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Abstract: The prion diseases are a collection of fatal, transmissible neurodegenerative diseases that
cause rapid onset dementia and ultimately death. Uniquely, the infectious agent is a misfolded
form of the endogenous cellular prion protein, termed PrPSc. Despite the identity of the molecular
agent remaining the same, PrPSc can cause a range of diseases with hereditary, spontaneous or
iatrogenic aetiologies. However, the link between PrPSc and toxicity is complex, with subclinical
cases of prion disease discovered, and prion neurodegeneration without obvious PrPSc deposition.
The toxic mechanisms by which PrPSc causes the extensive neuropathology are still poorly understood,
although recent advances are beginning to unravel the molecular underpinnings, including oxidative
stress, disruption of proteostasis and induction of the unfolded protein response. This review will
discuss the diseases caused by PrPSc toxicity, the nature of the toxicity of PrPSc, and our current
understanding of the downstream toxic signaling events triggered by the presence of PrPSc.
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1. Introduction

The Prion diseases, or transmissible spongiform encephalopathies, are a group of fatal
neurodegenerative diseases characterized by extensive neuronal death, spongiform change and gliosis.
Uniquely among neurodegenerative disease, the prion diseases are transmissible, with infection
between members of the same species, and in some cases between different species, possible. Since
the discovery that the infectious component of prions is comprised solely of protein, more specifically
a misfolded form of the cellular prion protein (PrPC), a great deal of research has focused on how
this misfolded protein can cause such extensive and catastrophic damage to neurons. The major
histopathological feature is the accumulation of extracellular amyloid plaques, comprised of misfolded
PrPC (termed PrPSc for PrP scrapie). However, it is not known how PrPSc causes neurodegeneration,
or indeed what the exact toxic species is, as the link between PrPSc, infectivity and toxicity is not
sharply defined. The role of cellular PrPC also remains elusive, further clouding the investigation
into disease processes. Due to its insolubility, the structure of PrPSc has not been definitively proven,
hampering rational drug discovery efforts, although recent advances have allowed various models
to be proposed [1]. Unfortunately, and largely due to our poor understanding of these molecular
mechanisms, therapeutic treatments for prion disease remain elusive.

Recent research has begun to unravel the role PrPSc plays in the neurodegeneration associated
with prion disease. This review will discuss the diseases caused by PrPSc toxicity, the nature of the
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toxicity of PrPSc, and our current understanding of the downstream toxic signaling events triggered by
the presence of PrPSc.

1.1. PrPC

The human prion protein is highly conserved in mammals, suggesting an essential role for the
protein [2]. It is a small glycoprotein found mainly on the outer leaflet of the plasma membrane, held in
place by a C-terminal glycosylphosphatidylinositol (GPI) anchor [3]. Although highly expressed in the
tissues of the central nervous system (CNS), PrPC is also expressed to varying degrees in most tissues
in the body. Expression begins early in embryogenesis, and in adults the highest levels are in neurons,
with moderate expression observed in glial cells and the peripheral nervous system [4]. Human PrPC

is synthesized as a 231 amino acid polypeptide (after removal of a 22 residue signal peptide [5]),
which is processed through the endoplasmic reticulum (ER) and golgi apparatus. Post-translational
modifications, including the removal of a signal sequence from the C-terminal end of PrPC, result in
a mature protein of 208 amino acids in length. The main structural features are a globular C-terminal
domain made up of three alpha helices with a small antiparallel beta sheet composed of two separate
strands, and a largely unstructured flexible N-terminal tail [6].

The exact cellular function of PrPC remains unclear, with several distinct and overlapping roles
suggested. One of the most important proposed roles of PrPC is the maintenance of myelination
in the peripheral nervous system [7]. Interestingly, neuron-specific PrPC expression is enough to
maintain myelination, as although PrPC is expressed in Schwann cells, it appears to not be essential
there [7]. It is unknown what effect PrPC has on CNS myelin. The first proposed role for PrPC was
in Cu2+ homeostasis due it its high affinity binding [8], although a functional physiological role for
this affinity remains elusive. PrPC has a putative role in protecting against stress, especially oxidative
and some apoptotic stresses [9–11]. There is also evidence it helps to regulate neuronal excitability
and memory [12,13]. Interestingly, it is also involved in the regulation of the circadian rhythm [14]
and cellular differentiation [15,16]. The wide variety of biological roles has led to the suggestion that
PrPC is a scaffold protein that regulates the formation of a number of multi-protein complexes, but it is
unlikely that the entirety of its physiological roles have been discovered [2].

1.2. PrPSc

The crucial event in the development of prion disease is the structural and conformational
change of PrPC to the disease associated misfolded form, PrPSc. This conversion changes PrPC from
a protein characterized by alpha-helices to a partially protease-resistant misfolded protein categorized
by beta sheets [17]. Proteinase K (PK) partially digests PrPSc and is often used to determine the
presence of misfolded PrPSc [18]. Despite this conversion being essential for the pathogenesis of
prion disease, the molecular underpinnings are still not understood. The transformation is thought
to be a post-translational change in conformation which initiates the catalytic conversion of PrPC

into more PrPSc, by the interaction of existing PrPSc molecules (Figure 1). Continuous synthesis of
PrPC in the brain only provides more substrate for the pathological conversion to PrPSc. While this
mainly occurs after exposure to already misfolded PrPSc, conversion can occur spontaneously in
rare cases without exposure or a genetic basis. There are no primary sequence differences between
PrPC and PrPSc, so the change is mediated by different secondary structures and a propensity to
aggregate. This pathological change involving only the prion protein is summarized in the protein
only hypothesis [19]. Strong evidence supporting PrPSc as being the main cause of prion disease comes
from the production of infectious PrPSc in vitro [20]. Whatever the mechanism, this conversion is the
basis for all the prion diseases.
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Figure 1. The conversion of PrPC to PrPSc. The protein only hypothesis of prion conversion posits that 
misfolded PrPSc acts a catalyst, directly binding to PrPC and causing its conversion to PrPSc. This 
self-perpetuating recruitment leads to large aggregates of PrPSc, and underlies its infectious potential. 
Surprisingly, aggregated PrPSc appears to be minimally toxic, with smaller, soluble oligomers of PrPSc 
likely mediating the majority of the observed neurodegeneration. Importantly, PrPC is required for 
both the conversion process and for the toxicity of PrPSc to manifest.  

1.3. The PRNP Gene 

PrPC is encoded by the PRNP gene found on chromosome 20 in humans, and chromosome 2 in 
mice. It is significantly conserved across mammalian species and even vertebrates as a whole. It 
contains three exons, but the entire open reading frame lies within exon 3 [21,22], with all of the 
disease-associated mutations discovered so far located within exon 3 [23]. The PRNP gene encodes a 
nonapeptide region followed by four octarepeats; this motif is thought to be important for its copper 
binding ability. More than 30 disease-causing mutations in PRNP have been discovered, leading to a 
single amino acid substitution, the addition of superfluous residues or an early truncation of the 
protein [24]. A number of insertion mutations have also been discovered in the octarepeat region. 
Many of these mutations are believed to facilitate the conversion of PrPC to PrPSc, linking these 
mutations to disease. There are also polymorphisms in the PRNP gene that can influence the risk of 
developing prion disease. The most important is at codon 129, as it predisposes to sporadic, 
iatrogenic and variant Creutzfeldt–Jakob Disease (CJD-see below) [25]. Codon 129 codes for either 
methionine (M) or valine (V), and M/M homozygosity predisposes to an earlier and more rapid 
onset of disease, while heterozygosity is protective. A glutamate to lysine substitution at codon 219 
also appears to confer a protective effect against prion disease [26]. The shortest incubation times for 
prion disease occur when PrPSc and the host PrPC share the same sequence, and when inoculation 
occurs intracerebrally instead of peripherally [27]. If the inoculating prion differs to the host PrPC, 
incubation times can be greatly increased, or clinical signs of disease never develop. This can prevent 
transmission between species, and is known as the species barrier. 

1.4. Human Prion Disease 

Human prion diseases are characterized by the presence of spongiform change, gliosis, 
amyloidosis and neuronal loss. Spongiosis appears as a series of vacuoles in fixed brain tissue. 
Astrocyte proliferation and neuronal cell death are other common features, and insoluble amyloid 

Figure 1. The conversion of PrPC to PrPSc. The protein only hypothesis of prion conversion posits
that misfolded PrPSc acts a catalyst, directly binding to PrPC and causing its conversion to PrPSc.
This self-perpetuating recruitment leads to large aggregates of PrPSc, and underlies its infectious
potential. Surprisingly, aggregated PrPSc appears to be minimally toxic, with smaller, soluble oligomers
of PrPSc likely mediating the majority of the observed neurodegeneration. Importantly, PrPC is required
for both the conversion process and for the toxicity of PrPSc to manifest.

1.3. The PRNP Gene

PrPC is encoded by the PRNP gene found on chromosome 20 in humans, and chromosome 2 in mice.
It is significantly conserved across mammalian species and even vertebrates as a whole. It contains three
exons, but the entire open reading frame lies within exon 3 [21,22], with all of the disease-associated
mutations discovered so far located within exon 3 [23]. The PRNP gene encodes a nonapeptide region
followed by four octarepeats; this motif is thought to be important for its copper binding ability. More
than 30 disease-causing mutations in PRNP have been discovered, leading to a single amino acid
substitution, the addition of superfluous residues or an early truncation of the protein [24]. A number
of insertion mutations have also been discovered in the octarepeat region. Many of these mutations are
believed to facilitate the conversion of PrPC to PrPSc, linking these mutations to disease. There are also
polymorphisms in the PRNP gene that can influence the risk of developing prion disease. The most
important is at codon 129, as it predisposes to sporadic, iatrogenic and variant Creutzfeldt–Jakob
Disease (CJD-see below) [25]. Codon 129 codes for either methionine (M) or valine (V), and M/M
homozygosity predisposes to an earlier and more rapid onset of disease, while heterozygosity is
protective. A glutamate to lysine substitution at codon 219 also appears to confer a protective effect
against prion disease [26]. The shortest incubation times for prion disease occur when PrPSc and the host
PrPC share the same sequence, and when inoculation occurs intracerebrally instead of peripherally [27].
If the inoculating prion differs to the host PrPC, incubation times can be greatly increased, or clinical
signs of disease never develop. This can prevent transmission between species, and is known as the
species barrier.
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1.4. Human Prion Disease

Human prion diseases are characterized by the presence of spongiform change, gliosis,
amyloidosis and neuronal loss. Spongiosis appears as a series of vacuoles in fixed brain tissue.
Astrocyte proliferation and neuronal cell death are other common features, and insoluble amyloid
plaques containing aggregates of protease resistant prion protein (PrPSc) are often correlated with
prion diseases. Uniquely in the field of neurodegeneration, prion diseases are transmissible between
members of the same species, and often between (mammalian) species, although not freely as species
barriers do exist. They can be sporadic, familial or acquired in origin. The most common is CJD;
others include Kuru, Fatal Familial Insomnia (FFI) and Gerstmann–Straussler–Scheinker (GSS) disease.
Although all are caused by the misfolding of PrPC, these diseases often display startlingly different
pathological and biochemical characteristics. These diseases can also affect different regions of the
brain, causing further differences in disease course and symptoms.

Mutations in PRNP cause inherited prion disease that accounts for approximately 15% of prion
disease cases, producing a wide spectrum of clinical phenotypes [28]. Inherited prion diseases generally
have an earlier onset, but slower disease progression than sporadic cases. These mutations are
autosomal dominant, and can result in either an expanded octapeptide repeat in the normal sequence
of the prion protein, a non-conservative point mutation or a stop codon insertion in the PRNP open
reading frame (ORF). This can lead to familial CJD (fCJD), GSS and FFI. fCJD causes a rapidly
progressive dementia with myoclonus and abnormal electroencephalogram (EEG) recordings, GSS
is characterized by a slow progression of ataxia and late onset dementia, and FFI is unique with its
refractory insomnia, dysautonomia and motor dysfunction. These disease syndromes are not absolute;
however, the same mutation can lead to highly divergent phenotypic and pathological variation
between individuals [29].

Sporadic CJD (sCJD) accounts for 85% of cases of human prion disease, occurring in around one
in a million people over the age of 65. Early onset cases are extremely rare. The disease presents with
a rapidly progressive dementia with myoclonus and development of movement disorders such as
tremor and rigidity. Associated neurological symptoms include cerebellar ataxia, pyramidal and extra
pyramidal signs, and cortical blindness. Most cases have a characteristic EEG that includes periodic
sharp-wave complexes. Death occurs after an average of 4 months from diagnosis, making it one the
most aggressive forms of neurodegeneration [30].

Acquired prion diseases include Kuru, iatrogenic CJD (iCJD) and vCJD. Kuru is caused by the eating
of infected brain tissue, and is characterized by progressive cerebellar ataxia, mood and personality
changes, and a late onset dementia [31]. Death occurs approximately one year after the emergence
of clinical symptoms. iCJD is rare, and has occurred after the exposure of patients to contaminated
medical treatments or equipment. Contaminated dura matter and corneal grafts, inoculation with human
pituitary-derived growth hormone and gonadotrophins have all been reported [32]. Improperly sterilized
surgical equipment has also led to iCJD after brain surgery. iCJD caused by intracerebral infection is
relatively rapid in onset and duration, with prominent early dementia. In contrast, peripheral inoculation
is associated with a prolonged incubation time and late onset dementia.

In the mid-1990s, in the wake of the Bovine Spongiform Encephalopathy (BSE) epidemic, a new
neurodegenerative illness emerged in the UK. Clinically and pathologically, it resembled sCJD, but the
disease had a longer duration with a protracted neuropsychiatric syndrome, and critically, mainly
affected young people [33,34]. After the realization, it was a new disease, it was termed new variant,
or variant CJD (vCJD) [35]. The age of onset was much earlier than sporadic CJD, with a mean age
of 29, and patients as young as 16. The initial symptoms are mainly behavioural, followed by ataxia
and movement disorders. Dementia occurs at a much later point in the disease than CJD, with EEG
abnormalities frequently absent. It also progresses slower than sporadic CJD, with a mean duration
of 14 months. As none of the patients had PRNP mutations and were at a very low risk of iatrogenic
exposure, BSE was considered to be the most likely cause. Molecular studies on vCJD tissue showed
that the biochemical properties of the protease-resistant prion protein found in these patients were
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distinct from other human prion diseases [36], but similar to that of BSE [37], leading to the acceptance
that BSE exposure causes vCJD.

1.5. Animal Prion Diseases

Several mammalian species are also afflicted by prion disease, including scrapie in sheep, Chronic
Wasting Disease (CWD), which mainly affects deer and elk in North America and transmissible mink
encephalopathy, which affects mink feeding on infected livestock. Unlike in humans, most cases
are infectious in origin, although the increased surveillance for prion disease after the BSE outbreak
is identifying increasing numbers of spontaneous cases. The histopathological features are grossly
similar between human and animal prion disease. BSE affects the brainstem of cattle causing ataxia,
with a presymptomatic incubation time of 5 years [38]. CWD is thought to be highly contagious due
to the high number of animals infected despite the free-ranging habits of deer and elk. It has spread
through much of North America and been detected in South Korea [39,40]. CWD has recently been
observed in free ranging reindeer in Norway, with the origin of this outbreak currently unknown [41].
Despite not being natural carriers of prion disease, mice have been used extensively to model prion
disease. They have been infected with sheep scrapie, and genetic modification of the carried Prnp gene
allows prion disease from other hosts to be replicated (Figure 2).
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Figure 2. The neuropathology of prion disease. (A). The Rocky Mountain Laboratory (RML) strain
of prion disease induces extensive neurodegeneration in mice, especially in the hippocampus where
considerable neuronal death is observed in the CA1 region (hematoxylin and eosin stained hippocampal
sections from uninfected control mice, or prion-infected terminal tg37+/− mice) (B). Prion infection is
associated with the accumulation of PrPSc, which is often detected by its partial proteinase resistance
to digestion by proteinase K (total PrP and PrPSc levels, detected with and without proteinase
K digestion) (C). Spongiosis, an intracellular oedema that appears as holes in histological slices
after fixation, is observed throughout the brain in both human and animal cases of prion disease
(hematoxylin and eosin stained hippocampal sections from uninfected control mice, or prion-infected
terminal tg37+/− mice).
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1.6. Selective Neuronal Vulnerability in Prion Diseases

The same disease agent, PrPSc, is associated with all the prion diseases, however, the signs and
symptoms of each disease can differ dramatically. This may be due to the regional differences of
PrPSc accumulation in the brain and the neurons affected. This is thought to be a result of many
factors including specific interactions of different protein conformers as well as region-specific
micro-environments which contain a different combination of metals, chaperone proteins and
translational machinery [42].

For instance, in FFI, neurodegeneration occurs in the thalamus, accounting for the insomnia
associated with this prion disease due to the involvement of the thalamus in sleep regulation [30,43].
In Kuru, the damage often occurs in the cerebellum, leading to defects in coordination, while GSS
has a wider range of clinical manifestations ranging from cerebellar ataxia to spastic parapesis, often
in combination with dementia [43]. In CJD, the cerebral cortex is the main affected brain region [44],
which results in mental impairments, mood change and various visual disturbances.

2. Is the Prion Protein Directly Responsible for Prion Disease?

Despite initial resistance, the protein only hypothesis of prion disease is now widely accepted.
However, many unanswered questions remain. The most pressing, and to this day still the most
elusive, is how exactly does the conversion of PrPC to PrPSc cause prion disease? There are several
possibilities that have been suggested to be a cause: the conversion of PrPC to PrPSc causes a toxic loss of
function in the PrPC protein; PrPSc, or aggregates of PrPSc, are directly toxic to neurons; the conversion
process itself is somehow toxic, or there are transient intermediaries formed that mediate the toxicity.
In addition to the main cause, multiple toxic downstream processes are likely to be engaged, with
neuroprotective responses failing or behaving ineffectively.

2.1. PrPC is Essential for Prion Disease

It is now known that PrPC loss of function is not the main cause of prion disease. Knockout
mice models are grossly normal and display no obvious phenotypes [12,45,46]. In species where
prion disease is naturally occurring, such as cows and goats, PrP knockout is again non-toxic [47,48].
Therefore, loss of PrPC function does not cause prion-induced neurodegeneration. However, since the
first reports of PrPC knockout, many subtle phenotypes have been described, including some related
to neuroprotective pathways such as neurogenesis and stress protection [49]. Although not a direct
cause, impairment of some of these processes might contribute to disease under specific stress insults.

PrPC does appear to have some directly neuroprotective abilities. PrPC is upregulated in neurons
after ischaemic stroke in humans, and knocking out PrPC was shown to greatly increase infarct size in
an animal model [50]. PrPC is involved in the maintenance of myelin in the mouse peripheral nervous
system [7]. PrPC is also involved in protecting against the neurotoxicity induced by the artificial
expression of its closest homologue, doppel (Dpl). This was first discovered due to the accidental
expression in the brain of Dpl by a group trying to delete the Prnp gene in mice [51], caused by the
fusion of the PrP promoter to the Dpl open reading frame and its subsequent ectopic expression in
the brain [52]. Dpl expression caused Purkinje cell death [51] and a late onset ataxia [53] that could be
rescued by PrPC expression in a dose-dependent manner [54]. However, Dpl is not normally expressed
in the CNS in any significant quantities, and levels are not increased during prion disease [55], so the
physiological extent of neuroprotection by PrPC cannot be inferred.

The most important observation from PrPC knock out experiments is the absolute and total
requirement of the presence of PrPC for any PrPSc induced pathology. This was first demonstrated in
mice lacking PrPC, which were resistant to prion infection [56]. A set of elegant experiments further
proved this effect. Brandner and colleagues grafted neural tissue overexpressing PrPC into the brain
of PrP null mice [57]. After inoculation with prions, the grafts accumulated high levels of PrPSc and
developed the severe histopathological changes characteristic of prion disease. Substantial amounts
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of graft-derived PrPSc migrated into the surrounding areas of the host brain, but even 16 months
after inoculation no pathological changes were seen in PrP null tissue [57]. Therefore, in addition to
being resistant to scrapie infection, brain tissue devoid of PrPC is not damaged by exogenous PrPSc,
providing further evidence that PrPSc is not directly toxic in vivo. This was further demonstrated in
experiments in which PrPC was depleted during the course of prion infection [58]. Double transgenic
mice were generated that had floxed PrP transgenes, from which the PrP coding sequence is deleted
by neuronal Cre expression at 9 weeks of age. When these mice are inoculated with prions before
PrP knockout, they develop the initial stages of prion disease, including spongiosis and hippocampal
shrinkage. When the Cre-mediated excision of the Prnp gene occurred, prion disease was prevented
from developing and the early spongiform changes were reversed, despite continued prion replication
in non-neuronal cells and further astrocytic extra-neuronal PrPSc deposition. The mice lived for the
normal lifespan, and remarkably, they never developed further clinical disease [58]. These results
also argue against direct neurotoxicity of PrPSc, because the continued non-neuronal replication and
accumulation of PrPSc throughout the brains of scrapie-infected mice was not pathogenic.

2.2. The Weak Links between PrPSc and Neurotoxicity

A number of other experiments have also demonstrated the complicated relationship between
PrPSc and toxicity. Interestingly, the GPI-anchor has been demonstrated to be required for PrPSc

induced toxicity. Prion inoculated mice expressing anchor-less PrP which is released into the
extracellular space instead of being tethered to the plasma membrane, freely replicate PrPSc but
do not develop disease [59]. This again suggests that PrPSc is not directly toxic to neurons, and also
that either conversion at the membrane or subsequent internalization mediated by the GPI anchor is
required for toxicity. In concert with this, the levels of PrPSc deposition are poorly correlated with
disease progression, with subclinical cases of prion infection and prion disease observed with low prion
titers observed in both animal and human cases [60]. Several studies have noted neurodegeneration
without amyloidgenic PrPSc when passaging BSE prions into mice or rats [61,62]. In humans, several
inherited mutations cause neurodegeneration without plaques [63–65]. A transmembrane form of
the prion protein has been demonstrated to cause GSS without any detectable PrPSc [66]. Studies
using hamster prions injection into mice have demonstrated cases of substantial PrPSc replication
without the emergence of clinical signs [67,68]. These experiments have profound implications for
the development, diagnosis and treatment of prion disease. It may be that PrPSc is a better marker
for prion infection rather than prion-induced neurodegeneration, and again demonstrates the relative
lack of neurotoxicity of PrPSc. Subclinical infection also poses a public health risk, as PrPSc from
non-symptomatic individuals can still be infectious to other, perhaps more susceptible individuals [69].

Unfortunately, the identity of the actual infective agent even in purified scrapie infectious fractions
remains a source for debate. Only 1 in 105 particles appears to be infectious [70], so the structure of the
infectious agent cannot be definitively inferred. The most infectious particles have been shown to be
non-fibrillar in nature, and comprised of 14–28 PrP molecules, with infectivity significantly reduced
in oligomers larger or smaller than this [71]. PrPSc is partially protease resistant by definition, but
infectious PK-sensitive forms of PrPSc have also been detected [72–74]. These PK-sensitive forms share
structural features with PK-resistant PrPSc, and are similarly infective [74]. In contrast, high levels
of PK-resistant PrPSc are not always correlated with disease [75], or infectivity [76]. Partial protease
resistance is not consistently correlated with infectivity, and non-infective protease resistant PrP can be
produced [77]. Furthermore, infectious PrPSc can be comprised of both protease sensitive and resistant
fractions. All of these studies highlight the complexity and heterogeneity of the toxic agent in prion
disease, obfuscating a better understanding of the mechanisms of disease.
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2.3. PrPSc Structure and Toxicity

A puzzling characteristic of prion disease is the existence of different strains/isolates of PrPSc that
when inoculated into model organisms can produce drastically different incubation times, clinical signs
and pathology. Biochemically, the strains display different immunohistopathological characteristics
and protease sensitivities [78]. As prions are comprised only of protein and are generated by the
conversion of host PrPC, the prion strain phenomenon cannot be attributed to genetic variability.
Instead, prion strains are likely to result from distinct conformational changes, that are maintained
during the conversion process [79]. This suggests that the structure of PrPSc may help to explain the
associated neurotoxicity. Unfortunately, difficulties in purifying and determining the structure of PrPSc

have hindered investigations.
The toxic conversion results in PrPSc characterized by extensive β-sheet secondary structure [17],

a protease resistant core [80] and new epitopes not shared with PrPC [81]. From here, monomers,
oligomers, protofibrils and insoluble fibrils of PrPSc then accumulate, creating a heterogeneous
assortment of structures. It is believed the β-sheet is essential for the aggregation of PrPSc into
amyloid fibrils [82]. Several models of PrPSc amyloid have been suggested, including short compact
fibrils or parallel β-sheets (see [1] for review). It is believed that fibrils dictate infectivity and the
species barrier effect [1], as fibril load correlates with infectivity, but not toxicity [83]. Even if they
are not the toxic species, their presence may catalyze the formation of a more toxic species [84], with
growing evidence pointing towards oligomers of PrPSc as being the culprit. They display increased
toxicity compared to fibrils both in vitro and in vivo [85–87]. These results are in agreement with the
current evidence from other protein misfolding neurodegenerative diseases, where smaller oligomer
molecules are thought to be the most toxic [88]. Determining the exact structure of the various PrPSc

species remains elusive, and thus so does the exact relationship between PrPSc structure and toxicity.
There is evidence that the disordered N-terminal domain of PrPC mediates the toxicity of PrPSc [89];
it is likely that a better understanding of similar relationships between structure and function will
improve our understanding of PrPSc neurotoxicity.

3. The Molecular Underpinnings of PrPSc Toxicity

Despite the weak evidence for the direct neurotoxicity of PrPSc, there are numerous reported
detrimental effects of PrPSc formation/aggregation that explain at least some of the toxicity of prion
disease. This includes the induction or inhibition of a range of cellular processes, discussed below.

3.1. Autophagy

Autophagy is the cell’s main clearance mechanism for aggregated or dysfunctional proteins, which
delivers cytoplasmic macromolecules or organelles to be degraded to the lysosomes. The structure
to be degraded is enclosed in a double membrane structure termed the autophagic vacuole
(or autophagosome), which then fuses with a lysosome containing hydrolases and digestive enzymes.
Autophagic processes can ultimately initiate a form of cell death similar to apoptosis if levels of
aggregated protein are deemed to be too high. Due to the large buildup of aggregated proteins in
the protein misfolding neurodegenerative diseases, it is no surprise that dysfunction of this pathway
is often observed, and increasingly autophagy is being explored as a possible therapeutic target.
The links between autophagy and prion disease were first described in a hamster model of prion
disease [90], where large autophagy vacuoles were observed, which increased in size as the disease
progressed. Since then, autophagic vacuoles have been observed in many experimental models and
human patients [91–94].

Pharmacological treatments that induce autophagy have conferred neuroprotection in various
models of prion disease. Lithium, astemizole and the experimental compound FK506 have all been
reported to induce autophagy and prolong survival in prion infected mice, with the authors attributing
the neuroprotective effects to an increased removal and degradation of PrPSc [95–97]. The mTOR



Pathogens 2017, 6, 63 9 of 22

inhibitor rapamycin, which also induces autophagy, was shown to be neuroprotective in a mouse
model of GSS [98]. Despite these results, it is still unclear if reduced or dysfunctional autophagy is
a direct toxic effect of PrPSc, or if inducing autophagy confers neuroprotection by increasing clearance
of PrPSc preventing other toxic downstream effects from occurring.

3.2. The Induction of Apoptosis

Apoptosis is the programmed death of cells, and is characterized by cell shrinkage, condensation
of the chromatin and fragmentation of the nucleus. It is an active process requiring gene transcription
and protein translation, and markedly different from the uncontrolled necrosis [99]. Apoptosis occurs
in both experimental prion disease and human patients [100–104]. However, it is likely that the
apoptosis observed in prion disease is a downstream effect of the prion infection, rather than the direct
cause of PrPSc toxicity. Genetic deletion of the major pro-apoptotic protein Bax has no effect on prion
disease progression [105], and over expression of the anti-apoptotic Bcl-2 again has no effect [106].
Deletion of caspase-12, a pro-apoptotic protein induced by ER stress, also failed to protect neurons in
prion diseased mice [107].

3.3. Proteasome/Ubiquitin Inhibition

The Ubiquitin Proteasome (UPS) system is the main route for targeted protein degradation in
mammalian cells. Degradation of proteins by the UPS occurs over two stages; firstly, the protein to be
degraded is conjugated with multiple ubiquitin (Ub) molecules, targeting it for destruction. The Ub
tagged protein is then degraded by the 26S proteasome [108] and broken down into its constituent
peptides, which can be recycled for future protein synthesis.

Numerous studies suggest that disruption of the UPS by PrPSc in prion disease is a contributing
factor to pathogenesis. An increase in ubiquitin immuno-reactivity, which is indicative of UPS
dysregulation, has been reported in prion-infected mice in the early stages of disease and precedes
behavioural deficits as well as correlating with PrPSc deposition [109].

PrP isoforms have been shown to directly inhibit the 26S proteasome [109–113]. In vitro data
using purified proteasomes and three different cell lines show that PrP oligomers directly inhibit the
26S proteasome [112]. It is thought that PrP molecules rich in β-sheet conformations such as PrPSc

inhibit the 26S proteasome by reducing gate opening of the 20S subunit and hence limiting substrate
entry [111]. This has been inferred because β-sheet rich PrP does not inhibit mutant proteasomes
with a constitutively open gate [110]. Inhibition of the proteasome can also increase aggregation
of PrPSc, in addition to affecting the processing of PrPC [114,115]. This could result in a positive
feedback mechanism where PrPSc induces proteasomal malfunction, which in turn leads to increased
aggregation of PrPSc and a backlog of poly-ubiquitinated proteins (Figure 3).

Proteasomal dysfunction is a common feature of many neurodegenerative diseases and given that
PrPSc can directly inhibit the UPS, this could make activation of the UPS a possible therapeutic target in
prion disease. McKinnon et al., found that activation of the UPS by a small molecule inhibitor resulted
in enhanced clearance of poly-ubiquitinated substrates and reduced PrPSc load in prion infected
cells [109]. Reducing PrPSc and its effects on proteostasis in this manner could be doubly beneficial.

3.4. The Unfolded Protein Response

Recent studies have implicated aberrant signaling by the unfolded protein response (UPR) as
a major pathological player in prion disease progression and neuronal cell death [116–122]. The UPR
is made up of three signaling cascades all beginning in the endoplasmic reticulum membrane.
They are controlled by PKR-like endoplasmic reticulum kinase (PERK), Inositol-requiring enzyme
1 (IRE1) and Activating transcription factor 6 (ATF6) [123–125], and all are activated in response
to an unfolded protein load within the ER. PERK phosphorylation attenuates protein translation
via the phosphorylation of eIF2α at serine 51, in an attempt to prevent additional unfolded protein
production, and a number of stress response genes are upregulated by ATF6, XBP1 (a transcription
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factor downstream of IRE1) and ATF4 (a transcription factor induced by eIF2α phosphorylation) [126].
After the resolution of unfolded protein stress, GADD34, the eIF2α-targeting component of protein
phosphatase 1, reduces eIF2α phosphorylation and restores translation [127].Pathogens 2017, 6, 63  10 of 21 
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A series of studies using Tg37 hemizygous mice infected with Rocky Mountain Laboratory (RML)
prions identified aberrant UPR signaling as a pathogenic mechanism in prion disease. These mice
overexpress wild type murine PrP around 3-fold normal levels and follow a well-documented disease
progression after prion inoculation. Loss of synapse regeneration is evident at 7 weeks post inoculation
(wpi), and PERK activation and phosphorylation of eIF2α at 9 wpi precedes neuronal loss, which is
apparent at 10 wpi [122]. Lentivirally expressing GADD34 reduces eIF2α phosphorylation, restores
translation and prevents neurodegeneration. In contrast, administration of salubrinal (an inhibitor of
eIF2α dephosphorylation) accelerates disease in these mice. Interestingly, targeting the PERK pathway
in this model confers neuroprotection without affecting levels of PrPC or PrPSc. In a subsequent study,
prion-infected Tg37 hemizygous mice were treated with GSK2606414 [121] a potent and bioavailable
PERK inhibitor [128]. This compound effectively prevented neurodegeneration, even when dosed
after the emergence of early neurological disease indicators. Again, this protection was independent of
PrPSc levels.

Another compound, ISRIB (integrated stress response inhibitor), which acts downstream of eIF2α
phosphorylation, has been used to successfully delay neurodegeneration in prion-infected mice [119].
ISRIB binds to eIF2B, a guanine exchange factor essential for supplying the energy needed for the
initiation of translation, stabilizing it in its dimeric form [129]. This allows eIF2B to act as a guanine
exchange factor even in the presence of eIF2α-P, which normally inhibits this action. The result is
a partial restoration of protein synthesis in ER-stressed conditions. Administration of ISRIB to prion
mice resulted in an increase in survival and marked neuroprotection of hippocampal neurons, with
the treated mice also performing better in behavioural tests [119]. These studies validate PERK and
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the PERK-eIF2α pathway as therapeutic targets, with the restoration of translation proposed to be the
neuroprotective process.

A further study aimed at repurposing drugs for use in neurodegeneration identified two
molecules, trazodone and dibenzoylmethane (DBM), that partially restore protein synthesis rates
during ER stress [120]. Both were neuroprotective in prion disease and a model of fronto-temporal
dementia [120]. Trazodone is a serotonin agonist and reuptake inhibitor that can be rapidly repurposed,
and DBM is a curcumin analogue under investigation as an anti-cancer agent.

The results of these studies suggest that the decline in protein synthesis rates mediated by PERK
pathway signaling is a main contributing factor to prion disease associated neurodegeneration (Figure 4).
Neuroprotection was observed despite the continued replication of PrPSc, further demonstrating the
lack of direct toxicity of PrPSc and instead implicating downstream processes as mediating the toxicity
in prion disease.
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Figure 4. The role of the unfolded protein response (UPR) in prion neurodegeneration. Aggregates
of PrPSc activate PERK signaling, leading to a reduction in protein synthesis rates mediated by the
phosphorylation of eIF2α. This starves neurons of essential proteins, leading to neurodegeneration.
Restoring translation rates via lentiviral expression of GADD34 or treatment with a variety of small
molecule inhibitors increases translation and is substantially neuroprotective.
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3.5. Oxidative Stress

Increased oxidative stress and prion disease have been linked in a plethora of previous
studies. However, it is unclear if prion disease progression causes increased oxidative stress or
if prion-associated pathology results from oxidative stress.

Conversion of PrPC to PrPSc as an effect of oxidative stress has been reported in various
in vitro studies [130–132]. It has been postulated that prion misfolding in disease, particularly
those of a sporadic nature, could be triggered by oxidative stress. It has also been suggested
that PrPC plays a role in cellular resilience to oxidative stress via copper metabolism associated
with PrPC and superoxide dismutase (SOD) activity [133,134]. Loss of the antioxidant functions of
PrPC after conversion to PrPSc could hence contribute to pathogenesis of prion diseases. Studies
performed in scrapie-infected mice and hamsters show an increase in markers of oxidative stress
such as heme oxidase 1 [135] during disease progression. Alterations in free radical metabolism
and increased oxidative stress can cause mitochondrial dysfunction in the brains of scrapie-infected
animals, suggesting that this mitochondrial dysfunction is a contributing factor to prion disease
progression [136,137].

3.6. Synaptic Dysfunction

One of the starkest phenotypes of prion disease is the gradual but continuous loss of
synapses as the disease progresses. In mice, the number of synapses progressively decreases
across a number of brain regions, including the hippocampus, with both pre- and post-synaptic
processes affected [138–142]. This loss of synapses is correlated with a number of behavioural
phenotypes [122,143,144], and precedes neuronal loss, suggesting that it is the loss of synapses that
is causing the behavioral phenotypes. In human disease, there is also evidence for large quantities
of synaptic loss and neurological deficits without extensive neuronal loss [145], but examples are
limited due to the necessity of waiting until a post-mortem for investigation, where neuronal loss
leaves a much more catastrophic signature than synaptic dysfunction.

PrP can modulate the activity of N-methyl-d-aspartate (NMDA) receptors, an important ion
channel involved in long-term potentiation, but also to the detriment of neurons during excitotoxicity.
In prion disease, an increase in activity through NMDA receptors is observed facilitating neuronal
death, which can be attenuated by expressing PrPC [146–148]. There is also evidence for PrPSc directly
forming pores in the plasma membrane, disrupting the electrochemical balance of the neuron [149].
Here, soluble oligomers of misfolded PrP insert into the plasma membrane forming ion channel like
structures that allow the passage of ions, causing homeostatic disruption [150].

3.7. Microglia

Microglial accumulation is observed in a range of neurodegenerative diseases, including prion
disease. Microglia are the macrophages of the CNS and release cytokines in response to a wide variety
of stressors. There is some evidence that microglia can actually be involved in the dissemination
of PrPSc throughout the brain. Baker and colleagues demonstrated that purified microglia from
CJD-infected mice show similar infectivity to crude homogenate, despite having 50x less PrPSc [151].
Microglia have been shown to be required for the toxicity of a human PrP fragment in vitro, while
release of reactive oxygen species (ROS) from activated microglia is suggested as the cause of neuronal
apoptosis [152,153].

However, one study [154] suggests a protective role of Cx3cl1/Cx3cr1 signaling in prion disease.
The chemokine Cx3cl1 is expressed by neurons and its receptor Cxcr1 is solely expressed by microglia.
Prion incubation times in Cx3cr1 null mice were significantly reduced, with no observed changes in
microglial activation or chemokine/cytokine expression.
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Brain slices with microglia ablation aggravated prion-induced neurotoxicity, and IL34−/− mice
(which present with reduced microglia) amplified deposition and accelerated prion disease [155].
However, contrasting work suggested microglia are not efficient at clearing PrPSc [156].

4. Discussion

The prion diseases display a unique pathological and biochemical profile characterized by
spongiosis, astrocytosis and neuronal death. These disorders are accompanied by a unique set of
biological features, and remain among some of the most puzzling and inscrutable diseases known.
Uniquely for a transmissible disease, the infectious agent is a protein encoded by the host’s own
genome. The protein only hypothesis of prion disease is now widely accepted, but many unanswered
questions still remain. At the center of the prion phenomenon is the conversion of PrPC to PrPSc,
usually followed by the widespread aggregation of PrPSc throughout the brain. One of the first major
milestones of prion disease research was the discovery that disease was not caused by the loss of
function of PrPC [56]. Subsequent research has uncovered a number of proposed cellular roles for PrPC,
including some neuroprotective processes [2], so the loss of function of PrPC cannot be completely
ruled out as a contributor to pathology, especially as levels drop during the disease course [157].
Another interesting finding, and one that has yet to be fully explored, is that PrPC is required for the
toxicity of prion disease to manifest [57,58]. Uncovering why will surely be a major step in the search
for a cure for prion disease.

If the loss of function of PrPC is not the main pathological cause, then the aggregation of PrPSc

becomes the most likely suspect for the mediator of toxicity. Unfortunately, prion disease is rarely
so simple. Aggregates of PrPSc correlate poorly with disease progression, subclinical cases of prion
disease with large amounts of PrPSc have been discovered, and prion disease without aggregates of
PrPSc has also been observed [68,69]. In addition, the extra-neuronal replication of PrPSc by glial cells
is not toxic to neurons if they no longer express PrPC [58]. Even the infectivity of PrPSc is not fully
understood, as only a tiny proportion of PrPSc appears to be infectious, and protease resistance, usually
the main marker of the presence of PrPSc, is poorly correlated with infectivity [71,75,76].

At the heart of prion disease is the structural change from α-helical PrPC to β-sheet rich PrPSc [17].
This, along with the puzzling prion strain phenomenon, suggests that determining the structure of
PrPSc and its various misfolded states will greatly illuminate the molecular mechanisms of PrPSc

associated toxicity. Unfortunately, this has proven extremely difficult due to the insolubility of PrPSc,
hampering our understanding. However, growing evidence is suggesting that it is oligomers of PrPSc

that are most toxic, compared to the larger fibrils of PrPSc or single monomers [158]. Why PrPC is
more prone to misfolding than other proteins, and exactly how this happens, especially in sporadic
cases where no template of PrPSc is present, is an extremely important topic of research. It has been
suggested that there are cofactors that may contribute to the misfolding [159], but so far no definitive
explanation has been found. Another suggestion is that an intermediate between PrPC and PrPSc may
be the most toxic species, but as even stable PrPSc is proving difficult to determine the structure for,
more temporary species are likely to be even harder to uncover.

Despite the evidence that argues against a direct toxic role of PrPSc, a number of detrimental
processes are associated with the misfolded protein. Among the best characterized are inhibition of
the proteasome and over-activation of the UPR, but a number of other processes including synaptic
disruptions, the initiation of apoptosis and induction of oxidative stress are also observed. A consensus
on the molecular underpinnings of PrPSc associated toxicity is far from clear, and the heterogeneity of
PrPSc may mean some of these processes are strain/structure dependent. It is also possible that the
mere presence of an aggregating misfolded protein, rather than the intrinsic properties of PrPSc, explain
some of the associated toxicity. Similar damaging pathways are activated in other neurodegenerative
diseases such as Alzheimer’s and Parkinson’s, where the identity of the misfolding proteins are
different, but many similarities remain [88,160].
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Unfortunately, treatment options for the prion diseases are extremely limited, but several strategies
have been suggested. Reducing levels of PrPC will remove the substrate of the conversion to
PrPSc [161,162], but the increasing number of beneficial cellular roles attributed to PrPC reduces
the attractiveness of this approach. Another is to prevent the conversion of PrPC to PrPSc by either
stabilizing PrPC or inhibiting the conversion process [163]. This has been the most popular approach, as
it is amenable to small molecule or therapeutic antibody intervention, while preserving the function of
PrPC [164,165]. A third method is to accelerate clearance of PrPSc from the brain [166]. A new approach
is to target the downstream effects of prion replication, by inhibiting processes such as the UPR. This is
surprisingly effective, as the underlying prion conversion and aggregation is unaffected, but extensive
neuroprotection is still observed [119–121]. The effectiveness of UPR inhibitors again illustrates
the complicated relationship between PrPSc and neurotoxicity; the elucidation of these underlying
molecular mechanisms will undoubtedly improve our ability to treat these devastating diseases.
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