. Moreover, various degradation processes of diclofenac sodium 

were summarized and compared in Table 4. It can be seen that the UV/H2O2/TAPAM-PDA-Fe3O4 process 

is a promising method to treat low concentration diclofenac sodium solution. 

 

Figure 11. DCFS residual weight in the initial cycle (A), DCFS removal and degradation efficiency (B), 

FT-IR spectra of virgin and used TAPAM-PDA-Fe3O4 (C) and the concentration of Fe2+ in solution (D). 

 

Figure 11. DCFS residual weight in the initial cycle (A), DCFS removal and degradation efficiency (B),
FT-IR spectra of virgin and used TAPAM-PDA-Fe3O4 (C) and the concentration of Fe2+ in solution (D).



Polymers 2020, 12, 72 14 of 17

Table 4. Comparison of the diclofenac sodium degradation by different processes.

Processes Water Matrix Initial Concentration
(mg L−1)

Degradation
Conditions

Degradation
Efficiency (%) References

Photocatalysis Aqueous solution 10 S-TiO2: 0.2–0.8 g L−1

pH: 6.0–11.0
93.0 [40]

Photocatalysis Aqueous solution 5 TiO2: 4 g L−1 95.0 [41]

Photoelectrocatalysis Aqueous solution 10 Persulate: 1–10 mM
pH: 5.6–10.0 86.3 [42]

Photoelectrocatalysis Aqueous solution 5 Pd/TNTs 67.7 [43]

Sonolysis Aqueous solution 50–100 Ultrasonic frequency:
216–850 kHz >90.0 [44]

UV/H2O2/TAPAM-PDA-Fe3O4 Aqueous solution 0.1
TAPAM-PDA-Fe3O4:

120 mg L−1

pH: 4.5
>90.0 This study

3.5. Stability and Regeneration of TAPAM-PDA-Fe3O4

In consideration of the stability of TAPAM-PDA-Fe3O4, it was reused for five cycles to enrich
and degrade DCFS, and the FT-IR spectra of the revised magnetic flocculant are shown in Figure 11C.
Compared with the initial TAPAM-PDA-Fe3O4, the characteristic peaks could be all found at 3182,
1652, and 1604 cm−1 in the revised magnetic flocculant. While the intensity of the characteristic peak at
1411 cm−1, which is ascribed to the phenolic C–O–H bending vibration, was weaker than the virgin
TAPAM-PDA-Fe3O4 curve. This was due to the irreversible self-assembly of TAPAM-PDA-Fe3O4 and
parts of the catechol groups were enmeshed inside the magnetic flocculant. However, the functional
groups of TAPAM-PDA-Fe3O4 remained relatively stable. Meanwhile, the DCFS removal efficiency
and DCFS degradation efficiency both remained in the relatively high value in the initial three circles,
which were separately above 90.0% and 87.0%, as shown in Figure 11B. However, the removal and
degradation efficiency in the fourth and fifth cycles degraded sharply, and the corresponding minimum
values were 65.1% and 59.5%, respectively. The phenomena could be explained as follows. The
decrease of DCFS removal efficiency was owing to the irreversible enmeshment of TAPAM-PDA-Fe3O4,
which led to the decreasing amount of the active function groups on the surface of the magnetic
flocculant. Furthermore, the decrease of DCFS degradation efficiency was caused by two aspects.
On one hand, the decrease of DCFS removal efficiency would negatively affect the concentration of
the concentrated DCFS solution. On the other hand, the amount of Fe3O4 nanoparticles grafted on
the surface of TAPAM-PDA-Fe3O4 decreased through reacting with sulfuric acid, which led to the
sequence decrease of Fe2+ concentration of DCFS solution in the fourth and fifth degradation cycles, as
shown in Figure 11D. However, there was little effect on the initial three removal and degradation
efficiency cycles.

4. Conclusions

In this study, TAPAM-PDA-Fe3O4 was successfully prepared to achieve a high-level enrichment
of DCFS, up to 99.1%. Furthermore, the rapid separation of flocs from aqueous environment was
realized by external magnetic field and higher maximum removal efficiency could be achieved
with TAPAM-PDA-Fe3O4 (99.1%) instead of APAM-Fe3O4 (49.0%) or TAPAM-Fe3O4 (66.2%). In
neutral/alkaline condition, it was π–π stacking that had a significant impact on flocculation performance.
However, in acidic conditions, charge neutralization played a leading role. In the degradation section,
it was found that the degradation efficiency of DCFS by UV/H2O2/TAPAM-PDA-Fe3O4 E–D treatment
could reach 98.2%, compared with which was 31.1% of UV/H2O2/Fe3O4 direct treatment. Meanwhile,
the TAPAM-PDA-Fe3O4 could be reused effectively for three circles to realize effective enrichment and
degradation of DCFS. In summary, we have designed an integrated DCFS removal system, which can
reach above 90.0% removal efficiency and above 87.5% degradation efficiency in the first three cycles.
Looking forward, it is possible for the UV/H2O2/TAPAM-PDA-Fe3O4 system to treat wastewater
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containing DCFS effectively in relatively loose external conditions, thus holding great promise for
further use in actual sewage treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/72/s1.
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(A), APAM-Fe3O4 (B) and TAPAM-Fe3O4 (C); Figure S2: The products ion spectra by UPLC-Vion IMS QTOF-MS.
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