
Citation: Umar, A.K.; Luckanagul,

J.A.; Zothantluanga, J.H.; Sriwidodo,

S. Complexed Polymer Film-Forming

Spray: An Optimal Delivery System

for Secretome of Mesenchymal Stem

Cell as Diabetic Wound Dressing?

Pharmaceuticals 2022, 15, 867.

https://doi.org/10.3390/ph15070867

Academic Editors: Ramya

Lakshmi Rajendran and

Prakash Gangadaran

Received: 13 June 2022

Accepted: 8 July 2022

Published: 14 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Opinion

Complexed Polymer Film-Forming Spray: An Optimal Delivery
System for Secretome of Mesenchymal Stem Cell as Diabetic
Wound Dressing?
Abd. Kakhar Umar 1,2,*, Jittima Amie Luckanagul 2 , James H. Zothantluanga 3 and Sriwidodo Sriwidodo 1,*

1 Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran,
Sumedang 45363, Indonesia

2 Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences,
Chulalongkorn University, Bangkok 10330, Thailand; jittima.luck@gmail.com

3 Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University,
Dibrugarh 786004, Assam, India; jameshztta@gmail.com

* Correspondence: abdulkaharumar@gmail.com (A.K.U.); sriwidodo@unpad.ac.id (S.S.)

Abstract: Diabetes-related wounds have physiological factors that make healing more complicated.
High sugar levels can increase microbial infection risk while limiting nutrition and oxygen transfer
to the wound area. The secretome of mesenchymal stem cells has been widely known for its
efficacy in regenerative therapy. However, applying the secretome directly to the wound can reduce
its effectiveness. In this review, we examined the literature on synthesizing the combinations of
carboxymethyl chitosan, hyaluronic acid, and collagen tripeptides, as well as the possibility of
physicochemical properties enhancement of the hydrogel matrix, which could potentially be used as
an optimal delivery system of stem cell’s secretome for diabetic wound healing.

Keywords: stem cell’s secretome; regenerative therapy; diabetic wound healing; carboxymethyl
chitosan; hyaluronic acid; collagen tripeptides; film-forming spray

1. Introduction

Diabetes mellitus is a global illness with substantial morbidity and mortality. Accord-
ing to WHO data, the number of diabetics is expected to reach 693 million by 2025 and rise
further. Diabetic wounds have the greatest morbidity rate of any diabetes complication.
Diabetic lesions may generally be cured (60–80% of the cases), but 10–15% remain active,
and 5–24%require amputation within 6–18 months. Neuropathic wounds often heal in
more than 20 weeks, whereas neuroischaemic injuries take longer and frequently end in
amputation [1]. This is supposed to be addressed by regenerative treatment and wound
dressings.

Treatment using mesenchymal stem cells (MSCs) for regenerative therapy, implanta-
tion, and protein supply for wound healing is becoming more widespread [2–7]. However,
there are numerous drawbacks to using MSCs. MSCs cannot be grown and stored for
extended periods [8,9]. Immune system resistance, tumor or cancer growth, atherogenesis,
and arrhythmogenesis can occur [10,11]. Recent research also implies that the therapeutic
impact is caused by the release of paracrine agents such as cytokines, growth factors, and
exosomes rather than stem cell transdifferentiation and engraftment. These biomolecules
are known as the secretome, which plays a critical role in communication between cells.
Therapy using secretome is better than cell-based therapy [12,13]. Secretomes can restore
diabetic and corneal injuries without leaving scars [14–16]. It can also be produced in
larger numbers and preserved for a longer period of time than stem cells [16,17]. As such,
there has been developing intrigue within the use of secretome within the clinical field,
mainly because it has a few focal points over the conventional utilize of stem cells in
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regenerative pharmaceutical treatment, counting expanded ease of conveyance, decreased
concerns for oncogenic potential related with stem cell utilize, need of immunogenic re-
sponse empowering allogeneic or off-the-shelf utilization, and vast potential for in vitro
modulation [6,12].

Direct administration of the secretome may reduce its effectiveness. Since the secre-
tome depletes quickly owing to enzymatic destruction or migrates to other organs, it is
frequently administered in high quantities or repeated doses [18]. Large doses can result in
dose-dependent cytotoxicity [19]. Within 30 min of injection, the secretome can extend to
other tissues/organs such as the lung, liver, kidney, spleen, muscle, heart, and possibly the
brain [20,21]. As a result, to optimize the secretome’s retention and potency in the target
tissue, a controlled and localized delivery system is required. Several natural polymers
are reliable as multi-biomolecular delivery systems with bioadhesive and biocompatible
properties such as chitosan, collagen, hyaluronic acid (HA), and their combinations [22,23].
The combination of chitosan, collagen, and HA hydrogel can form a biomimetic environ-
ment that supports accelerated cell proliferation, differentiation, and colonization while
stimulating wound angiogenesis [24,25]. Chitosan is a natural antioxidant, antimicrobial,
and antitumor [26–28], while collagen and HA are produced naturally by the body and
play an essential role in wound healing [29,30]. These hydrogels also have beneficial prop-
erties in localized delivery, namely in situ film or viscoelastic properties, so they can be
administered directly by injection or spray into the target tissue [25,31].

Drug delivery using the film-forming spray (FFS) has several benefits over traditional
topical treatments, including homogenous drug distribution and dose, higher bioavail-
ability, decreased risk of irritation, sustained drug release, and faster wound healing via
moisture control [31]. Cross infection from the finger to the wound area commonly occurs
in conventional preparations and can be prevented using FFS. Therefore, in this opinion,
we discussed a potential controlled and localized secretome delivery system using chitosan-
HA-collagen complex hydrogel in the film-forming spray for chronic diabetic wounds. The
framework of thinking can be seen in Figure 1.

Figure 1. The framework of thinking.

2. Diabetic Ulcer

Diabetic wounds are one of the complications of diabetes with the highest morbidity
rate. Generally (60–80%), diabetic wounds can be healed, whereas 10–15% will remain



Pharmaceuticals 2022, 15, 867 3 of 11

active, and 5–24% of them end up with amputation in 6–18 months. Neuropathic wounds
generally heal in more than 20 weeks, whereas neuroischaemic injuries take longer and
frequently result in amputation [1].

Risk factors for diabetic ulcers are diabetic neuropathy, peripheral arterial disease,
and foot trauma. Neuropathy is a common factor in nearly 90% of diabetic wounds. Dia-
betes causes nerve damage to the motor, sensory, and autonomic fibers. Muscle weakness,
atrophy, and paresis are all symptoms of motor neuropathy. Sensory neuropathy is char-
acterized by pressure loss, pain, and heat sensitivity. This loss of sensitivity can result in
repeated injury without realizing it. Autonomic dysfunction resulted in vasodilation and
lessened sweating [32], resulting in skin integrity loss and an environment susceptible to
microbial infection [33].

Meanwhile, the peripheral arterial disease causes nutrients and oxygen to the wound
area to decrease so that the basic needs of cells for proliferation and differentiation and the
availability of the immune system as protection are not met. For these reasons, treatment of
diabetic wounds should target one of the following: (1) Keeps skin integrity intact through
moisture control in the wound area [34]; (2) Preventing increased severity by microbial
infection [35]; (3) Meeting the needs of nutrients, paracrine factor, and oxygen to the wound
area through repair of the arterial system, the formation of new blood vessels, or direct
supply to the wound area [36,37]. Regenerative therapy and the use of wound dressings
are said to address all three of these problems.

3. Application of Mesenchymal Stem Cells and Secretomes in Diabetic Wound
Healing and Their Limitations

Stem cell therapy has recently emerged as an innovative intervention strategy for
treating diabetic wounds. The types of stem cells that are most often used are adult stem
cells such as bone marrow-derived mesenchymal stem cells (BM-MSC), adipose-derived
stem cells (ADSC), human umbilical cord-derived mesenchymal stem cells (hUC-MSC),
and peripherals blood-derived mesenchymal stem cells (PB-MSC) [36]. Cytokine and
chemokine receptors’ expression supports the migration and integration of MSCs on the
cell surface. The chemokine receptor-ligand interaction (CXC 4, CC type 2 cytokine receptor,
CCR7, integrin α4, and integrin β1 comes into contact with vascular cell adhesion protein 1
on endothelial cells) is functionally involved in MSCs homing [37–39]. MSCs secrete matrix
metalloproteinase 2 (MMP-2) to transmigrate across the single layer of the endothelium to
accelerate the laying process [40–42]. MSCs have been shown to contribute to increased
vascular density and restoration of sensory function by secreting keratinocyte growth
factor (KGF), VEGF, and platelet-derived growth factor (PDGF) [41,43]. More importantly,
MSCs have also shown significant therapeutic potential for reversing diabetic femoral
nerve degeneration (FN) by increasing the capillaries in the FN-supplied gastrocnemius,
expression of nerve growth factor (NGF), and restoring FN slow conduction in a diabetic-
induced rat wound model [44]. However, MSCs applications have several limitations that
need to be considered.

MSCs are not stored and do not remain in the wound tissue for a long time. Usually,
it fades away over 24 h since it does not adhere well and migrates to other tissues [45].
The limitations of standardization and optimization criteria are challenges in using MSCs.
There are many variations in the application of MSCs, including the heterogeneity of donor-
based MSCs, isolation and cell culture conditions, cryopreservation methods, dosage,
frequency, injection route, cell administration time point, and follow-up period. In addition,
MSCs have the potential to produce untargeted tissue differentiation, undesired immune
responses, tumorigenicity, and, most importantly, malignant promotion and transforma-
tion [46]. Studies have also demonstrated that the therapeutic effect is caused by the release
of paracrine factors such as growth factors, cytokines, and exosomes rather than MSCs
transdifferentiation and engraftment [12,13,47–52]. This issue drives regenerative research
focused on the use of the secretome.
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The secretome contains a variety of paracrine factors and other biomolecules that
play an essential role in cell communication. The direct supply of paracrine factors will be
handy to meet the material needs in the granulating tissue formation, re-epithelialization,
angiogenesis, and collagen metabolism [46]. Secretome in a conditioned medium has
been shown to increase epidermal growth factor (EGF) and basic fibroblast growth factor
(bFGF) gene expression in the wound area so that it improves fibroblasts behavior [53].
Secretome also increases eNOS-specific mRNA (Nos3) levels and supports the restoration
of the SDF1/CXCR4 axis in diabetic EPCs [54,55], which leads to increased keratinocyte
proliferation [56]. C. D. Gregorio et al. (2020) reported that secretome increased thermal
and mechanical sensitivity, restored intraepidermal nerve fiber density, reduced neuron
and Schwann cell apoptosis, increased angiogenesis, and reduced peripheral nerve inflam-
mation in diabetes-induced wounds [57].

Clinical trials using secretome in treating persistent corneal epithelial defects (PEDs) in
various etiologies reveal promising outcomes. There was a substantial decrease in the mean
PED area after 28 days of therapy compared to baseline (66.4 ± 35.3%, p = 0.001). Five eyes
(41.7%) obtained full wound closure after 28 days of therapy. There were no serious adverse
events associated with the medication [58]. The administration of apoptotic peripheral
blood mononuclear cell secretome (PBMCs) to artificial wounds, on the other hand, did not
affect wound closure but was safe and well-tolerated by human skin (a randomized phase
1 experiment). Two other clinical trials using the same approach failed to demonstrate
secretome’s efficacy on diabetic wound healing [59]. This might be due to the secretome’s
incompatibility with the patient and in vivo instability after administration.

The secretome’s effectiveness depends on the target cell endocytosis and close connec-
tion with the cell surface receptors, which necessitate the secretome’s presence at the target
site for an extended period [60]. Administration of secretome without a delivery system
will not last long in the target tissue, or its effectiveness will decrease due to enzymatic
metabolism or seeping into other tissues [20,21]. Natural polymers can be used as safe, con-
trolled, and localized delivery of biomolecules, given their biodegradable, biocompatible,
and non-immunogenic properties [61].

4. Complexation Possibility of Chitosan-Collagen-Hyaluronic Acid

Chitosan is a natural polymer with antitumor, antioxidant, and antimicrobial effects.
These properties are very useful in inhibiting the growth of microbes in the diabetic wound
area. With the ability to absorb and donate moisture in the wound area, chitosan can
maintain fluid balance in diabetic wounds to form a physiological environment suitable
for wound healing [62]. Apart from its role as a wound dressing, chitosan can be used as a
delivery matrix with a continuous release [63]. Chitosan can form matrix films in situ under
environmental conditions with pH > 6.5 [64]. When the pH increases, chitosan undergoes
deionization and produces a three-dimensional network [65].

Protecting its contents, adhering to mucosal surfaces, and opening tight junctions
between epithelial cells are three unique properties that make chitosan a suitable polymer
for delivering proteins and peptides via different administration routes. Various forms of
derivatives and complexation with other polymers can increase the solubility, biodegrad-
ability, mucoadhesive, and transfection efficiency of chitosan [23]. One of the derivatives of
chitosan is carboxymethyl chitosan which has better solubility in water. Carboxymethyl
chitosan (CC) has better bacteriostatic properties and dressings and is the potential to be
used as biomolecule delivery with a sustainable release [66]. By complexing with other
polymers such as hyaluronic acid (HA), the system successfully delivers genes and increases
their cell internalization through interactions between hyaluronic acid and CD44 receptors.
HA-chitosan nanoparticles have high transfection levels without affecting cell viability [23].
Complexation of carboxymethyl chitosan—hyaluronic acid (CCHA) can be achieved by
forming cross-amide bonds and modified aldehyde groups from HA, forming a porous
structure on the hydrogel. The porous hydrogel has better wound dressing properties
with substantial cellular infiltration and sufficient ECM deposition. Cellular and cytokine
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responses increase in inducing angiogenesis after the administration of CCHA hydrogel.
An adequate blood supply will significantly improve the tissue regeneration process so
that the system is suitable for use as diabetic wound dressings. The in situ film-forming
CCHA hydrogels can be produced via Schiff’s base reaction [25].

To increase the secretome retention time on the cell surface, tripeptide from collagen
can be used in complex chitosan. Collagen tripeptides (CTP) have good biocompatibility
and the ability to support cell proliferation and adhesions [67]. CTP itself is a hydrolyzed
form of collagen, so, with a lower molecular weight, it is more easily absorbed. CTP
comprises three peptides with a Gly-X-Y sequence (e.g., Gly-Pro-Hyp). Carboxymethyl
chitosan—collagen tripeptide (CCCTP) has a significantly better water affinity, moisture
retention, and antioxidant capacity than collagen. The elasticity of the CCCTP film is also
excellent making it suitable for clinical applications. The elastic matrix is said to support
the proliferation and migration of fibroblast cells significantly compared to collagen alone
as a control [68,69]. The potential improved and new properties of the CCHACTP complex
can be seen in Figure 2.

Figure 2. The potential improved and new properties of carboxymethyl chitosan—hyaluronic acid—
collagen tripeptide complex. Note: ↑ for enhanced properties and ↑↑↑ significantly improved
properties.

CCCTP complex hydrogel can be obtained by quaternizing the carboxymethyl chitosan
using 2,3-epoxypropyl trimethylammonium chloride, and then the mixture is dialyzed and
lyophilized to obtain yellow powder (QCC). Next, N-hydroxy sulfosuccinimide (NHS) and
1-ethyl-(dimethyl aminopropyl) carbodiimide (EDC) are reacted with QCC to activate the
COOH group. After the activation, CTP is added to the solution to form the CCCTP com-
plex [69]. The structure and matrix illustration of the carboxymethyl chitosan–hyaluronic
acid–collagen tripeptide (CCHACTP) complex can be seen in Figure 3.
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Figure 3. Structure and matrix illustration of carboxymethyl chitosan—hyaluronic acid—collagen
tripeptide (CCHACTP) complex.

5. The Use of Chitosan, Hyaluronic Acid, Collagen, and Their Combination in
Secretome Delivery

The study by Saberpour, M., et al. (2019) showed that the conditioned medium of
MSCs can be loaded into chitosan nanoparticles (MC-CM-CS NPs) and form crosslinking.
The adsorption efficiency was up to 77%, with a particle size of ~414 nm. The release of
the conditioned medium from chitosan nanoparticles reached 72% after 72 h at pH 7.2.
The highest decrease in Toll-like receptor 4 (TLR4) expression was obtained from the
MC-CM-CS NPs system with a percentage of 90%. This was higher than the conditioned
medium from MSCs and chitosan itself, with a decreased TLR4 expression percentage of
89% and 82%, respectively. This shows that the antibacterial effectiveness of secretome can
be increased through incorporation into chitosan nanoparticles [70]. The polymerization
of chitosan and MSCs’ exosomes can be carried out at low temperatures (−20 to 4 ◦C) to
prevent the destruction of exosomes. It was found that there was no significant difference
in micro-and macrostructure between the chitosan hydrogel polymerized at high and low
temperatures. This low-temperature polymerized chitosan system can load as many as
183.08 ± 15.44 × 108 exosomes. The release of exosome particles could also be slowed
down to ~80 × 108 particles on day 6. The proliferative activity of fibroblast cells and
angiogenesis of exosomes became significantly higher by controlling their release using
chitosan hydrogel [71].

Three-dimensional gels of collagen have been widely used as a medium for MSCs and
play an important role in regulating secretome release. The total protein content in the
collagen gel was maintained and released slowly (time-dependent) up to day 28 (~270 to
6 ng). This regenerative protein cargo’s delivery increases endogenous cells’ regeneration
capacity [72]. Clinical studies have also shown that delivery of MSCs and their secretomes
do not cause side effects. This confirms that collagen as multiple biomolecular carriers is
safe and feasible [73]. Collagen hydrogel containing secretome also reduces the proliferation
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of allogeneic lymphocytes, lowering the likelihood of tumor formation, especially at high
collagen concentrations [74]. Other literature reports that secretome is more stable, and its
therapeutic effect is increased using a collagen base [75,76]. Furthermore, in third-degree
burns, the combination of collagen and chitosan thermosensitive hydrogel containing
secretome was able to reduce inflammation, stimulate the creation of granulation tissue
with high re-vascularization, and prevent the formation of hypertrophic scar [77]. Collagen-
chitosan microbeads stimulate the expression of osterix, osteocalcin, and calcium mineral
deposition, resulting in the optimum impact on orthopaedic tissue treatment [78]. β-
glycerophosphate is often used as a crosslinker for complexing these systems [77,78].

Integrating crosslinked hyaluronic acid can also help to stabilize the secretome. Secre-
tome release occurs concurrently with the biodegradation of crosslinked HA, resulting in
continuous release [79]. The HA spongy hydrogel can limit the number of macrophages
in the wound region, allowing the secretome to remain stable in vivo [80]. The synergis-
tic effect of secretome and HA viscoelastic gel was also reported by Rogers, GFC. et al.
(2018), where the administration of HA and secretome alone had a significantly lower
proliferative effect than the combination [81]. Furthermore, miR21-loaded crosslinked
chitosan-HA nanoparticles could enhance osteogenic differentiation of cell sheets and
increase the expression of calcifying genes, collagen levels, and mineral deposits [82].

The secretome can be loaded into CCHACTP concurrently with the complexation of
chitosan and HA, allowing the secretome to be adsorbed before the complex forms a net as
a physical barrier. This can be carried out at low temperatures to avoid denaturation of
the secretome components [71]. The presence of collagen tripeptides in each layer of the
chitosan-HA matrix allows for forming physical and chemical interactions with secretome
proteins, improving absorption efficiency. Furthermore, because the hydrogel component is
made of natural materials and is biodegradable, the secretome’s release will coincide with
the breakdown of the CCHACTP matrix’s outer layer. This will provide a time-dependent
pattern on the secretome’s delayed release, providing levels of the secretome in line with
the therapy.

6. Conclusions

Treating diabetic ulcers can be more efficient by maintaining epidermal integrity,
minimizing infection, and enhancing nutrition and oxygen delivery to wound tissue. Since
it can address these needs, MSCs’ secretome meets the criteria for an excellent regenerative
therapy for diabetic wounds. The therapeutic impact of secretome can be considerably
boosted through delivery system adjustment and synergism. Based on the data we have
collected, in our opinion, a film-forming spray of carboxymethyl chitosan–hyaluronic acid–
collagen tripeptide (CCHACTP) hydrogel matrix is the most optimal delivery system for
MSCs’ secretome as a diabetic wound dressing.
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