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Abstract: MYB proteins play important roles in the regulation of plant growth, development, and
stress responses. Overexpression of BplMYB46 from Betula platyphylla improved plant salt and
osmotic tolerances. In the present study, the interaction of eight avian myeloblastosis viral oncogene
homolog (MYB) transcription factors with BplMYB46 was investigated using the yeast two-hybrid
system, which showed that BplMYB46 could form homodimers and heterodimers with BplMYB6,
BplMYB8, BplMYB11, BplMYB12, and BplMYB13. Relative beta-glucuronidase activity and chromatin
immunoprecipitation assays showed that the interaction between BplMYB46 and the five MYBs
increased the binding of BplMYB46 to the MYBCORE motif. A subcellular localization study showed
that these MYBs were all located in the nucleus. Real-time fluorescence quantitative PCR results
indicated that the expressions of BplMYB46 and the five MYB genes could be induced by salt and
osmotic stress, and the BplMYB46 and BplMYB13 exhibited the most similar expression patterns.
BplMYB46 and BplMYB13 co-overexpression in tobacco using transient transformation technology
improved tobacco’s tolerance to salt and osmotic stresses compared with overexpressing BplMYB13
or BplMYB46 alone. Taken together, these results demonstrated that BplMYB46 could interact with
five other MYBs to form heterodimers that activate the transcription of target genes via an enhanced
binding ability to the MYBCORE motif to mediate reactive oxygen species scavenging in response to
salt and osmotic stresses.

Keywords: Betula platyphylla; MYB; dimerization; yeast two-hybrid; stress response

1. Introduction

The MYB family is one of the largest transcription factors (TFs) families in plants. MYBs have
functions in various biological processes, such as regulating flavonoid biosynthesis, controlling cell
differentiation, responding to hormone stimulus, mediating the cell wall biosynthesis, and enhancing
or reducing biotic and abiotic stress tolerance of plants. The overexpression of MYB113 or MYB114
increased anthocyanin pigment levels in Arabidopsis [1]. AtMYB23 plays a role in the root epidermal
cell type patterning in Arabidopsis [2]. An MYB gene, MYBH, enhanced hypocotyl elongation in
Arabidopsis by promoting auxin accumulation [3]. A series of studies demonstrated that AtMYB46 is a
switch gene in the regulation of secondary wall deposition [4–9]. Genomic and transcriptomic analyses
demonstrated that GmMYB (Glycine max) is related to resistance to Phakopsora pachyrhizi infection [10].
Overexpression of GmMYBJ1 increased tolerance to drought and cold stresses in soybean [11].
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MYB proteins share a conserved MYB DNA-binding domain that binds to cis-acting elements
of transcription factor genes and a diverse C-terminal modulator region to regulate the protein’s
activity. The DNA-binding domain and modulator region in MYBs are critical for protein–protein
interactions, which can jointly regulate the growth and development of plants [12]. DmMYB (Drosophila
melanogaster) interacts with CREB-binding proteins (CBPs), which promotes efficient progression
through mitosis [13]. B-MYB forms a complex with itself to influence its transcriptional activity [14].
A study indicated that the MYB proteins interact with R/B-like bHLH proteins, jointly controlling the
phenylpropanoid biosynthetic pathways, epidermal cell differentiation, and cell patterning in root
hair or trichome development [15]. AtMYB44 interacts with regulatory components of ABA receptor 1
(RCAR1)/PYR1-like protein 9 (PYL9) as an abscisic acid (ABA) receptor in Arabidopsis, and negatively
regulates ABA signaling [16]. The interaction between of MYB75 and KNOTTED ARABIDOPSIS
THALIANA7 (KNAT7, a KNOX family protein) can regulate secondary cell wall biosynthesis [17].
In a recent study, bimolecular fluorescence complementation (BiFC) assay showed that MYB5 and
MYB14 physically interact and play synergistic roles in inducing proanthocyanidin (PA) accumulation
in Medicago truncatula [18]. GhJAZ2 (jasmonate zim-domain protein 2) can negatively regulate cotton
fiber initiation via interacting with the R2R3-MYB transcription factor GhMYB25-like [19]. However,
the interactions among MYB proteins or between MYBs and other proteins have rarely been studied.
Such studies are important to illustrate the functions of these proteins in the growth and development
of plants.

A previous study found that BplMYB46, an MYB gene from Betula Platyphylla (northeast
white birch in China), enhances tolerance to salt and osmotic stresses when overexpressed in
transgenic plants [20]. In the present study, we further studied the functions and interactions of
BplMYB46. The yeast two-hybrid system demonstrated that BplMYB46 could form homodimers or
heterodimers. Beta-glucuronidase (GUS) activity and chromatin immunoprecipitation (ChIP) assays
further demonstrated that BplMYB46 could interact with BplMYB6, BplMYB8, BplMYB11, BplMYB12,
and BplMYB13. Quantitative real-time reverse transcription PCR (qRT-PCR) indicated that BplMYB46
and BplMYB13 have similar expression patterns under salt and osmotic stresses. Co-overexpressing
BplMYB13 and BplMYB46 improved the tolerance of transgenic tobacco to stress by enhancing the
expression of their target genes. Our study provides insights into the important role of the interaction
of BplMYB46 with other proteins in response to various stresses in plants.

2. Results and Discussion

2.1. Sequence and Phylogenetic Analyses of Eight MYBs

The cDNA sequences of eight new MYB transcription factors were obtained from the birch
transcriptome (GenBank accession numbers: MK512591–MK512598). These MYBs encode proteins
ranging from 240 to 341 amino acids (aa), with predicted molecular weights of 28.9 to 38.8 kDa and
pI values from 5.38 to 8.66 (Table S1). Domain prediction showed that these eight MYBs do not
have transmembrane domains. At the amino acid sequence level, the coding regions of these MYBs
shared 41 to 70% sequence identity. Multiple sequence alignments of the eight MYB proteins with
BplMYB46 protein from northeast white birch in China were performed to examine the structures of
the MYB transcription factors (Figure S1). BplMYB46 shared two conserved N-terminal DNA-binding
R regions with the eight MYBs, showing that they belong to the R2R3-MYB family of transcription
factors. The evolutionary relationships of eight MYB proteins in B. platyphylla and all MYB proteins in
Arabidopsis thaliana were analyzed based on an NJ phylogenetic tree (Figure S2). The results showed
that the eight MYB proteins are close to Arabidopsis MYB proteins related to stress tolerance, xylem
formation and pollen development in plants [21–25], suggesting the eight MYB proteins may have
similar functions.
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2.2. Analysis of the Dimerization of BplMYB46

The yeast two-hybrid (Y2H) system is an effective method to study protein–protein
interactions [15,26,27]. In the present study, the interactions of BplMYB46 with the eight MYBs
were analyzed using Y2H. First, when the eight pGBKT7-MYBs were used as baits and
pGADT7-Rec-BplMYB46 was used as the prey, yeast expressing BplMYB6, BplMYB8, BplMYB11,
BplMYB12, and BplMYB13 could grow on QDO/X-α-Gal medium (Figure 1A), indicating that these
five MYBs might interact with BplMYB46. When pGBKT7-BplMYB46-N (lacking the activation region)
was used as the bait and the eight pGBKT7-MYBs were used as preys, BplMYB46, BplMYB6, BplMYB8,
BplMYB11, BplMYB12 and BplMYB13 could grow on QDO/X-α-Gal medium (Figure 1B), further
illustrating that BplMYB46 can form homodimers with itself and heterodimers with the five MYBs.
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AD-BplMYB46-prey and empty BD-bait were used as negative controls; and AD-T-prey and 
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Figure 1. Homodimeric and heterodimeric analysis of BplMYBs using a yeast two-hybrid assay (Y2H).
(A) BplMYB46 was cloned into a pGADT7-Rec vector (AD-prey) and interacted separately with the
eight MYB proteins, which were fused to the GAL4 DNA binding domain in the yeast pGBKT7 vector
(BD-baits). Empty AD-prey and each BD-bait were used as negative controls; AD-BplMYB46-prey and
empty BD-bait were used as negative controls; and AD-T-prey and BD-53-bait were used as positive
controls. (B) BplMYB46-N (without its activation regions) was cloned into pGBKT7 vector (bait) and
interacted with itself and with the other eight MYB proteins cloned into the pGADT7-Rec vector (preys).
Empty BD-bait and each AD-prey were used as negative controls; BD-BplMYB46-N-bait and empty
AD-prey were used as negative controls; BD-53-bait and AD-T-prey were used as positive controls.
The yeast cells were grown on SD/-Trp/-Leu (double dropout (DDO)) and selective dropout media:
SD/-Trp/-Leu/-His/-Ade/X-α-Gal (quadruple dropout (QDO)/X-α-Gal).
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2.3. Verification by Transient Expression Assays

To verify the above interactions identified by Y2H, BplMYB6, BplMYB8, BplMYB11, BplMYB12,
and BplMYB13 were used for further analysis. The pROK2-BplMYB construct was used as an
effector, and the fused MYBCORE (CAGTTA)-minimal 35S promoter-GUS was used as the reporter
(Figure 2A). Equal ratios of pROK2-BplMYB46 and the five other pROK2-BplMYB were used
as double-effectors, respectively. To eliminate the effect of activation by BplMYB46-BplMYB46
homodimers and the combination of BplMYB46 with one of the MYBs, which do not heterodimerize in
yeast, the pROK2-BplMYB46 effector and pROK2-BplMYB46:pROK2-BplMYB7, as a double-effector,
were used as controls, respectively. The effector and a reporter were co-transformed into tobacco
leaves using the particle bombardment method (Figure 2B). The relative GUS activity of interaction of
BplMYB46 and BplMYB6, BplMYB8, BplMYB11, BplMYB12, and BplMYB13 via the MYBCORE motif
was significantly higher than that of only BplMYB46. Among them, the relative GUS activity of the
interaction between BplMYB46 and BplMYB13 to MYBCORE was the highest. However, the relative
GUS activity of BplMYB46:BplMYB7 bound to MYBCORE was similar to that of BplMYB46 only. Some
studies indicated that a high level of relative GUS activity reflected a strong binding ability of proteins
and specific target motifs [26–28]. Thus, our GUS results suggested that the combination of BplMYB46
and the five MYBs could enhance the binding ability to the MYBCORE motif.
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Figure 2. Beta-glucuronidase (GUS) activity analysis of the binding of BplMYB46 and five other MYBs
to the MYBCORE sequence. (A) Schematic diagram of the effector and reporter constructs used in
the GUS analysis. Triple tandem copies of the MYBCORE were fused with the 35S CaMV-46 minimal
promoter and cloned into pCAMBIA1301 to drive expression of the GUS gene as the reporter construct.
The coding sequences of BplMYBs were cloned into pROK2 under the control of the 35S promoter as
the effector constructs. (B) The GUS activity assay results. Each effector and the reporter constructs
were co-transformed into tobacco leaves. The combination of BplMYB46 with BplMYB7, which do
not heterodimerize in yeast, was used as a control. The empty pROK2 vector was used as a negative
control. The 35S-luciferase construct was transformed together with the reporter and effector into
leaves to normalize the transformation efficiency. The GUS activity resulting from using the empty
pROK2 vector as the effector was set to 1. The error bars are the standard deviations, which were
calculated from three independent biological repeats. Lower case letters indicate p < 0.05.
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2.4. ChIP Analysis

ChIP analysis was used to determine the binding ability of BplMYB46 and the five MYBs to the
MYBCORE motif (Figure 3). The binding abilities of the interactions of the BplMYB46-GFP protein and
other five MYBs-GFP proteins to the MYBCORE motif were analyzed using real-time PCR. The results
indicated that the enrichment of the MYBCORE motif under the interaction of BplMYB46 with the
other MYBs was approximately 2.5–4 fold higher than the enrichment achieved from the MYB46
promoter. The enrichment of the MYBCORE motif in response to the BplMYB46 protein alone was
approximately 1.5 folds higher than the enrichment of the BplMYB46 promoter. Thus, the binding
abilities of BplMYB46-GFP when interacting with the other five MYBs-GFP proteins to the MYBCORE
motif were stronger than the binding between BplMYB46-GFP and the MYBCORE motif. Our results
demonstrated that the interaction between BplMYB46 and the other five MYBs enhanced their binding
to the MYBCORE motif.
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Figure 3. Chromatin immunoprecipitation (ChIP) analysis of BplMYB46 and five other MYBs binding
to the MYBCORE motif. Quantitative real-time PCR analysis showing the enrichment of the promoter
sequences, including the MYBCORE motif after chromatin immunoprecipitation. The values for the
enrichment of the BplMYB46 promoter sequences were set to 1. Chromatin from whole seedlings was
isolated from pBI121-BplMYB46-GFP and pBI121-MYB-GFP birch plants produced by Agrobacterium
tumefaciens-mediated transient transformation. The error bars indicate the standard deviation (SD)
from three biological replicates. * indicates a significant difference (p < 0.05).

2.5. Subcellular Localization of BplMYB46, 6, 8, 11, 12, and 13

To study the subcellular localization of the MYBs, the MYB-GFP fusion genes and the GFP gene
were separately transformed into onion epidermal cells using the particle bombardment method. GFP
alone was distributed throughout the transformed cells, whereas the six MYB-GFP fusion proteins
were exclusively localized to the nucleus (Figure 4), which suggested that BplMYB46 and the other
five MYBs are nuclear proteins.
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Figure 4. Nuclear localization of BplMYB proteins. The BplMYB-GFP fusion genes and GFP
(control) were transiently expressed in onion epidermal cells using the particle bombardment method.
The transformed cells were cultured on Murashige–Skoog (MS) medium for 24–48 h and visualized
using a confocal microscope at 488 nm.

2.6. Expression Patterns of BplMYB46, 6, 8, 11, 12, and 13 in Response to Abiotic Stresses

To investigate the expression patterns of BplMYB46, 6, 8, 11, 12, and 13 in response to salt and
osmotic treatments, a qRT-PCR analysis was performed (Figure 5). Under salt stress, the expression
levels of BplMYB46, 6, 8, 11, 12, and 13 gradually increased at 6, 12, and 24 h, reaching a peak level
at 24 h and then rapidly decreased at 48 h. Interestingly, the expression patterns of BplMYB46, 12,
and 13 were similar, and their expression levels were higher than those of BplMYB6, 8, and 11 at 24 h
(Figure 5A). Under osmotic stress, the expression analysis showed that the expression patterns of these
genes were clustered into two types (Figure 5B). In the first type, the expression levels of BplMYB46, 6,
8, 12, and 13 increased gradually at 6 and 12 h, reaching a peak level at 12 h; thereafter, their levels
decreased. Interestingly, the expression pattern of BplMYB46 was more similar to that of BplMYB13
than to that of BplMYB6, 8, and 12. In the second type, the expression of BplMYB11 gradually increased
at 6, 12, and 24 h, reaching a peak level at 24 h, and then rapidly decreasing at 48 h. These results
showed that the expressions of BplMYB46 and the 5 MYB genes could be induced by salt or osmotic
stress. In addition, we found that BplMYB46 and BplMYB13 shared very similar expression patterns
under salt or osmotic stress.
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the standard deviation (SD) from three biological replicates. 
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Figure 5. Expression profiles of BplMYB46, BplMYB6, BplMYB8, BplMYB11, BplMYB12, and BplMYB13
under different abiotic stresses. Two-month-old birch seedlings were treated with 200 mM NaCl (A)
or 200 mM Mannitol (B) for different times. Fresh-watered plants were grown in parallel as controls.
After these treatments, the stems of the seedlings from each sample were harvested and pooled for
real-time reverse transcription (RT)-PCR analyses. The error bars indicate the standard deviation (SD)
from three biological replicates.

2.7. Plants Overexpressing BplMYB46 and BplMYB13 Display Alleviated Oxidative Stress and Diminished
Cell Membrane Damage

Our study showed that BplMYB46 could interact with BplMYB6, 8, 11, 12, and 13, and the
expression pattern of BplMYB46 was very similar to that of BplMYB13 under salt or osmotic stress.
Therefore, BplMYB13 was selected for further study. We tested whether co-overexpression of BplMYB46
and BplMYB13 could improve abiotic stress tolerance compared with overexpression of BplMYB13 or
BplMYB46, separately. In this experiment, the leaves of BplMYB46–BplMYB13 co-overexpressing plants,
BplMYB13 overexpressing plants, BplMYB46 overexpressing plants, and WT (wild-type) tobacco plants
were stained using nitroblue tetrazolium (NBT), 3,3′-diaminobenzidine (DAB), and Evans blue under
normal conditions, and under salt and osmotic stresses. NBT and DAB staining reveal the cellular levels
of O2

− and H2O2, two of the main ROS species involved in stress signaling and oxidative injuries [29].
Under control conditions, no obvious difference in NBT and DAB staining was observed among
BplMYB46 and BplMYB13 co-overexpressing plants, BplMYB13 or BplMYB46 only overexpressing
plants, and WT tobacco. By contrast, under NaCl or mannitol treatments at 6 h, the leaves of BplMYB46
and BplMYB13 co-overexpressing plants exhibited less blue and brown staining compared with those
from plants overexpressing BplMYB13 or BplMYB46 alone and WT plants (Figure 6A,B). Evans blue
staining can reflect cell death in plants, as manifested by damage to the cell membrane [30]. The results
showed that the BplMYB46 and BplMYB13 co-overexpressing transgenic plants displayed less intense
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blue staining compared with plants overexpressing BplMYB13 or BplMYB46 alone or WT plants under
salt and osmotic stress conditions (Figure 6C). These results showed that BplMYB46 and BplMYB13
co-overexpressing transgenic plants had enhanced abilities to scavenge ROS and had decreased levels
of cell death, demonstrating that the interaction between BplMYB46 and BplMYB13 could increase
plant stress resistance.
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conditions, and under salt or drought stress. Leaves from BplMYB13-transformed and WT plants were
pretreated with of NaCl or mannitol, and the levels of O2

− and H2O2 were visualized using nitroblue
tetrazolium (NBT) and 3,3′-diaminobenzidine (DAB) staining, respectively. (C) Evans Blue staining
analysis of cell death. The leaves sampled from two-month-old transgenic and WT plants were treated
with NaCl or mannitol at 6 h and used for histochemical staining, treatment with water only was used
as a control. Each experiment was repeated at least three times, and approximately 10 leaves harvested
from multiple seedlings were inspected.

2.8. Physiological Characterization of BplMYB46 and BplMYB13 Co-Overexpressing Plants

Superoxide dismutase (SOD), peroxidase (POD), and glutathione-S-transferase (GST) activities,
H2O2 and malondialdehyde (MDA) contents, and electrolyte leakage have been used to analyze stress
tolerance associated with TFs in plants [31,32]. In this study, the activities of SOD, POD, and GST,
the H2O2 and MDA contents, and electrolyte leakage were used to detect the resistance of plants
co-overexpressing BplMYB46 and BplMYB13 to salt and osmotic stresses; water was used the control
(Figure 7). Under control conditions, the activities of SOD, POD, and GST in BplMYB46 and BplMYB13
co-overexpressing, BplMYB13 or BplMYB46 only overexpressing plants, and WT plants showed almost
no differences. However, under salt and osmotic stresses at 6 h, the activities of SOD, POD, and GST in
the BplMYB46 and BplMYB13 co-overexpressing plants were significantly higher compared with those
in BplMYB13 or BplMYB46 only overexpressing plants, and WT plants (Figure 7A–C). Under control
conditions, there was hardly any difference in the H2O2 and MDA contents between the BplMYB46
and BplMYB13 co-overexpressing plants, the BplMYB13 or BplMYB46 only overexpressing plants, and
the WT plants. However, under salt and osmotic stresses at 6 h, in the BplMYB46 and BplMYB13
co-overexpressing plants, the H2O2 and MDA contents were significantly lower than those in the
BplMYB13 or BplMYB46 only overexpressing plants and WT plants (Figure 7D,E). The H2O2 and MDA
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contents (levels of O2
−) can negatively reflect the ROS scavenging ability of plants; therefore, our

results demonstrated that the interaction between BplMYB46 and BplMYB13 could enhance the plants’
ROS scavenging ability. Electrolyte leakage has been used as a measure of cell death. Under control
conditions, there was no significant difference among the BplMYB46 and BplMYB13 co-overexpressing
plants, the BplMYB46 overexpressing plants, and WT plants. However, under salt and osmotic stresses
at 6 h, the BplMYB46 and BplMYB13 co-overexpressing transgenic plants had significantly lower levels
of electrolyte leakage than those in the BplMYB46 overexpressing plants and WT plants, indicating
that the combination with BplMYB13 could decrease cell death (Figure 7F). These results suggested
that the interaction of BplMYB46 with BplMYB13 could enhance tolerance to salt or osmotic stresses
by enhancing the ROS scavenging ability and decreasing cell death in plants.
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Figure 7. Salt and osmotic stress tolerance analyses of BplMYB46 and BplMYB13 transgenic and
wild-type (WT) tobacco. Superoxide dismutase (SOD) activity (A), peroxidase (POD) activity
(B), glutathione-S-transferase (GST) activity (C), and H2O2 contents (D), malondialdehyde (MDA)
contents (E), and electrolyte leakage (F) of transgenic and WT tobacco under salt and osmotic
stress. The seedlings sampled from the transgenic tobacco using transient Agrobacterium-mediated
transformation and WT plants were treated with NaCl and mannitol at 6 h, treatment with water used
as a control. Each experiment was repeated at least three times, and approximately 10 leaves harvested
from multiple seedlings were inspected. The error bars indicate the standard deviation (SD) from three
biological replicates. * indicates a significant difference (p < 0.05).

2.9. The Relative Expression of Target Genes

To further analyze whether the interaction of BplMYB46 with BplMYB13 could affect the
expression of target genes, the relative expression levels of SOD, POD, and GST in BplMYB46 and
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BplMYB13 co-overexpressing plants, BplMYB46 or BplMYB13 only overexpressing plants, and WT
plants under salt and osmotic stresses were examined. Under salt or osmotic treatment, the relative
expression levels of SOD, POD, and GST genes were significantly higher in the BplMYB46 and
BplMYB13 co-overexpressing plants than in the BplMYB46 or BplMYB13 only overexpressing plants
and WT plants compared with those under fresh water treatment (Figure 8). Analysis of the DNA
sequences on the PLACE website showed that the MYBCORE motif exists in the promoters of the five
genes. Thus, our results suggested that the interaction of BplMYB46 with BplMYB13 might enhance
the expression levels of SOD, POD, and GST genes by binding to the MYBCORE cis-acting element.
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Figure 8. The relative expression analyses of target genes in BplMYB46 and BplMYB13 transgenic and
wild-type (WT) birch. The relative expression levels of superoxide dismutase (SOD), peroxidase (POD) and
glutathione-S-transferase (GST) genes of transgenic and WT tobacco under salt stress (A) under osmotic
stress (B). The seedlings sampled from the transgenic tobacco using transient Agrobacterium-mediated
transformation and WT plants were treated with NaCl and mannitol at 6 h, treatment with water
only was used as a control. The error bars indicate the standard deviation (SD) from three biological
replicates. * indicates a significant difference (p < 0.05).

3. Materials and Methods

3.1. Plant Materials and Growth Conditions

Tobacco seedlings were planted on half Murashige–Skoog (1/2 MS) medium in a growth chamber
with a 16/8 h light/dark cycle and an average temperature of 25 ◦C.

Northeast white birch seeds were planted in pots containing a mixture of perlite/soil (2:1) in a
greenhouse under controlled conditions of 16/8 h light/dark, an average temperature of 25 ◦C, and
70–75% relative humidity.



Int. J. Mol. Sci. 2019, 20, 1171 11 of 15

3.2. Sequence Analysis of MYB Transcription Factors

The cDNA sequences of eight MYB transcription factors were obtained from the birch
transcriptome. The theoretical molecular weight (MW) and isoelectronic point (pI) predictions for
each deduced MYB were calculated using the ExPASy compute pI/Mw tool (http://www.expasy.
org/tools/protparam.html). Transmembrane domains were predicted using the TMHMM server 2.0
(http://www.cbs.dtu.dk/services/TMHMM/). Multiple sequence alignments of BplMYB46 with
the eight MYBs were performed using the ClustalW program (http://www.ebi.ac.uk/clustalw/).
An unrooted phylogenetic tree was constructed using MEGA5.1, according to the neighbor-joining
(NJ) method with 1000 bootstrap replicates. The sequences of the Arabidopsis MYB domain proteins
were downloaded from the Arabidopsis genome TAIR 9.0 (http://www.arabidopsis.org/).

3.3. Heterodimer and Homodimer Assays for BplMYB46

The open reading frame (ORF) of the BplMYB46 cDNA, without the terminal codon, was inserted
into the pGADT7-Rec vector via its SmaI (Promega, Madison, WI, USA) site as the prey construct.
The eight BplMYBs, without their terminal codons, were inserted into pGBKT7 and used as bait
constructs. The pGBKT7 empty vector and pGADT7-Rec-BplMYB46, and pGBKT7 and pGADT7-Rec
empty vectors were used as negative controls. Baits and preys were transformed into the yeast
strain Y2HGold, and then plated on SD/-Trp/-Leu (double dropout (DDO)) and SD/-Trp/-Leu
/-His/-Ade/X-α-Gal (quadruple dropout (QDO) media at 30 ◦C for 3–5 days.

A truncated fragment of the BplMYB46 cDNA, lacking the region encoding the transactivation
region, was constructed into the pGBKT7 vector as the bait, and BplMYB46 and the eight MYBs lacking
their terminal codons were constructed into the pGADT7-Rec as preys. Construct pGBKT7-BplMYB46
and pGADT7-Rec empty vector, and pGBKT7 and pGADT7-Rec empty vectors were used negative
controls. Vector pGBKT7-53 and pGADT7-Rec-T were used positive controls. Vector pGBKT7-53
encodes the Gal4 DNA-BD fused with murine p53; pGADT7-T encodes the Gal4 AD fused with
SV40 large T-antigen. The p53 and large T-antigen are known to interact in a yeast two-hybrid assay;
therefore, mating Y2HGold (pGBKT7-53) with Y187 (pGADT7-T) allows the cells to grow in QDO
mediums/X-α-Gal. Baits and preys were transformed into Y2H cells, and were grown on DDO and
QDO/X-α-Gal media at 30 ◦C for 3–5 days. All the primer sequences used are shown in Table S2.

3.4. Transient Expression Assays

The full length ORFs of BplMYB6, BplMYB7, BplMYB8, BplMYB11, BplMYB12, and BplMYB13
were inserted separately into vector pROK2. An equal proportion of pROK2-BplMYB46 and other
pROK2-BplMYBs formed the double-effectors, respectively. The fused MYBCORE-minimal 35S
CaMV promoter-GUS construct was used as the reporter. The effector and reporter vector were
co-transformed into tobacco leaves using the particle bombardment method (Bio-Rad, Hercules, CA,
USA). The effector of pROK2, pROK2-BplMYB46 and pROK2-BplMYB46: pROK2-BplMYB7 served
as controls, respectively. The firefly luciferase gene driven by the CaMV 35S promoter was also
co-transformed as an internal control for normalization of the transformation efficiency. The GUS
activity from the empty pROK2 vector as an effector was set to 1. GUS and luciferase activities were
determined according to previously published methods [33], and the data are shown as the averages
of three biological replicates. The primer sequences are shown in Table S3.

3.5. Chromatin Immunoprecipitation (ChIP) Analysis

The ORFs of BplMYB6, BplMYB8, BplMYB11, BplMYB12, BplMYB13, and BplMYB46
without their terminal codons were inserted separately into vector pBI121, upstream of GFP,
and the six pBI121-MYB-GFPs were transformed separately into EHA 105 Agrobacterium
competent cells. pBI121-BplMYB and pBI121-BplMYB46 were co-transformed into birch by transient
Agrobacterium-mediated transformation [34]. At 48 h after transformation, the transgenic plants

http://www.expasy.org/tools/protparam.html
http://www.expasy.org/tools/protparam.html
http://www.cbs.dtu.dk/services/TMHMM/
http://www.ebi.ac.uk/clustalw/
http://www.arabidopsis.org/
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were collected for the ChIP assay. DNA and protein were cross-linked using 1% formaldehyde, then
the chromatin was sheared into 200–750 bp fragments using sonication, and 10% of the sample was
saved as the input control. The remaining sonicated chromatin was divided into two parts, which
were respectively added with anti-GFP antibodies (ChIP+) and no antibody (negative control, ChIP−).
The DNA truncated fragments were released by reversing the cross-linking at 65 ◦C for 6 h, and
were then digested by proteinase K (0.2 mg/mL) for 1 h at 45 ◦C to remove any residual proteins.
The immunoprecipitated DNA was purified using chloroform extraction. The enrichment of the
truncated promoter, including the MYBCORE motif was determined on the chromatin DNA samples
after immunoprecipitation, using real-time PCR. The values for the bound MYBCORE motif were
normalized against those of the truncated BplMYB46 promoter. Three biological replications were used
in this experiment. The primer sequences are shown in Table S4.

3.6. Subcellular Localization Analysis

The pBI121-BplMYBs-GFP fusion gene and pBI121-GFP (control) were transiently expressed in
onion epidermal cells using the particle bombardment (Bio-Rad) method. The transformed cells were
then cultured on MS medium for 24–48 h and analyzed using a confocal laser-scanning microscope at
488 nm (LSM410, Zeiss, Jena, Germany).

3.7. Plant Stress Treatments and Real-Time Reverse Transcription (RT)-PCR

Two-month-old birch seedlings were collected at the same time after treatment for 6, 12, 24, and
48 h under 200 mM NaCl (salt stress) or 200 mM Mannitol. Mannitol is a naturally occurring sugar
alcohol that can cause osmotic stress and has been widely used for studies of osmotic stress in plants.
Seedlings watered with fresh water were used as controls. Total RNA was isolated from birch using the
CTAB method and treated with DNase I (Takara Bio Inc., Shiga, Japan) and RNase free to remove DNA
contamination. The total RNA was treated with DNase I and was reverse transcribed into cDNA using
a PrimeScript™ RT reagent Kit (Takara Bio Inc.) and real-time PCR was performed for BplMYB46,
BplMYB6, BplMYB8, BplMYB11, BplMYB12, and BplMYB13. The sequences of the primers used are
listed in Table S5. Real-time quantitative RT-PCR was performed with the SYBR Premix Ex Taq™
kit. DNA were amplified, according to the following procedure: 94 ◦C for 30 s; 45 cycles at 94 ◦C for
12 s, 58 ◦C for 30 s, and 72 ◦C for 45 s; followed by 79 ◦C, 1 s for plate reading. A melting curve was
generated for each sample to assess the purity of the amplified products. The average values of the
cycle thresholds (Ct) of the α-tubulin and ubiquitin genes were used as internal references. The relative
expression ratios were calculated from the Ct values according to the delta-delta Ct method [35].
The relative transcription level was calculated as the transcription level under stress treatment divided
by the transcription level under control conditions. Three independent biological replicates were
performed in this experiment.

3.8. Stress Tolerance Analysis of the Interaction of BplMYB46 with BplMYB13

The overexpression constructs pROK2-BplMYB46 and pROK2-BplMYB13 were co-transformed,
and pROK2-BplMYB13 and pROK2-BplMYB46 were separately transformed into tobacco using
transient Agrobacterium-mediated transformation. The tobacco co-overexpressing BplMYB46 and
BplMYB13, overexpressing BplMYB13 or BplMYB46 only, and the WT were treated with 200 mmol/L
NaCl or 200 mmol/L Mannitol stresses for 6 h; treatment with water only was used as a control.
The detached leaves from tobacco were infiltrated with NBT (1.0 mg/mL) and DAB (1.0 mg/mL)
following published procedures [29], and Evans blue (1.0 mg/mL) staining was performed to detect
cell death following a previously published protocol [36]. SOD, POD, GST, H2O2, MDA, and electrolyte
leakage measurements were conducted according to previously published methods [27,31]. Three
biological replicates were performed.
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3.9. Expression Analysis of Target Genes

Tobacco co-overexpressing BplMYB46 and BplMYB13, tobacco overexpressing BplMYB13 or
BplMYB46 only, and WT tobacco were collected after 6 h of treatment with 200 mM NaCl or 200 mM
Mannitol, and seedlings watered with fresh water were used as controls. Three independent biological
replicates were performed. Total RNA was extracted and treated with DNase I before being reverse
transcribed into cDNA using a PrimeScript™ RT reagent Kit (Takara). Real-time PCR was then
performed for two SOD, two POD, and 1 GST (GenBank accession number: MK532397) genes.
The sequences of the primers used are listed in Table S6.

3.10. Statistical Analysis

Analysis of variance (ANOVA) was used to analyze the relative GUS activity. All statistical
analyses were performed using SPSS software (IBM Corp., Armonk, NY, USA), version 18.0.

4. Conclusions

Previously, we reported that BplMYB46 is involved in abiotic stress tolerance and secondary wall
deposition. In the present study, we further showed that BplMYB46 could homodimerize with itself and
heterodimerize with the BplMYB6, BplMYB8, BplMYB11, BplMYB12, and BplMYB13. The interaction
of BplMYB46 and the five MYB proteins could improve the binding ability of BplMYB46 to the
MYBCORE motif. In addition, BplMYB6, BplMYB8, BplMYB11, BplMYB12, and BplMYB13 exhibited
similar expression patterns to that of BplMYB46 in birch under salt and osmotic treatment. A subcellular
localization study showed that these MYBs were all targeted to the nucleus. BplMYB46 and BplMYB13
co-overexpression in tobacco improved the plants’ tolerance to salt and osmotic stresses compared
with BplMYB46 overexpression alone and further demonstrated that the interaction of BplMYB46 with
BplMYB13 might increase plant stress tolerance.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/5/1171/
s1.
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