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Abstract: The protracted global COVID-19 pandemic urges the development of new drugs against
the causative agent SARS-CoV-2. The clinically used glycopeptide antibiotic, teicoplanin, emerged as
a potential antiviral, and its efficacy was improved with lipophilic modifications. This prompted us
to prepare new lipophilic apocarotenoid conjugates of teicoplanin, its pseudoaglycone and the related
ristocetin aglycone. Their antiviral effect was tested against SARS-CoV-2 in Vero E6 cells, using a cell
viability assay and quantitative PCR of the viral RNA, confirming their micromolar inhibitory activity
against viral replication. Interestingly, two of the parent apocarotenoids, bixin and β-apo-8′carotenoic
acid, exerted remarkable anti-SARS-CoV-2 activity. Mechanistic studies involved cathepsin L and
B, as well as the main protease 3CLPro, and the results were rationalized by computational studies.
Glycopeptide conjugates show dual inhibitory action, while apocarotenoids have mostly cathepsin B
and L affinity. Since teicoplanin is a marketed antibiotic and the natural bixin is an approved, cheap
and widely used red colorant food additive, these readily available compounds and their conjugates
as potential antivirals are worthy of further exploration.

Keywords: teicoplanin; ristocetin; bixin; crocetin; β-apocarotenoic acid; SARS-CoV-2; antiviral
activity; antibacterial activity
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1. Introduction

The still ongoing COVID-19 pandemic imposes a significant public health burden
and a growing economic threat worldwide, and urges to develop effective new antivirals
against the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Several vaccines have been developed to prevent infection, which are showing positive
results. However, vaccine scepticism and the emergence of new virus variants, which
could avoid immune responses elicited by either vaccines or previous infections [1,2],
still make the development of prophylactic and therapeutic agents against SARS-CoV-2
infection of paramount importance. Early responding reposition campaigns [3,4] identified
multiple drug candidates; however, only remdesivir, a broad-spectrum antiviral drug
for intravenous use, has been approved for the treatment of COVID-19 patients. The
only oral alternative was favipiravir, another broad-spectrum antiviral agent originally
developed against influenza [5], which was approved for emergency application in the
treatment of mild COVID-19 cases in several countries. Unfortunately, neither of the
repositioned antivirals were universally effective [6] and both have adverse effects [7].
Therefore, it is imperative to develop specific and safe antiviral drugs against SARS-CoV-2.
The global research community has launched diverse de novo efforts, including worldwide
collaborations such as the COVID Moonshot consortium for the discovery of SARS-CoV-2
main protease inhibitors [8], and large fragment screens against multiple viral targets [9,10]
using innovative compound libraries [11,12]. In addition to bottom-up approaches, existing
chemical entities can be further exploited by repurposing approved drugs [13,14], clinical
trial drug candidates or natural products.

Cathepsin L (Cat L), an endosomal cysteine protease is considered a promising tar-
get for the development of anti-COVID-19 drugs, as it plays a key role in SARS-CoV-2
infection [15–17]. SARS-CoV-2 employs a three-step method for membrane fusion, involv-
ing receptor binding and induced conformational changes in surface spike (S) glycoprotein,
followed by viral entry through the plasma membrane (early pathway) or by endocytosis
(late pathway); the cell entry is mediated by proteolytic cleavage of the S protein by host
proteases, the type 2 transmembrane serine protease (TMPRSS2) or cathepsins [17,18].
TMPRSS2 triggers the fusion at the plasma membrane, but if membrane bound proteases
are not available, the virus is endocytosed and the acidic milieu activates cathepsin L
to trigger fusion at the endosomal membrane [17–19]. In the endosomal pathway, the
intra-lysosomal activation of the spike protein by cathepsin L is critical for the release of
the coronavirus genome into human host cells (Figure 1). Recently, Zhao and co-workers
demonstrated the crucial role of Cat L in patients with COVID-19 [20]. Their study revealed
that SARS-CoV-2 infection promoted Cat L expression and enzyme activity, which, in turn,
enhanced viral infection. Moreover, it was also demonstrated that the inhibition of Cat L
activity prevented SARS-CoV-2 infection both in vitro and in vivo.

Glycopeptide antibiotics, such as teicoplanin, dalbavancin, oritavancin and telavancin,
have been found to prevent the host cell entry process of the Ebola virus, Middle East
respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome
coronavirus (SARS-CoV) by inhibiting the Cat L activity in a dose-dependent manner [21].
A recent study by Zhang et al. proposed that teicoplanin could block SARS-CoV-2 pseu-
dovirus infection in A549 cells, HEK293 T cells and Huh7 cells [22]. Teicoplanin is used
routinely in the clinic for the treatment of severe infections by multiresistant Gram-positive
pathogens, especially methicillin-resistant Staphylococcus aureus (MRSA). Thus, teicoplanin
was proposed as a potential dual drug to block SARS-CoV-2 infection at the early stage and
to prevent possible Staphylococcus aureus superinfection [22,23]. Ceccarelli et al. studied
the impact of teicoplanin on the course of COVID-19 in critically ill patients [24]. The
incidence of Gram-positive infection was promisingly low, but no significant antiviral effect
was observed. The authors concluded that the anti-SARS-CoV-2 activity of teicoplanin
could be more effective at early infections, which is in accordance with recent results by
Zhao et al. [20].



Pharmaceuticals 2021, 14, 1111 3 of 25
Pharmaceuticals 2021, 14, 1111 3 of 26 
 

 

 
Figure 1. Schematic representation of SARS-CoV-2 entry by the endosomal route. After binding to 
its host receptor angiotensin-converting enzyme 2 (ACE2), the virus is internalized via endocytosis. 
The low pH within the endosome activates Cat L, which in turn triggers membrane fusion by pro-
teolytic cleavage of the S protein. Upon membrane fusion, viral genomic RNA is released in the 
cytoplasm and initiates translation of polyproteins, which is, subsequently, cleaved into nonstruc-
tural proteins (NSPs) by viral main protease 3CLpro. Several NSPs constitute the replicase–tran-
scriptase complex essential for viral replication. 

We, and others, have demonstrated that the antiviral spectrum and efficacy of glyco-
peptide antibiotics can be increased by lipophilic modifications, and a number of sem-
isynthetic lipophilic derivatives of the antibiotics vancomycin, teicoplanin and ristocetin 
have been published that showed good antiviral activity against coronaviruses [25–27], as 
well as HIV [28], flaviviruses [29] and influenza viruses [26,27,30–34]. Unfortunately, the 
high antiviral activity is often associated with cytotoxicity [33,34]. 

In this work, we report on the use of apocarotenoids for the lipophilic modification 
of glycopeptide antibiotics as potential new antivirals against SARS-CoV-2. Selecting non-
cytotoxic apocarotenoids, we hypothesize that these derivatives possess anti-SARS-CoV-
2 activity without cytotoxicity. 

Carotenoids are natural hydrophobic products with 40 carbon atoms, having conju-
gated polyenic structures and possessing a number of beneficial biological activities, in-
cluding antioxidant and immune enhancer properties, the regression of malignant lesions 
and mutagenesis inhibition [35–37]. Carotenoids are susceptible to oxidation; they are 
readily metabolised to apocarotenoids by oxygenases or reactive oxygen species. Apo-
carotenoids (with less than 40 carbons), generally bearing aldehyde or carboxylic acid 
functions, are believed to be responsible for the beneficial health effect of nutritional ca-
rotenoids [38]. Bixin (main source is Bixa orellana) and crocetin (main source is saffron) are 
naturally occurring apocarotenoids-bearing carboxyl groups. Both are used as powerful, 

Figure 1. Schematic representation of SARS-CoV-2 entry by the endosomal route. After binding to its
host receptor angiotensin-converting enzyme 2 (ACE2), the virus is internalized via endocytosis. The
low pH within the endosome activates Cat L, which in turn triggers membrane fusion by proteolytic
cleavage of the S protein. Upon membrane fusion, viral genomic RNA is released in the cytoplasm
and initiates translation of polyproteins, which is, subsequently, cleaved into nonstructural proteins
(NSPs) by viral main protease 3CLpro. Several NSPs constitute the replicase–transcriptase complex
essential for viral replication.

We, and others, have demonstrated that the antiviral spectrum and efficacy of gly-
copeptide antibiotics can be increased by lipophilic modifications, and a number of semisyn-
thetic lipophilic derivatives of the antibiotics vancomycin, teicoplanin and ristocetin have
been published that showed good antiviral activity against coronaviruses [25–27], as well
as HIV [28], flaviviruses [29] and influenza viruses [26,27,30–34]. Unfortunately, the high
antiviral activity is often associated with cytotoxicity [33,34].

In this work, we report on the use of apocarotenoids for the lipophilic modification of
glycopeptide antibiotics as potential new antivirals against SARS-CoV-2. Selecting non-
cytotoxic apocarotenoids, we hypothesize that these derivatives possess anti-SARS-CoV-2
activity without cytotoxicity.

Carotenoids are natural hydrophobic products with 40 carbon atoms, having conju-
gated polyenic structures and possessing a number of beneficial biological activities, includ-
ing antioxidant and immune enhancer properties, the regression of malignant lesions and
mutagenesis inhibition [35–37]. Carotenoids are susceptible to oxidation; they are readily
metabolised to apocarotenoids by oxygenases or reactive oxygen species. Apocarotenoids
(with less than 40 carbons), generally bearing aldehyde or carboxylic acid functions, are be-
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lieved to be responsible for the beneficial health effect of nutritional carotenoids [38]. Bixin
(main source is Bixa orellana) and crocetin (main source is saffron) are naturally occurring
apocarotenoids-bearing carboxyl groups. Both are used as powerful, biocompatible and
non-toxic colorants and food additives, having favourable physiological activities [39,40].
The ethyl ester of β-apo-8′-carotenoic acid is mostly produced synthetically and can be
used for food colouring as well. In our work, the readily available apocarotenoid car-
boxylic acids are used for the acylation of the primary amino functionality of glycopeptide
antibiotic derivatives.

2. Results
2.1. Chemical Synthesis

Apocarotenoids and glycopeptide antibiotic derivatives used in this study for the
synthesis of glycopeptide conjugates are shown in Figure 2. Bixin (1a) was isolated from
Bixa orellana seed extract (this extract is also known as annatto), crocetin monomethyl ester
(1b) was prepared from crocetin in two steps via diesterification followed by partial ester
cleavage and β-apo-8′-carotenoic acid (1c) was obtained from a commercially available
ethyl ester derivative by saponification. Teicoplanin pseudoaglycone (2) was prepared from
teicoplanin (3) by partial deglycosylation [31], while ristocetin aglycone (4) was obtained
by the complete removal of sugar components of the parent antibiotic [32].

From bixin (1a), crocetin monomethyl ester (1b) and β-apo-8′-carotenoic acid (1c) N-
hydroxysuccinimide active esters were prepared using 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC). The N-terminal primary amino group of teicoplanin pseudoaglycone
(2) was acylated by these active esters to produce apocarotenoid derivatives 5a (74%), 5b
(49%) and 5c (53%), respectively (Figure 3).

Therapeutically used natural teicoplanin 3 (also known as the teicoplanin complex)
is a complex mixture that comprises five major components having different lipophilic
(C10-C11) N-acyl substituents at one of the glucosamine residues. In order to study the
effect of the original sugar substituents (N-acyl glucosamine, D-mannose) of teicoplanin
on the biological activity, bixin was conjugated to teicoplanin complex 3, resulting in the
expected 6 in a high yield. To test the impact of the peptide core on potential antiviral
activity, compound 7 was synthesized by conjugating bixin to ristocetin aglycone 4. In ad-
dition, a simplified model of the glycopeptide–bixin conjugate was prepared as a reference
compound by acylating phenylalanine t-butyl ester 8 with the active ester of bixin 1a.

2.2. Antiviral Evaluations

The anti-SARS-CoV-2 activity of all new glycopeptide–apocarotenoid conjugates
(5a–c, 6, and 7) were evaluated using three orthogonal methods, including the viral RNA
reduction assay, a cytopathic effect (CPE) reduction assay and an immunofluorescence
assay. The parent glycopeptide cores (2–4), bixinoil-phenylalanine 9 and apocarotenoids
1a–c were included in the antiviral studies as reference compounds (Table 1).

First, a viral RNA reduction assay was used to determine antiviral EC50 values in Vero
E6 cells infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.01 (Figure S13).
Apocarotenoid conjugates of teicoplanin pseudoaglycone and ristocetin aglycone (5a–c,
and 7), as well as native teicoplanin itself (3), showed a very similar antiviral effect with
EC50 values of 4.4–6.7 µM; among these, the apocarotenoic acid conjugate 5c showed the
highest, while the ristocetin aglycone 7 derivative showed the lowest activity. Using this
antiviral assay, the bixin conjugate of teicoplanin (6) exhibited the most robust antiviral
effect against SARS-CoV-2 with an EC50 value of 1.8 µM.

The aglycone derivatives 2 and 4 proved to be completely inactive. This finding was
not unexpected, since, in contrast to lipophilic glycopeptide antibiotics (e.g., teicoplanin,
dalbavancin, oritavancin and telavancin), analogues with no lipophilic groups (e.g., van-
comycin) had no antiviral activity either [21]. Hence, our results, in line with literature
results, suggested that lipophilic groups play an important role in the antiviral mechanism
of action of glycopeptide derivatives [21,22].
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Surprisingly, two apocarotenoids, bixin 1a and β-apo-8′-carotenoic acid 1c, also ex-
erted remarkable activity against SARS-CoV-2, while crocetin-monomethyl ester 1b did
not show antiviral activity at a 50 µM concentration.

Based on the reasonable anti-SARS-CoV-2 effect of bixin, the commercially available
annatto (composed of bixin and norbixin ~4:1) and norbixin (1d), the minor component of
annatto, were also tested against SARS-CoV-2. The activity of annatto (EC50 = 9.2 µM) was
in good correlation with its bixin content, while norbixin was completely inactive.
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Figure 3. Conjugation of apocarotenoids 1a–c to the N-terminal amino group of glycopeptide
derivatives 2–4 and to L-phenylalanine derivative 8. (NHS: N-hydroxysuccinimide; EDC: 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide).

Next, antiviral EC50 values were determined in Vero E6 cells infected with SARS-CoV-
2 at an MOI of 0.04 using a CPE-based assay (Figure S14). The activity of the glycopeptide
conjugates followed similar trends, but the EC50 values were one order of magnitude
higher, which could be explained by the much higher level of infection in addition to the
differences in methods. In this assay, the native teicoplanin 3 showed the highest efficacy
with an EC50 value of 15.7 µM. The remarkable antiviral activity of apocarotenoids, bixin
1a and β-apo-8′-carotenoic acid 1c alone against SARS-CoV-2 was further confirmed by
this method. As the crocetin-monomethyl ester proved to be inactive in the previous assay,
it was not tested.

Finally, an immunofluorescence assay (IFA) was also used to evaluate anti-SARS-
CoV-2 activity of the apocarotenoids and their teicoplanin pseudoaglycone conjugates
(Figures S15 and S16). The activity of teicoplanin (3), teicoplanin derivatives (5a–5c) and
apocarotenoids (1a and 1c) in inhibiting viral replication was further confirmed by the
visualization of SARS-CoV-2 nucleoprotein expression via fluorescence microscopy at
72 h post-infection.
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Table 1. Antiviral effects of the glycopeptide conjugates and carotenoids according to the three assays.

Compound
SARS-CoV-2

RNA Reduction
EC50 (µM)

SARS-CoV-2
CPE,

EC50 (µM)

SARS-CoV-2
IFA,

EC50 (µM)

CC50
(µM)

Therapeutic Index ***
CC50/EC50

1a 5.9 ± 1.7 14 ± 3.5 28 ± 8.8 >100 >17
1b not active at 50 µM n.d. n.d. n.d. n.d.
1c 15 ± 2 14 ± 2.2 31 ± 7.9 * >100 ** >6.7

1d (norbixin) not active at 50 µM n.d. n.d. >100 n.d.
Annatto (E-160b) 9.2 ± 0.1 n.d. n.d. >100 >10.9

2 not active at 50 µM n.d. n.d. n.d. n.d.
3 5.6 ± 1.3 16 ± 1.7 18 ± 5.4 >100 >17.9
4 not active at 50 µM n.d. n.d. n.d. n.d.

5a 5.9 ± 1.3 91 ± 88 74 ± 20 >100 >17
5b 5.2 ± 0.2 19 ± 1.8 8.8 ± 1.4 >100 >19.2
5c 4.4 ± 0.4 56 ± 10 24 ± 5.3 >100 >22.7
6 1.8 ± 0.2 56 ± 6.2 51 ± 9.8 >100 >55.6
7 6.7 ± 0.4 n.d. n.d. n.d. n.d.
9 n.d. 31 ± 4.7 n.d. >100 n.d.

n.d.—not determined; * measurement from 50 µM; ** cytotoxic at 100 µM; *** calculated from RNA reduction EC50 values.

2.3. Mechanism of Action

Based on the mechanism described for teicoplanin, we hypothesized that our com-
pounds exerted their antiviral effect through inhibiting the enzyme activity of cathepsin
L. To test this hypothesis, the Cat L inhibitory effect of the compounds showing antiviral
activity (except for ristocetin derivative 7) was assayed (Figure S17). The new semisynthetic
glycopeptides (5a–5c, 6) and the apocarotenoids (1a, 1c and 9) displayed inhibitory activity
with IC50 values of 22–103 µM (Table 2). These data showed that the compounds inhibited
Cat L at one order of magnitude higher concentrations (in the case of the viral reduction
assay at an MOI of 0.01) or at the same concentration range (in the case of the CPE-based
and IF assays at MOI of 0.04) as they inhibited SARS-CoV-2.

Importantly, teicoplanin exerted a very low inhibitory activity against Cat L
(5% inhibition at 50 µM), which seemingly contradicted the results of Zhou et al. and
Zhang et al., reporting that teicoplanin blocks the SARS-CoV-1 and SARS-CoV-2 entry with
IC50 values of 3.76 and 1.66 µM, respectively, by specifically inhibiting Cat L in the late
endosome/lysosome [21,22]. At the same time, the IC50 values for Cat L inhibition, deter-
mined by two different methods [41,42] by Zhou et al., were 208 µM and 425 µM [21]. The
authors explained this huge difference in entry-blocking and enzyme inhibitory activities
by the relatively low sensitivity of the cathepsin L activity assays [21]. However, our results
clearly showed that while the antiviral potency of the new semisynthetic compounds was
very similar to the one of teicoplanin, the Cat L inhibitory potency of teicoplanin was much
inferior than that of our compounds.

Looking for alternative mechanisms, we examined the effect of the compounds on the
exopeptidase activity of cathepsin B (Cat B) as a potential host target (Figure S18), as well
as to 3-chymotrypsin-like protease (3CLPro, also called main protease, MPro) as a potential
viral target (Figure S19).

The glycopeptide derivatives 5a–5c and 6, as well as PheAla-bixin 9, inhibited Cat B
exopeptidase to a similar extent as Cat L. Apocarotenoids, bixin 1a and β-apo-8′-carotenoic
acid 1c showed a significantly higher inhibitory activity against Cat B than against Cat L.
The activation of the viral S protein by lysosomal Cat L has been shown to be critical for
SARS-CoV-1 entry through endocytosis [42]. The proteolysis of viral glycoprotein by both
Cat B and Cat L is required for the membrane fusion of the Ebola virus [43,44]. Hoffmann
et al. reported that either Cat L or Cat B play an important role in the proteolytic priming
of the S protein of SARS-CoV-2 as well [18]. Ou et al. studied the effect of specific inhibitors
of Cat L and Cat B on SARS-CoV-2 entry, and this study revealed that Cat L, rather than
Cat B, is essential for S protein priming and membrane fusion in the lysosome [19]. The
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crucial role of Cat L in SARS-CoV-2 infection was recently confirmed by Zhao et al. [20].
Therefore, it is likely that cathepsin L inhibition plays a key role in the anti-SARS-CoV-2
activity of apocarotenoids and their teicoplanin conjugates. At the same time, given the
general role of cathepsins in the entry of different viruses into cells, activity against both
cathepsins L and B suggests a broad antiviral potency [16,45].

Viral main protease 3CLPro is essential for the cleavage of viral polyproteins and its
difference from cellular proteases makes this enzyme an ideal drug target against SARS-
CoV-2. Importantly, Tripathy et al. demonstrated through an SPR-based method that
teicoplanin can significantly reduce the proteolytic activity of 3CLPro [46], suggesting that
teicoplanin may be a dual-mechanism anti-SARS-CoV-2 agent. To test this hypothesis,
3CLPro inhibition was assayed in a FRET-based inhibition measurement (Figure S19).

The main protease 3CLPro was blocked by only four compounds; norbixin, β-apo-
8′-carotenoic acid 1c, and two teicoplanin pseudoaglycone conjugates, 5a and 5c, showed
dose-dependent inhibitory activities (Table 2). It is interesting that, while the glycopeptide
core was not active on its own, it seemed to enhance the activity of the respective apoc-
arotenoids upon conjugation, suggesting that both units are utilized upon 3CLPro binding
and inhibition.

Table 2. Cathepsins B and L, and 3CLPro inhibitory effects of the glycopeptide conjugates and
carotenoids.

Compound Exopeptidase Cathepsin
B IC50 (µM)

Cathepsin L IC50
(µM) 3CLPro IC50 (µM)

1a (bixin) 14.56 ± 1.71 41.92 ± 1.12 56% at 100 µM
1b n.d. n.d. 24% at 100 µM
1c 21.31 ± 1.20 76.04 ± 1.74 73.00 ± 7.10

1d (norbixin) n.d. n.d. 36.11 ± 11.71
2 7.80% at 50 µM 0.04% at 50 µM 34% at 200 µM
3 0.45% at 50 µM 5.07% at 50 µM 13% at 200 µM
5a 47.95 ± 1.07 42.39 ± 1.86 13.86 ± 1.73
5b 99.54 ± 1.16 103.0 ± 1.12 50% at 200 µM
5c 56.53 ± 1.06 47.05 ± 1.05 34.52 ± 12.49
6 64.42 ± 1.05 56.51 ± 1.08 53% at 200 µM
9 23.78% at 50 µM 22.08% at 50 µM 42% at 100 µM

To understand the preference of the glycopeptide conjugates and apocarotenoids
towards certain proteases, we predicted their respective binding modes by computational
methods. Specifically, due to the large size and conformational complexity of these com-
pounds, we applied low-mode docking [47]. This approach used the LMOD conformational
searching algorithm [48], which samples the conformational space effectively along low-
frequency vibrational modes. It, thus, provided a computationally efficient way to account
for the flexibility of large ligands, and binding site residues, or even entire protein loops
during ligand docking. We performed low-mode docking to model the binding modes of
the most potent compounds against each of the protease targets: these were bixin 1a for
cathepsins B and L, and the teicoplanin pseudoaglycone conjugate 5a for the main protease.
The low-energy binding modes presented in Figure 4 highlight the crucial differences
between the binding sites of the enzymes. For cathepsins, the subsites of the active site
were arranged almost linearly, in channel-shaped binding cavities; these were nicely com-
plemented by the long apocarotenoid chains, with the polar end-groups serving as anchor
points against H-bond-donating residues, such as G74 and H111 (CatB) or N18 and G164
(CatL). By contrast, in the main protease of SARS-CoV-2, the crucial S1, S2 and S1’ subsites
were arranged in a less accessible, cavern-like structure. Here, the numerous polar features
of the glycopeptide core provided H-bonding interactions against the neighbouring active
site residues. The apocarotenoid chain extended from subsite S1, along the protein surface,
into a shallow groove between domains I and II of the main protease [49]. Based on these
observations, we proposed that binding to cathepsins B and L was mediated primarily by
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the apocarotenoid chains, while there were key contributions from both main structural
units in binding to the main protease. Due to the lack of more substantial, biophysical
proof for on-target engagement (e.g., X-ray structures or direct binding measurements),
these models provide a possible explanation for the observed target preferences.
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2.4. Antibacterial Evaluation

In patients with COVID-19, methicillin-resistant Staphylococcus aureus (MRSA) and
enterococci strains should be considered for superinfection [24]. Therefore, we tested
the compounds by the broth microdilution method on a panel of eight Gram-positive
bacterial strains. The lipophilic modification of teicoplanin derivatives 5a–5c and 6 did
not led to a dramatic change in the antibacterial activity compared to the parent antibiotic
teicoplanin. The ristocetin aglycone derivative 7 showed significantly lower effects against
all bacteria tested than teicoplanin. Against some of these relevant strains, the crocetin and
apocarotenoic acid conjugates of teicoplanin pseudoaglycone (5b and 5c) showed similar
or better activity than teicoplanin. The teicoplanin–bixin conjugate 6 was less effective
against the MRSA strain than native teicoplanin, but showed significant activity against
the two vancomycin-resistant enterococci. As anticipated, neither the apocarotenoids, nor
phenylalanoyl-bixin 9 exhibited activity against any bacterium (Table 3).

Table 3. Antibacterial effect.

1a Teico (3) 5a 5b 5c 6 7 9

MIC [g] (µg/mL)

Bacillus subtilis ATCC [a] 6633 512 0.5 32 16 16 4 32 512
Staphylococcus aureus MSSA [b] ATCC 29213 512 0.5 16 8 8 16 64 512
Staphylococcus aureus MRSA [c] ATCC 33591 512 0.5 0.5 2 1 16 64 512

Staphylococcus epidermidis ATCC 35984 biofilm 512 2 0.5 0.5 0.5 32 64 512
Staphylococcus epidermidis mecA [d] 512 16 16 2 0.5 256 64 512

Enterococcus faecalis ATCC 29212 512 2 16 4 4 4 32 512
Enterococcus faecalis 15376 VanA [e] 512 256 16 8 8 4 256 512

Enterococcus faecalis ATCC 51299 VanB [f] 512 4 16 8 8 4 64 512
[a] American Type Culture Collection. [b] Methicillin-sensitive Staphylococcus aureus. [c] Methicillin-resistant Staphylococcus aureus. [d] mecA
gene expression in Staphylococcus. [e] vanA gene positive. [f] vanB gene positive. [g] Minimum inhibitory concentration.

3. Discussion

Literature data suggested that the glycopeptide antibiotic teicoplanin may be used
as a dual action drug in the management of COVID-19; its anti-SARS-CoV-2 pseudovirus
activity was proved and it has the potential to prevent possible Staphylococcus aureus
superinfection [21–23]. Our previous results demonstrated that the antiviral activity of
semisynthetic lipophilic glycopeptides, especially teicoplanin pseudoaglycone deriva-
tives, often outweighed the activity of teicoplanin, while retaining their antibacterial
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activity [31–34]. This prompted us to prepare new lipophilic conjugates of teicoplanin
pseudoaglycone as potential antivirals against SARS-CoV-2. Three apocarotenoids, bixin,
crocetin and β-apo-8′-carotenoic acid, were chosen as lipophilic moieties for two reasons:
(i) they are non-toxic and (ii) their carboxylic acid function allows easy conjugation to
the amino group of glycopeptides. Lipophilic apocarotenoid glycopeptide conjugates of
teicoplanin (6), its pseudoaglycone (5a–5c), and a related ristocetin aglycone (7), were
prepared and tested against SARS-CoV-2 infected cells. Phenylalanoyl-bixin 9 was also
prepared and used as a reference in biological studies. The antiviral activity of the semisyn-
thetic derivatives as well as the starting glycopeptides and apocarotenoids was evaluated
in Vero E6 cells using three orthogonal assays. The semisynthetic glycopeptides and native
teicoplanin inhibited the viral reproduction with similar efficacy, the EC50 values were in
the low micromolar range in the RNA reduction assay and in the ten-micromolar range
in the CPE-based and immunofluorescent assays. The one order of magnitude difference
between the EC50 values can be explained by the four times lower multiplicity of infection
and the removal of the viral inoculum after a half hour incubation in the RNA reduction
assay. The most interesting finding of this study was the remarkable, unexpected antiviral
activity of two apocarotenoids, bixin (1a), and β-apo-8′-carotenoic acid (1c). Although a
plethora of natural compounds has been investigated and listed as potential SARS-CoV-2
inhibitors [50–52], apocarotenoids have not been among the candidates so far.

Zhou et al. hypothesized that teicoplanin might interact with the enzymatic domains
of cathepsin L and block their functions similar to the reported inhibitory effect of antimi-
crobial peptide LL-37 on cathepsin L [21,53]. This hypothesis was based on the lipid II
binding ability of teicoplanin, but notably, this was not supported by our results presented
here, as teicoplanin and its pseudoaglycone alone (without the conjugated apocarotenoid
chains) were not observed to significantly inhibit either of the cathepsins, or 3CLPro. This
was in line with our computational results obtained by low-mode docking, an efficient
implementation of the flexible docking paradigm; for both cathepsins suggested that bind-
ing is mainly achieved by the apocarotenoid chains. In the case of 3CLPro, both structural
units have importance, although the enzyme inhibition results highlighted the presence
of the apocarotenoid chain as a stronger requirement. Altogether, our results suggested
that this series of glycopeptide apocarotenoid conjugates may have a complex antiviral
mechanism of action as they acted against both human and viral proteases. However,
regarding the modest enzyme inhibitory activity, other mechanisms may also contribute to
their antiviral effect.

Together with the demonstrated antibacterial properties, these compounds can be
promising candidates against SARS-CoV-2 infection, especially in groups with a higher
risk of bacterial superinfection. This was further corroborated by the fact that both of
the constituting structural units are in human use: teicoplanin is a marketed drug, while
apocarotenoids are approved natural colorants used as food additives.

4. Materials and Methods
4.1. Chemical Synthesis
4.1.1. General Information

tert-Butyl L-phenylalaninate 8 was synthesized according to the literature [54]. TLC
was performed on Kieselgel 60 F254 (Merck) with detection either by immersing into
ammonium molybdate-sulfuric acid solution followed by heating or by using Pauly’s
reagent for detection. Flash column chromatography was performed using Silica gel 60
(Merck 0.040–0.063 mm).

Conventional 1D and 2D 1H and 13C NMR spectra (1H-COSY, 1H-13C-HSQC, 1H-
13C-HSQC-TOCSY, 1H-13C-HMBC) were recorded using a Bruker DRX-400 spectrometer
(at 298 K or 300 K) and a 500 MHz (Bruker, Billerica, MA, USA), Avance II spectrometer
(at 310 K) equipped with a TXI probe head. Chemical shifts were referenced to Me4Si
(0.00 ppm for 1H) and to the solvent residual signals (CDCl3 or DMSO-d6). For the gly-
copeptide derivatives (5a, 5b, 5c, 7), initial signal assignments were aided using earlier
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works on glycopeptide aglycon NMR characterisations [55,56] unlabelled peaks in the
6–8/110–145 ppm 1H/13C regions belonged to carotenoid sidechain atoms. Typical 90◦

pulses were 10 and 16 µs for the 1H and 13C channels, and relaxation delays allowed were
generally 2 s. The 1H-13C Heteronuclear Single-Quantum Correlation (HSQC) spectra were
recorded using «hsqcetgpsi2» pulse program and 4–8 scans for each of the 512 increments
in indirect dimension. The 2D spectra were processed with Topspin 3.1 software using
Gaussian window function (Lb = −5, GB = 0.05) in F2 and cosine-square (QSINE, SSB = 2)
in F1 dimension. To support the 1H/13C assignments heteronuclear multiple bond cor-
relation experiments, HMBC (pulse program: “hmbcgplpndqf”, 70 ms evolution time),
HSQC-TOCSY (pulse program: “hsqcdietgpsi”, 70 ms mixing time) and homonuclear
correlated spectroscopy (COSY) (pulse program: “cosygpqf”) were also run. The digital
resolution of the processed spectra was typically 2–3 Hz. The 13C J-modulated spin-echo
and 1H-13C HSQC spectra of glycopeptide derivatives (5a, 5b, 5c, and 7) are shown in the
Supplementary Material, equipped with characteristic 1H-13C signal assignments.

MALDI-TOF MS measurements were carried out with a Bruker Autoflex Speed mass
spectrometer equipped with a time-of-flight (TOF) mass analyser. In all cases, 19 kV (ion
source voltage 1) and 16.65 kV (ion source voltage 2) were used. For reflectron mode, 21 kV
and 9.55 kV were applied as reflector voltage 1 and reflector voltage 2, respectively. A solid
phase laser (355 nm, ≥100 µJ/pulse), operating at 500 Hz, was applied to produce laser
desorption and 3000 shots were summed. 2,5-Dihydroxybenzoic acid (DHB) was used as
matrix and F3CCOONa as cationising agent in DMF. ESI-QTOF MS measurements were
carried out on a maXis II UHR ESI-QTOF MS instrument (Bruker), in positive ionization
mode. The following parameters were applied for the electrospray ion source: capillary
voltage: 3.5 kV; end plate offset: 500 V; nebulizer pressure: 0.8 bar; dry gas temperature:
200 ◦C; dry gas flow rate: 4.5 L/min. Constant background correction was applied for each
spectrum; the background was recorded before each sample by injecting the blank sample
matrix (solvent). Na-formate calibrant was injected after each sample, which enabled
internal calibration during data evaluation. Mass spectra were recorded by otofControl
version 4.1 (build: 3.5, Bruker) and processed by Compass DataAnalysis version 4.4
(build: 200.55.2969).

For analytical RP-HPLC, a Waters 2695 Separations Module (Waters Corp., Milford, CT,
USA) was used. The separation was carried out on a VDSpher PUR 100 C18-M-SE, 5 µm,
150× 4.6 mm column at an injection volume of 10 µL, using a flow rate of 1.0 mL/min with
a Waters 2996 DAD set at 254 nm and a Bruker MicroTOF-Q type Qq-TOF MS instrument
(Bruker Daltonik, Bremen, Germany) as detectors. The following system was used for the
elution: Solvent A: Water:MeCN 9:1 + 0.005 v/v% TFA; Solvent B: MeCN. Gradient elution:
from 20% of B to 80% from 0 to 40 min, 80% of B from 40 to 50 min and 20% of B from
51 min in the case of glycopeptide derivatives 5a–c, 6 and 7 and from 20% of B to 80%
from 0 to 40 min, 80% of B from 40 to 60 min and 20% of B from 61 min in the case of 9.
The MicroTOF-Q mass spectrometer was equipped with an electrospray ion source. The
mass spectrometer was operated in positive ion mode with a capillary voltage of 3.5 kV,
an endplate offset of −500 V, nebulizer pressure of 1.8 bar and N2 as drying gas with a
flow rate of 9.0 L/min at 200 ◦C. The mass spectra were recorded by means of a digitizer
at a sampling rate of 2 GHz. The mass spectra were calibrated externally using the exact
masses of clusters [(NaTFA)n + TFA]+ from the solution of sodium trifluoroacetate (NaTFA).
The spectra were evaluated with the DataAnalysis 3.4 software from Bruker. HPLC-DAD
measurements were conducted with gradient pump Dionex P680 and a diode array detector
Dionex PDA-100 (Thermo Fisher Scientific Inc., Waltham, MA, USA). Chromatograms were
detected at 450 nm wavelength; the data acquisition was performed by Chromeleon 6.8 or
7.3 software. The separation was carried out on an endcapped C18 column (250 × 4.6 mm
i.d.; LiChrospher C18, 5 µm, Merck Europe KGaA, Darmstadt, Germany).
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4.1.2. Isolation of Bixin (1a)

A total of 500 mg of Bixa orellana seed extract (INEXA C.A., Ecuador) was flash
chromatographed on a 100 g silica gel column in dichlomethane/methanol 10:1. The
fractions containing the main reddish violet pigment were collected and evaporated. The
crude bixin was crystallized from dichloromethane/hexane to yield 170 mg of bixin 1a
(m.p. 198 ◦C). Physical and chromatographic properties were identical with those of our
authentic sample and literature data [57].

4.1.3. Synthesis of Crocetin Monomethyl Ester (1b)

Crocetin dimethyl ester (356 mg, 1 mmol) was dissolved in THF (5 mL) and NaOH
(500 mg, 12.5 mmol) was added in methanol (16 mL). The solution was stirred for a
week and then 5% citric acid (50 mL) was added. The reaction mixture was washed with
dichloromethane (3 × 50 mL), the organic phase was dried and evaporated. The product
was purified by column chromatography (dichloromethane/methanol 9:1) to yield crocetin
monomethyl ester 1b [58] (120 mg, 35%, purity: 97%, HPLC) as an orange powder and
the starting material (72 mg). M.p. 204–205 ◦C. UV (ethanol) 404, 427, 452 nm. HRMS
(MALDI): m/z calcd for C21H26O4+Na+: 365.1723 [M+Na]+; found: 365.1719.

4.1.4. Synthesis of β-Apo-8′-carotenoic Acid (1c)

Ethyl apo-8′-carotenoate (Hoffmann-La Roche, now DSM) (500 mg, 1.086 mmol) was
dissolved in diethyl ether (200 mL) and saponified overnight with 30% methanolic KOH
solution (30 mL). On the next day, 5% citric acid (300 mL) and diethyl ether (100 mL) were
added to the reaction mixture and the phases were separated. The ethereal phase was
washed twice with brine, dried and evaporated. The crude acid was crystallized from
toluene/hexane to yield 1c (322 mg, 69%, HPLC purity: 100%) as a dark red product. M.p.
194–195 C. UV (ethanol) 443, 463 nm. MS (MALDI-TOF): m/z calcd for C30H40O2+H+: 433
[M+H]+; found: 433.

4.1.5. Synthesis of Norbixin (1d)

In total, 1.5 M aqueous tetrabutylammonium hydroxide solution (Acros, purum)
(2.8 mL, 4.2 mmol) was added to a stirred (partial) solution of bixin (336 mg, 0.85 mmol) in
THF (18 mL). The mixture was stirred at RT for 35 min (the reaction was monitored by TLC
analysis). Then, the clear dark-red solution was quenched with 1 M aqueous acetic acid
solution (10 mL, 10 mmol). The solution was seeded and stirred at RT for 15 min while the
product began to crystallize. Water (25 mL) was added dropwise over 30 min to the stirred
suspension. The red precipitate was collected by filtration, washed with water (3 × 15 mL)
and acetone (2 × 5 mL) and dried. Recrystallization from THF/EtOAc yielded 1d (302 mg,
93%) as dark red crystals (m.p. >250 ◦C, HPLC 99 %). Physical and chromatographic
properties were identical with those of our authentic sample and literature data [59].

4.1.6. General Procedure for the Synthesis of Active Esters 1a-ester, 1b-ester and 1c-ester

Compounds 1a, 1b or 1c (0.15 mmol) were dissolved in the mixture of dichloromethane
(10 mL) and acetonitrile (2 mL). The mixture was cooled in an ice bath and N-hydroxysuccin-
imide (20 mg, 0.167 mmol) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hy-
drochloride (EDC) (31 mg, 0.16 mmol) were added. The reaction mixture was allowed to
warm up to room temperature and stirred for 24 h. The solvent was evaporated and the
product was purified by flash column chromatography (hexane/EtOAc 7:3 for 1a-ester;
6:4→1:1 for 1b-ester, and 7:3 for 1c-ester, respectively).

1a-ester: yield 55.4 mg (76%) of dark red powder; Rf = 0.33 (hexane/EtOAc 1:1); the
product was used in the next step without NMR characterization; HRMS (MALDI): m/z
calcd for C29H33N1O6+Na+: 514.2200 [M+Na]+; found: 514.2207.

1b-ester: yield 37.5 mg (57%) of orange powder; Rf = 0.40 (hexane/EtOAc 1:1); the
product was used in the next step without NMR characterization; HRMS (MALDI): m/z
calcd for C25H29N1O6+Na+: 462.1887 [M+Na]+; found: 462.1890.
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1c-ester: yield 56 mg (71%) of red powder; Rf = 0.42 (hexane/EtOAc 1:1); 1H NMR
(400 MHz, CDCl3) δ (ppm) 7.53 (dd, 1H, J = 11.4, 1.6 Hz, CH), 6.82–6.09 (m, 11H, 11CH),
2.86 (d, 4H, 2CH2), 2.08 (d, 3H, J = 1.2 Hz, CH3), 2.06–1.94 (m, 11H, 3CH3 and 1CH2), 1.72
(s, 3H, CH3), 1.66–1.57 (m, 2H, CH2), 1.50–1.44 (m, 2H, CH2), 1.03 (s, 6H, 2CH3); 13C NMR
(100 MHz, CDCl3) δ (ppm) 169.6, 163.5 (3C, C = O), 147.2, 144.1, 138.0, 137.8, 137.0, 133.4,
132.1, 130.8, 129.3, 127.3, 126.3, 122.3 (12C, CH), 138.8, 135.2, 129.7, 120.1 (6C, Cq), 39.8 (1C,
CH2), 34.4 (1C, Cq), 33.2 (1C, CH2), 29.1 (2C, CH3), 25.8 (2C, CH2), 21.9 (1C, CH3), 19.4 (1C,
CH2), 13.1, 13.0, 12.8 (3C, CH3). HRMS (MALDI): m/z calcd for C34H43N1O4+Na+: 552.3084
[M+Na]+; found: 552.3159.

4.1.7. General Procedure for the Synthesis of Apocarotenoid–Glycopeptide Conjugates 5a,
5b, 5c, 6 and 7

Glycopeptide derivative (2, 3 or 4) (0.05 mmol) was dissolved in dimethylformamide
(2 mL) and triethylamine (7 µL, 0.05 mmol) and apocarotenoid active ester (1a-ester, 1b-
ester or 1c-ester) (0.075 mmol) was added. The reaction mixture was stirred overnight;
then, the solvent was evaporated and the product was purified by flash column chro-
matography (toluene/MeOH 7:3→1:1 for 5a, 5b, 5c and 7; acetonitrile/H2O 95:5→9:1 for
6, respectively).

Compound 5a: yield 65.5 mg (74%, HPLC purity 97.4%), dark red powder; Rf = 0.28
(toluene/MeOH 1:1); NMR data of 5a are shown in Table 4.

HRMS (ESI): m/z calcd for C91H85Cl2N8O26Na+Na+: 1821.4742 [M-H+2Na]+;
found: 1821.4742.

Table 4. NMR data of 5a.
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3b 6.360 110.56
3d 6.375 105.48
3f 6.323 102.23
4 7.246 144.29

4b 5.563 108.03
4f 5.113 104.97
5b 7.120 136.49
5e 6.667 116.99
5f 6.673 125.82
6b 7.872 128.98
6e 7.265 123.66
6f 7.256 128.61
7d 6.420 103.70
7f 6.495 108.28

DMSO 2.505 40.24

Annotation 1H Shift (ppm) 13C Shift (ppm)

3f 6.323 102.23
4 7.246 144.29

4b 5.563 108.03
4f 5.113 104.97
5b 7.120 136.49
5e 6.667 116.99
5f 6.673 125.82
6b 7.872 128.98
6e 7.265 123.66
6f 7.256 128.61
7d 6.420 103.70
7f 6.495 108.28

DMSO 2.505 40.24
G1 4.396 99.67
G2 3.510 56.32
G3 3.218 70.59
G4 3.412 73.82
G5 3.104 77.26

G6a 3.641 60.84
G6b 3.582 60.85
X1 4.340 59.57
X2 4.947 55.17
X3 5.360 58.54
X4 5.629 55.33
X5 4.359 54.13
X6 4.160 61.39
X7 5.769 56.32
z2a 3.327 37.19
z2b 2.842 37.19
z6 5.393 76.54

Compound 5b: yield 43 mg (51%, HPLC purity 96.1%), orange powder; Rf = 0.27
(toluene/MeOH 1:1); NMR data of 5b are shown in Table 5. HRMS (ESI): m/z calcd for
C87H82Cl2N8O26Na+Na+: 1769.4429 [M-H+2Na]+; found: 1769.4428;
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Compound 5c: yield 47.5 mg (53%, HPLC purity 96.6%), red powder; Rf = 0.29
(toluene/MeOH 1:1); NMR data of 5c are shown in Table 6. HRMS (ESI): m/z calcd for
C96H95Cl2N8O24+Na+: 1859.5626 [M-H+2Na]+; found: 1859.5627.
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Compound 6: yield 96 mg (85%), red powder; Rf = 0.32 (acetonitrile/H2O 85:15);
Structures of the two major components of 6 are shown in Figure 5. RP-HPLC-ESI MS for
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the main peak (63.2%): RT = 26.97 min, m/z calcd for C113H125Cl2N9O36+2H+: 1127.887
[M+2H]2+; found: 1127.887.
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Compound 7: yield 14 mg (18%, HPLC purity 95.7%) red powder; Rf = 0.51 (toluene/
MeOH 1:1); NMR data of 7 are shown in Table 7. HRMS (MALDI): m/z calcd for
C85H79N7O22+Na+: 1572.5176 [M+Na]+; found: 1572.5670.
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was purified by flash column chromatography (hexane/EtOAc 8:2→7:3) to yield 9 (40 mg, 
67%, HPLC purity 95.9%) as a dark red powder. Rf = 0.56 (hexane/EtOAc 7:3); 1H NMR 
(400 MHz, CDCl3) δ (ppm) 7.96 (d, 1H, J = 15.5 Hz, CH), 7.35–7.20 (m, 4H, CH), 7.20–7.14 
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Bix21 (OMe) 3.710 51.84
Me (3d) 1.971 8.79
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4.1.8. Synthesis of 9

tert-Butyl L-phenylalaninate (52 mg, 0.2 mmol) was dissolved in abs. dimethylfor-
mamide (2 mL) and 4-methylmorpholine (18 µL, 0.22 mmol) was added and the mixture
was stirred for 30 min. Under argon atmosphere, 1a-ester (49 mg, 0.1 mmol) was added and
the reaction mixture was stirred overnight. The solvent was evaporated and the product
was purified by flash column chromatography (hexane/EtOAc 8:2→7:3) to yield 9 (40 mg,
67%, HPLC purity 95.9%) as a dark red powder. Rf = 0.56 (hexane/EtOAc 7:3); 1H NMR
(400 MHz, CDCl3) δ (ppm) 7.96 (d, 1H, J = 15.5 Hz, CH), 7.35–7.20 (m, 4H, CH), 7.20–7.14 (m,
2H, CH), 6.91–6.80 (m, 1H, CH), 6.71–6.64 (m, 2H, CH), 6.64–6.57 (m, 1H, CH), 6.56–6.28 (m,
6H, CH), 6.03 (d, 1H, J = 7.7 Hz, NH), 5.91 (d, 1H, J = 15.5 Hz, CH), 5.84 (d, 1H, J = 15.2 Hz,
CH), 4.92–4.84 (m, 1H, CH-CH2-Ph), 3.79, (s, 3H, OCH3), 3.15 (d, 2H, J = 5.8 Hz, benzyl
CH2), 2.00 (s, 3H, CH3), 1.98 (s, 3H, CH3), 1.96 (s, 3H, CH3), 1.92 (s, 3H, CH3), 1.42 (s, 9H,
t-Bu CH3); 13C NMR (100 MHz, CDCl3) δ (ppm) 171.0, 168.1, 165.9 (3C, C = O), 145.9, 141.2,
140.6, 138.7, 138.1 (6C, CH), 136.9, 136.8, 136.4 (3C, Cq), 134.6, 134.5 (2C, CH), 133.5, 131.6
(2C, CH), 131.1, 131.0, 129.8, 128.5, 127.0, 124.6, 123.3, 118.6, 117.6 (11C, CH), 82.6 (1C, Cq),
53.8 (1C, CH-CH2-Ph), 51.8 (1C, OCH3), 38.3 (1C, benzyl CH2), 28.1 (3C, t-Bu CH3), 20.4
(1C, CH3), 13.2, 13.0, 12.9 (3C, CH3). HRMS (ESI): m/z calcd for C38H47NO5+H+: 598.353
[M+H]+; found: 598.351.

4.2. Biological Studies
4.2.1. Antiviral Activity Screening Using Viral RNA Reduction Assay

The inhibitory effect of the different compounds against a Hungarian SARS-CoV-
2 isolate (GISAID accession ID: EPI_ISL_483637) was measured in Vero E6 cells. The
compounds were dissolved in DMSO for obtaining stock solutions. For the antiviral
screen, dilution was conducted in cell culture media that consisted of DMEM (Lonza), 1%
penicillin–streptomycin (Lonza) and 2% heat-inactivated foetal bovine serum (Gibco). In-
fection (MOI 0.01) and treatment were performed at the same time for 30 min at 37 ◦C in 5%
CO2 atmosphere. After, the infection the media was replaced and the cells were incubated
for 48 h in the presence of the different compounds. RNA was extracted from the super-
natant using Monarch® Total RNA Miniprep Kit (New England Biolabs Inc., Ipswich, MA,
USA). Viral copy number was determined with droplet-digital PCR (Bio-Rad Laboratories
Inc., Hercules, CA, USA) Primers and probe were specific for the SARS-CoV-2 RdRp-gene
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(forward: GTGARATGGTCATGTGTGGCGG; reverse: CARATGTTAAASACACTATTAG-
CATA, probe FAM-CAGGTGGAACCTCATCAGGAGATGC-BBQ). Copy numbers were
normalized to the mean for the untreated, infected wells, n = 3 biological replicates. EC50
values were determined with GraphPad Prism 8 software using a four-parameter logistic
nonlinear regression model. Cell viability was determined using CellTiter-Glo® Lumines-
cent Cell Viability Assay (Promega Corp., Madison, WI, USA). The same concentrations
were applied as in the antiviral screen. After 48 h, the viability was measured according to
the manufacturer’s instructions.

4.2.2. Antiviral Activity Determination Using CPE-Based Assay

In the cytopathic effect (CPE)-based assay, the anti-SARS-CoV-2 activity was measured
as the extent of the test compounds inhibited virus-induced CPE in Vero E6 cells. Briefly,
two-fold serial dilutions of compounds were prepared from 100 to 0.78 µM and added in
triplicate in a 384-well plate with 5000 Vero E6 cells seeded four hours before in DMEM
medium with 2% FBS, 100 U of penicillin/mL and 100 µg of streptomycin/mL (all Merck).
After 1 h incubation, SARS-CoV-2 (strain hCoV-19/Czech Republic/NRL_6632_2/2020)
was added at multiplicity of infection 0.04 IU/mL. Following three days incubation at 37 ◦C
in 5% CO2, the cell viability was determined by addition of XTT solution (Sigma-Aldrich)
for 4 h and the absorbance was measured using EnVision plate reader (PerkinElmer,
Waltham, MA, USA). Drug concentrations required to reduce viral cytopathic effect by 50%
(EC50) were calculated using nonlinear regression from plots of percentage cell viability
versus log10 drug concentration using GraphPad Prism software.

4.2.3. Antiviral Activity Determination Using Immunofluorescence Assay (IFA)

The anti-SARS-CoV-2 activity was measured by determining the extent to which
the test compounds inhibited virus replication in Vero E6 cells represented as the reduc-
tion in SARS-CoV-2 nucleoprotein detected by IFA. Briefly, two-fold serial dilutions of
compounds from 100 µM were added in triplicate in a 96-well plate with 15,000 Vero
plated day before in the same medium as above. After one hour incubation, SARS-CoV-2
(strain hCoV-19/Czech Republic/NRL_6632_2/2020) was added at multiplicity of infec-
tion 0.04 IU/cell. After three days of incubation at 37 ◦C in 5% CO2, cells were fixed
with 4% paraformaldehyde, permeabilized with 0.2% Triton X100 (both Merck), washed,
incubated with anti-SARS-CoV-2 antibody (mouse monoclonal nucleoprotein IgG, ProSci)
for 2 h at room temperature, followed by 1 h incubation with Cy3-conjugated donkey
anti-mouse IgG (Jackson ImmunoResearch Europe, Ely, UK) and documented using fluo-
rescence microscope with camera (Olympus). The compound concentrations required to
reduce fluorescence by 50% (EC50) were calculated from graphs of percentage of fluorescent
cells versus log10 drug concentration using nonlinear regression analysis with GraphPad
Prism software.

4.2.4. Determination of Compound Cytotoxicity in Vero E6 Cells

Cytotoxicity was evaluated by incubating two-fold serial dilutions of each compound
from 100 µM concentration with Vero E6 cells in 384-well plate. Following three days
incubation at 37 ◦C in 5% CO2, the cell viability was determined by addition of XTT
solution and the compound concentrations resulting in 50% reduction in absorbance (CC50),
corresponding to 50% reduction in viability, were calculated as above in the antiviral activity
determination using CPE-based assay.

4.2.5. Cathepsin Inhibition Assays
Enzyme Kinetics

Human recombinant cathepsins B and L were expressed in Escherichia coli [60,61]. The
assay buffers 60 mM acetate buffer, pH 5.0 and 100 mM acetate buffer, pH 5.5 were used for
determination of cathepsin B exopeptidase and cathepsin L activities, respectively. Each
assay buffer contained 0.1% PEG 8000 (Sigma-Aldrich, St. Louis, MO, USA), 5 mM cysteine
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and 1.5 mM EDTA. Enzymes were activated in the assay buffer for 5 min at 37 ◦C prior to
the assay.

Determination of Relative Inhibition

Substrates Abz-Gly-Ile-Val-Arg-Ala-Lys(Dnp)-OH (Bachem, Basel, Switzerland) and
Z-Phe-Arg-AMC (Bachem) were used to determine the effect of inhibitors on cathepsin B ex-
opeptidase and cathepsin L activity, respectively. To initiate the reaction, 90 µL of activated
enzyme in the assay buffer was added to the wells of a black microplate containing 5 µL of
substrate (final concentration 5 and 1 µM for cathepsin B exopeptidase activity, and 2 µM
for cathepsin L) and 5 µL of inhibitor at concentration of 50 µM. Formation of the fluores-
cent degradation products during reaction was continuously monitored at 460 nm ± 10 nm
with excitation at 380 nm ± 20 nm for Z-Phe-Arg-AMC and at 420 nm ± 10 nm with exci-
tation at 320 nm ± 20 nm for Abz-Gly-Ile-Val-Arg-Ala-Lys(Dnp)-OH at 37 ◦C on a Tecan
Infinite M1000 (Mannedorf, Switzerland) spectrofluorimeter. All assay mixtures contained
5% (v/v) DMSO. To all assay mixtures, 0.01% Triton X-100 was also added, to prevent false-
positive inhibition due to the formation of compound aggregates [62]. All measurements
were performed in triplicates and repeated twice. The relative inhibition was calculated
using the equation: Relative inhibition (%) = 100(1 − vi/vo); where vi and vo designate the
reaction velocities in the presence and absence of inhibitor, respectively. IC50 values were
determined from nine data points at different inhibitor concentrations.

CLPro Inhibition Assay, Cloning and Expression

3CLPro coding sequence (GenBank: MN908947.3) was optimized according to E. coli
codon preference and synthetized by Thermo Fisher Scientific, Inc. (Waltham, MA, USA).
We inserted the gene into pPAL7 (Bio-Rad Laboratories, Inc., Hercules, CA, USA) expression
vector using BamHI and HindIII enzymes. For the recombinant protein expression, we
used Rosetta2 (Novagen) cells and o/n induction with 1 mM IPTG at 20 ◦C.

Purification of Recombinant 3CLPro Protein

Thawed cell stocks were suspended in 0.1 M NaH2PO4 buffer (pH = 7.4), then homog-
enized on ice using ultrasonic homogenizer. The homogenized sample was centrifuged at
13,000× g for 30 min. The supernatant was filtered through a 0.45 µm pore size cellulose
acetate membrane filter and loaded on Mini Profinity eXact cartridges (Bio-Rad Labora-
tories, Inc., Hercules, CA, USA) at room temperature. After washing, 2 CV 100% elution
buffer (0.1 M NaH2PO4, 0.1 M NaF, pH = 7.4) was loaded to start the enzymatic reaction in
the column, for 30 min. The elution was performed with 100% elution buffer. The eluate
was saturated with 50% (NH4)2SO4 at 4 ◦C, and was kept at 4 ◦C overnight. The next day,
the sample was centrifuged at 13,000× g, the supernatant was carefully decanted, and
the precipitate was redissolved in 3CLPro reaction buffer (0.1 M NaH2PO4, 1 mM EDTA,
100 mM NaCl, pH = 7.5) and stored at 4 ◦C.

Enzyme Activity Assays

For the fluorescence measurements, a generic 3CLPro FRET peptide substrate was
used (HilyteTM Fluor—488—ESATLQSGLRKAK—(QXL®—520)—NH2, Anaspec, Inc.,
(Fremont, CA, USA) Cat. no. 510/791-9560) [63]. The conditions of the measurements were
as follows: either 600 nM or no 3CLPro, 250 nM substrate, 5% DMSO and the requisite
concentration of inhibitors in 3CLPro reaction buffer at a final volume of 50 µL/well.
The covalent 3CLPro inhibitor 5-Chloropyridin-3-yl-benzo-(b)-thiophene-2-carboxylate
(Maybridge, Ltd., Altrincham, UK, Cat. no. BTB07408SC) was used in the assays in 10 µM
final concentration as a control [64]. Fluorescence was measured on a black 384-well plate
(Thermo Fisher Scientific Inc., Waltham, MA, USA, Cat. no. 95040020) with a fluorescence
microplate reader (Victor2 1420 multilabel counter, PerkinElmer Inc., Waltham, MA, USA)
at 485/520 nm for excitation and emission wavelength, respectively, in duplicates. The
candidates were first screened in 100 µM final concentrations. Those showing more
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than 50% inhibition were tested at a two-fold dilution series during a dose–response
measurement, consisting of 6–8 data points. IC50 values were determined using a logistic
curve fit (Origin 8, Northampton, MA, USA).

4.2.6. Antibacterial Evaluations

Antibacterial activity of the compounds was assessed with broth microdilution method
following the Clinical and Laboratory Standards Institute (CLSI) guidelines (CLSI. Methods
for Dilution Antimicrobial Susceptibilities Tests for Bacteria that Grow Aerobically; Ap-
proved Standard, 11th edition CLSI document M07-A10. Wayne, PA: Clinical Laboratory
and Standards Institute; 2018 [65]). Stock solutions of the substances were prepared in
H2O and DMSO (1:1). Bacterial cells (0.5 McFarland in saline) were inoculated into ca-MH
broth (BioLab Inc., Budapest, Hungary) containing the active compound in a twofold
serial dilution series ranging between 256 and 0.5 µg mL−1. The minimum inhibitory
concentrations (MICs) of all compounds were determined after 24 h of incubation at 37 ◦C.
The MIC was determined as the lowest concentration of the drug that resulted in no visible
bacterial growth.

4.3. Low-Mode Docking

To predict the binding modes of bixin 1a and the teicoplanin pseudoaglycone con-
jugate 5a in the binding site of cathepsins B (PDB: 6AY2) [66] and L (PDB: 3H8B) [67]
and 3CLPro (PDB: 6LU7) [49], we used low-mode docking [47]. Low-mode docking was
performed with the LMOD conformational searching algorithm [48], which sampled the
conformational space along low-frequency vibrational modes of the part of the system that
was defined as flexible (usually the ligand and proximal residues/loops), and, additionally,
explored the rotational and translational degrees of freedom of the ligand. As such, it was
a computationally efficient implementation of flexible docking, and it presented an ideal
alternative over conventional docking for large ligands with a complex conformational
space, such as the compounds considered here. For the calculations presented here, we
performed 10 LMOD iterations after defining the ligands and the flexible loops in the
vicinity of the binding sites as flexible, and kept low-energy conformations within an
energy window of 50 kcal/mol as the output of the calculations. The full protocol was
described in the Supplementary Information. Marvin 21.4 (2021) was used for drawing
and preparing chemical structures (ChemAxon, http://www.chemaxon.com, last accessed:
28 June 2021), Pymol was used for preparing images (Schrödinger LLC and Warren L.
DeLano, 2020, http://www.pymol.org/pymol, last accessed: 30 June 2021) and the Amber
biomolecular simulation package was used to run the LMOD calculations [68].

5. Conclusions

The aim of this work was to study the effect of lipophilic carotenoid side chains on the
anti-SARS-CoV-2 activity of the glycopeptide antibiotic teicoplanin. Indeed, several deriva-
tives were obtained, which showed remarkable antiviral activity and were completely
devoid of cytotoxicity. However, the anti-SARS-CoV-2 activity of bixin seemed to be one of
the most promising results. Bixin and annatto are widely used, cheap, non-toxic, natural
food colorants [69,70], approved by the European Food Safety Authority. The acceptable
daily intake of bixin is 6 mg/kg body weight [70]. Conjugates of teicoplanin pseudoagly-
cone with apocarotenoids such as bixin and apocarotenoic acid offer a combination of
antiviral and antibacterial effects.

It is worth noting that the antiviral activity of the antibiotic teicoplanin against wild-
type SARS-CoV-2 was first demonstrated in our present work. Based on our results,
the anti-SARS-CoV2 effect of teicoplanin could not be satisfactorily explained by any of
the mechanisms of action hypothesized in the literature, namely, the inhibition of either
cathepsin L [21,22] or the viral main protease [46], as teicoplanin exerted only low inhibitory
activity against these enzymes. Therefore, the full mechanism of action of teicoplanin
against SARS-CoV-2 remains to be elucidated. For the carotenoid conjugates, the enzyme
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inhibitory activities seemed to contribute to the antiviral effect; however, their generally
weak activity suggested that the contribution of other mechanisms could not be ruled out.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14111111/s1, HPLC chromatograms, EC50 graphs of antiviral assays, IC50 graphs of
enzyme inhibitory assays and 1H and 13C NMR spectra of compounds.
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