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Abstract

Signaling networks mediate many aspects of cellular function. The conventional, mechanis-

tically motivated approach to modeling such networks is through mass-action chemistry,

which maps directly to biological entities and facilitates experimental tests and predictions.

However such models are complex, need many parameters, and are computationally costly.

Here we introduce the HillTau form for signaling models. HillTau retains the direct mapping

to biological observables, but it uses far fewer parameters, and is 100 to over 1000 times

faster than ODE-based methods. In the HillTau formalism, the steady-state concentration of

signaling molecules is approximated by the Hill equation, and the dynamics by a time-course

tau. We demonstrate its use in implementing several biochemical motifs, including associa-

tion, inhibition, feedforward and feedback inhibition, bistability, oscillations, and a synaptic

switch obeying the BCM rule. The major use-cases for HillTau are system abstraction,

model reduction, scaffolds for data-driven optimization, and fast approximations to complex

cellular signaling.

Author summary

Chemical signals mediate many computations in cells, from housekeeping functions in all

cells to memory and pattern selectivity in neurons. These signals form complex networks

of interactions. Computer models are a powerful way to study how such networks behave,

but it is hard to get all the chemical details for typical models, and it is slow to run them

with standard numerical approaches to chemical kinetics. We introduce HillTau as a sim-

plified way to model complex chemical networks. HillTau models condense multiple reac-

tion steps into single steps defined by a small number of parameters for activation and

settling time. As a result the models are simple, easy to find values for, and they run

quickly. Remarkably, they fit the full chemical formulations rather well. We illustrate the

utility of HillTau for modeling several signaling network functions, and for fitting compli-

cated signaling networks.
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Introduction

John von Neumann’s elephant haunts mechanistically detailed models. von Neumann was

reported to have claimed that he could fit an elephant with 4 parameters, with the implication

that models with many parameters are under-constrained and over-fitted [1]. There are two

major arguments to exorcise this elephant: that mechanistic detail is needed to address certain

kinds of questions; and that in the era of big data it is both easier and less biased to simply build

up detailed models with all the available pieces. Here we describe a model formalism, the HillTau

form, to help navigate between biological mechanisms and big data on the one hand, and the

desirability of condensed model representations that expose the key principles of system function.

Cellular, and particularly synaptic signaling, is notoriously complex. There are an estimated

1400 protein species localized to the postsynaptic density alone [2]. These support a range of

functions including synaptic transmission, maintenance, plasticity, activity-driven protein

synthesis, metabolic control, and traffic [3].

Mass-action chemistry is a common denominator for mechanistically inspired modeling of

these phenomena. This has the key virtue of defining specific biological entities (molecules)

and processes (reactions) that map directly to experimental observables. Many studies are

based at this level [4,5]. Further levels of mechanistic detail include reaction-diffusion, stochas-

tic chemistry mesoscopic stochastic methods with trapezoidal or cubic meshes [6,7] and even

single-particle reaction-diffusion calculations [8,9]. Note that the additional mechanistic detail

comes at a considerable computational cost.

A few studies have found ways to lessen the level of detail, typically by focusing on interac-

tions without dynamics (e.g, [10]) or on dynamics with highly reduced interactions (e.g., [11]).

Model detail may also be abstracted out through model reduction, which starts from a detailed

(usually mass-action or Michaelis-Menten ODE form) model and strips it down to core inter-

actions needed to account for model behavior. Another reduction approach is to identify ‘fast’

reactions in the system, which settle much faster than the overall system, and can be replaced

with algebraic relations [12,13]. These are a subset of general approaches to model reduction

using quasi-equilibrium and quasi-steady state methods (reviewed in [14]). There are serveral

other model reduction techniques (reviewed by Snowden [15]). Most of these methods retain

the chemical kinetics formalism using ordinary differential equations (ODEs) to represent

mass-action chemistry.

Biochemical signaling models frequently suffer from incomplete parameterization. Thus

‘detailed’ models of signaling pathways, which are of course essential for many kinds of mecha-

nistic analyses and design of experiments, are often under-constrained. In this context, a

reduced model is preferable as it requires fewer parameters. One frequently used form specifies

rate of change of concentration of each molecule as a weighted sum of input molecule concen-

trations, which may be passed through a sigmoid to achieve saturation [16–18]. This form is

quite similar to neural network models. Thus it lends itself to machine learning approaches to

obtain parameters from systematic experimental time-series measurements [17]. The authors

obtained relatively sparse interaction weight matrices, thus keeping down the number of

parameters. While this formulation is effective at modeling dynamics of molecules in reaction

networks, the resultant interaction matrices do not map directly to reaction pathways. Simi-

larly, other formal approaches to model reduction yield very compact models, but the mapping

to experimental observables may be quite indirect [15]. Hence it is useful to have a compact

chemically-inspired formulation to serve as the core for the model reduction while remaining

easy to parameterize and predict using the same quantities that are measured in experiments

[19–21]. Indeed, a compact model with few parameters is arguably a better starting point to

understand complex signaling with insufficient data, than is a mechanistically detailed model.
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Savageau and colleagues have developed the Design Space Toolbox to facilitate a systematic

approach to developing reduced signaling and transcriptional network models with specified

properties such as multistability [22]. They cast mechanistic models into a Generalized Mass

Action form, and this is then analyzed to realize the required phenotypic repertoire. While this

is an effective way of obtaining models with desired multi-state properties, it differs in objec-

tives from our goal of having a reduced, very efficient representation of dynamic responses of

complex reaction networks such as synaptic signaling.

Efficiency is a specific constraint in developing models of synaptic signaling. On the one

hand, many neural functions depend on the nuances of signaling. For example, network prop-

erties are quite sensitive to different plasticity rules [23], neuromodulators [24], and mutations

[25]. Network models also are expanding to include diffusible messengers controlling cellular

activity and blood flow [26]. At the single-cell level, explorations of receptor insertion and clus-

tering [27,28], sequence recognition [29] and synaptic tagging [30,31] all require some level of

reference to the chemical signaling. The crux of the problem arises when these studies need to

scale beyond one synapse to whole-neuron (up to 104 synapses, [29]) or even network scales

(e.g., 109 synapses [32]). Clearly, efficiency in memory and computations is important for such

models.

The HillTau form addresses several key concerns with modeling of complex signaling net-

works. It utilizes only those observable states specified by the user to map directly to the chem-

istry, thus supporting sparse models that are easier to constrain with limited data. This

requires very few parameters, yet behaves similarly to chemical cascades involving multiple

intervening steps. Since the user specifies their chosen observables, each can be related directly

to observations of concentration over time. The models are small and calculations are highly

efficient, being closed-form and event-driven.

Results

We first provide an overview of the HillTau algorithm. Then we illustrate its use to approxi-

mate increasingly complex reaction networks. We then show how one can reduce a mass-

action model to its HillTau equivalent, with a tradeoff of greater complexity for better accu-

racy. Finally we carry out some benchmarks of several reduced HillTau models against the

original ODE-chemical kinetic models run on two simulators, MOOSE [33] and COPASI

[12], and show that HillTau is orders of magnitude faster.

Overview of HillTau algorithm

The name HillTau comes from combining the Hill form for concentration-dependence of a

reaction, and tau, the time-course for settling to steady state. In brief, a ‘reaction’ in HillTau

uses the Hill equation with modifiers to estimate steady-state values Y1 of the product of one

or several chemical reactions having an input reagent Yinput, and a Ligand L, with order n:

Y1 ¼ YinputL
n=ðKAn þ LnÞ Eq i

It may also optionally have a modifier M, with order h:

Y1 ¼
YinputLn

Ln þ KAnð1þ ðM=KmodÞ
h
Þ=ð1þ AmodðM=KmodÞ

h
Þ

Eq ii

A modifier changes the effective KA of a reaction, and is controlled by two terms. Kmod

determines the half-max concentration of the effect of the modifier. Amod determines what
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effect the modifier has on the reaction. If Amod< 1, the modifier is inhibitory, else it is excit-

atory [34]. The steepness of the effect of the modifier is controlled by its order, h.

The HillTau formulation of a reaction also incorporates τ, the time over which the system

exponentially approaches this steady-state. We allow for different time-courses τ and τ2 when

the concentration is rising or falling:

If Y1 > Y tð Þ
Yðt þ DtÞ � YðtÞ

Y1 � YðtÞ
¼ 1 � expð� Dt=tÞ Eq iii

If Y1 < Y tð Þ
Yðt þ DtÞ � YðtÞ

Y1 � YðtÞ
¼ 1 � expð� Dt=t2Þ Eq iv

This exponential form is a good and efficient approximation to the differential equation

form for reaction rates (Eq v), so long as the timestep Δt in Eqs iii and iv is smaller than τ (See

methods):

Y 0ðtÞ ¼ ðY1 � YðtÞÞ=t Eq v

The set of elementary HillTau reactions are illustrated in Fig 1, and the details of the calcu-

lations are provided in the Methods section.

The motivation for this formalism is that the steady-state value of a cascade of binding reac-

tions, or of enzyme reactions with a fixed rate back-reaction, can be approximated by a Hill

function (Methods). Further, the time-course of approach to steady-state is typically governed

by the slowest reaction, and this can be approximated as an exponential settling function

(Methods).

Note that we do not assume that the input, activator and modifier act in a single mass-

action chemical step. Indeed, HillTau is most effective for model reduction when one can fit

several mass-action steps using one HillTau ‘reaction’.

Since Eqs i to iv are analytic, one can do this calculation in an event-driven manner. HillTau

achieves sparseness and simplicity by approximating many steps with a single ‘reaction’, con-

sidering only those intermediates that are needed for readouts or for improved precision. It

achieves speed because the models are smaller, and by using event-driven calculations rather

than numerical integration.

Most reaction networks cascade through many layers of reactions. HillTau evaluates each

upstream layer before downstream ones. It first builds a dependency graph of all reactions.

This is done by identifying input molecules as layer 0, and successively ranking all reactions

that depend only on layer 0 as layer 1, reactions that depend on layers 0 to 1 as layer 2 and so

on.

HillTau identifies feedback loops by reactions which do not resolve into the above layers.

Based on ordering of reactions in the model definition, it picks a reaction to ‘break’ the loop,

and assigns it to layer N+1, where N was the previously deepest layer. It then repeats the pro-

cess of layer assignment, including further loop-breaking if needed.

During evaluation of a single step in HillTau, all the steady-state and time-course calcula-

tions are completed for layer 1, then layer 2 is calculated, and so on. Thus each layer receives

the inputs appropriate to the current time before doing its evaluation. In cases where update

events are separated by periods greater than the shortest τ in the system, additional time-steps

are inserted to maintain accuracy (Methods). For typical use-cases, such as synaptic plasticity

models, the event interval is shorter than the time-courses in the model (typically ~1 sec) and

hence only a single step is taken. In cases where HillTau inserts additional time-steps for accu-

racy, it is done behind the scenes of the same event-driven programming interface. If there is
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feedback, then again one has to use event intervals shorter than the shortest τ in the feedback

loop. A factor of 10 usually gives good convergence (e.g., S7A and S7D Fig).

In summary, HillTau uses analytic evaluation of reaction outputs based on a Hill-like form

and exponential settling, and propagates the evaluation through successive layers of the reac-

tion network for each event time. Events can be stimuli or points in a time-series for sampling

system time-evolution.

The HillTau form can model a range of chemical signaling motifs

We implemented a range of elementary chemical signaling functions to illustrate the use of the

HillTau form (Methods, Fig 1). The HillTau versions of most of these reactions have an exact

fit to their mass-action counterparts (S1 Fig). We further implemented key signaling motifs,

including feedback inhibition, oscillation, and bistables (Fig 2). To do this, we constructed

minimal HillTau schemes that incorporated the essential elements of each of these motifs. We

developed an optimizer program mash.py (MASH: Model Abstraction from SBML to HillTau,

see Methods) to tune parameters of the HillTau models to match the outputs to the original

mass-action or ODE versions. MASH runs the reference model through a range of stimuli

designed to explore its input-output properties, and then uses numerical optimization meth-

ods from scipy.optimize to tune parameters so that the HillTau model produces a good fit to

the original. We used normalized RMS difference between the traces as a measure of goodness

of fit. In Fig 2A–2C we compare feedback inhibition implemented in mass-action (5 reactions,

7 species, 2A), HillTau (2 reactions, 3 species, 2B), and run for a square pulse input (2C). The

feedback inhibition model is well approximated by the HillTau version to within 4% normal-

ized RMS deviation.

Next, we implemented a HillTau version of a mitogen-activated protein kinase (MAPK)

feedback oscillation model having 11 reactions and 15 species, Fig 2E [35]. We used three Hill-

Tau reactions to map to the key components of the original ODE model. First, we used a reac-

tion to represent the basic MAPK cascade. Second, we provided an output reaction to

represent the phosphorylation of the MAPK molecule by the cascade. While it was possible to

use this output signal to inhibit the cascade, we found we had to implement a separate reaction

for the negative feedback step to introduce a longer delay to match the observed oscillations.

Having constructed the model structure, we next fit the HillTau model to the original ODE

model using MASH. As initial parameter estimates, we used taus of the order of the oscillatory

period, and KA of the same order as the (known) molecular concentrations. We first fit the ini-

tial output transients. Then we ran it for a complete cycle. Finally we stretched the fit time to

Fig 1. The HillTau formulation and representation of elementary chemical reactions by a single HillTau reaction.

A: Principle of HillTau formulation. Left: steady-state output values for different levels of the input molecule,

computed by the Hill equation. In all simulations in this figure, two input values are used: first 1 μM (red dot) and later

0.2 μM (blue dot). Right: The simulator starts from the current value of the output, and computes the approach to the

steady-state as an exponential time-course. Note that these are algebraic calculations, not numerical integration. In this

example the output rises from zero toward the red dotted line for 2 seconds. Then the input is changed to 0.2 μM, and

now the simulator approaches the steady-state value for this (blue dotted line) with an exponential time-course. B: Key

section of the JSON code defining this reaction system. C-G: Inputs (blue) and simulated time-course of outputs

(orange) for seven different reactions. Each is represented by a similar HillTau reaction but with different parameters

(see S1 Data). In all cases the HillTau output onset is identical to the output computed using numerical integration of a

single reaction expressed as mass-action chemical kinetics. Decay time-course may differ from onset time-course in

mass-action. C: Binding. D: 2nd order binding. E: Conversion. F: Inhibition, conceptually equivalent to removal of

output molecules by binding of input to the output molecule, and sequestration of the resultant complex. G: Variant of

binding reaction, in which there is a fixed baseline of 0.5 μM, and the system has different on (tau = 1s) and off

(tau2 = 5s) time courses. H. Same as reaction 1, but with a modifier term that strengthens input affinity. I. Same as

reaction 1, but with a gain term that multiplies the output, in this case by a factor of 2.

https://doi.org/10.1371/journal.pcbi.1009621.g001

PLOS COMPUTATIONAL BIOLOGY HillTau: A fast, compact abstraction for modeling signaling pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009621 November 29, 2021 6 / 31

https://doi.org/10.1371/journal.pcbi.1009621.g001
https://doi.org/10.1371/journal.pcbi.1009621


PLOS COMPUTATIONAL BIOLOGY HillTau: A fast, compact abstraction for modeling signaling pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009621 November 29, 2021 7 / 31

https://doi.org/10.1371/journal.pcbi.1009621


include a few cycles. This incremental increase in time was necessary because our RMS scoring

function gives very poor scores for otherwise good models if a phase mismatch builds up over

a few cycles. The final reduced HillTau version (3 reactions, 4 species, Fig 2F) had similar

period and amplitude (Fig 2D), and it fit the waveform to within ~7.6% normalized RMS

deviation.

Finally, we made a HillTau version of a chemical bistable switch using just 2 reactions (Fig

2G). We demonstrated that the HillTau form works with the standard dose-response (null-

cline) approach to estimating steady states (Fig 2H) and showed that the resulting switch

exhibits high and low states that are triggered by transient inputs (Fig 2I).

Thus the HillTau form can efficiently represent a range of important signaling motifs and

their dynamics, including feedback inhibition. oscillations, and bistability.

The HillTau form compactly represents bidirectional synaptic plasticity

Synaptic plasticity is one of the most-modeled neuronal signaling processes [4,36]. The key

features that have been represented include stimulus strength-dependence, timing depen-

dence, and long-term state storage [37]. A few studies have come up with rather detailed mod-

els to implement each of these processes [31,38,39]. As an illustration of all these properties in

the HillTau system, we implemented bidirectional synaptic plasticity including long-term syn-

aptic state changes (Fig 3). One of the interesting aspects of synaptic plasticity is that in many

systems, the same input modality (typically read out as Ca2+ concentration) can give rise to

both synaptic depression and potentiation. This has significant theoretical implications and an

abstract rule for this bidirectional plasticity was proposed by Bienenstock et al. (the BCM rule,

[40]). We first devised a simplified mass-action version of the BCM rule using 9 molecules and

6 reactions (Fig 3A). The species p_AMPAR is the phosphorylated form of the receptor,

assumed to be inserted into the synapse. Here, resting Ca2+ does not alter the state of the

model; low Ca2+ causes depotentiation (that is, reduction of receptor levels), and high Ca2+

causes potentiation (Fig 3C, 3D and 3E). We then implemented a BCM model in just 3 reac-

tions in HillTau (Fig 3B). We used the program mash.py to fit the HillTau model to the refer-

ence mass-action version using a set of generic time-series and dose-response stimuli

(Methods). We obtained a normalized RMS fit of ~2.3%. When we used the fitted model for

Fig 3, we obtained fits of ~5.2%, 8.9% and 2.3% for panels C, D and E respectively even though

the model had not been tuned to these stimuli. As a further elaboration, we introduced a bis-

table switch for long-term retention of synapse state, which was driven bidirectionally by the

BCM rule (Fig 3F). The bistable switch, derived from Calcium-calmodulin Type II kinase

Fig 2. HillTau models of key signaling motifs. A-C: Feedback inhibition. A: Mass-action reaction scheme for

feedback inhibition, involving 7 molecules and 5 reactions. B: HillTau version. Each box represents a molecule. If there

are input arrows to the box it means there is a reaction whose product is the named molecule. Input arrows can be

either inputs (reagents), activators, inhibitors, or modifiers. This reaction consists of 3 molecules (input, fb, and

output) and 2 reactions (fb and output). C: Simulations for mass-action (blue) andHillTau (orange) versions of

feedback inhibition. The green trace is the input molecule. D-F: Oscillator from ultrasensitive MAPK cascade, taken

from [35]. D: Output of simulation. Blue is ODE output and orange is HillTau. E: ODE model. This uses 15 molecules,

and 11 reactions. MAPK-pp is the molecular species used as output of the oscillator. F: HillTau reaction scheme for

oscillator, using 5 molecules and 3 reactions. The concentration of the ‘output’ molecule is plotted. G: HillTau model

of bistable system, involving 4 molecules and 2 reactions. H: Phase plot showing stable states of system as the

intersection points between the steady-state dose-response curves. This was generated by varying the feedback

molecule fb, and measuring output (brown curve), and then varying the output molecule and measuring fb (pink

curve). I: Time-series illustration of state switching in the bistable. As before, output is in brown and fb in pink. The Y

axes of H and I are the same to show that the steady-state output levels (brown) match. The system starts in the low

state. At 20 s a small excitatory input stim is given which fails to switch the state. At 40 s a strong input causes switching

to the high state. At 60 s a weak inhibitory input fails to turn it off, but at 80 s a strong inhibitory input returns the state

to baseline. Excitatory and inhibitory inputs were delivered by transiently setting the level of stim to high or low values.

https://doi.org/10.1371/journal.pcbi.1009621.g002
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(CaMKII) signaling, controls receptor insertion. Using this model we delivered a typical

potentiating stimulus (strong but brief Ca2+ input), leading to sustained synaptic AMPAR ele-

vation. We followed this with a typical long-term depression stimulus (modest but sustained

Ca2+ input), which turned the switch off again and led to reduction in AMPAR (Fig 3G). This

composite model required 4 reactions and one summation function in the HillTau form. Sev-

eral mass-action models of synaptic state switches include these elements (e.g., [4,36,38,41])

and they typically involve far more molecules and reactions (e.g., the Hayer and Bhalla 2005

model used 133 molecules and 215 reactions [38]).

Overall, these examples illustrate how compact HillTaumodels can represent both the bidi-

rectional induction of plasticity, and also long-term maintenance of synaptic state.

HillTau models can be optimized to fit biochemical measurements

The above examples illustrate how HillTau can represent biological signaling motifs, and build

them up into networks with interesting computational properties. We next approached a com-

plementary problem in signaling, namely, to take a complex signaling system, and fit simple

HillTau models to it. This provides a way to perform model reduction and to infer computa-

tional properties. The basic flowchart is illustrated in Fig 4. This flowchart addresses both the

heuristics of defining model topology, and of parameter fitting.

The heuristics for defining model topology are as follows.

1. Identify inputs and key readout molecules. These readouts may be important (and experi-

mentally measured) intermediate signaling molecules in a reaction network, or the end-

products of a cascade.

2. Assign a reaction for each readout molecule, with an input as an upstream substrate or inac-

tive state of the molecule, an activator (or inhibitor, see methods) and optionally, a modi-

fier. Together these control the level of the readout molecule.

3. In case a molecule has multiple inputs, bring in additional reaction steps based on the

known reaction mechanisms. For example, if we have BDNF, EGF and Ca all controlling

ERKII activity, then we could specify an intermediate step where the two receptor tyrosine

kinase ligands converge, and this combination is an activator for the ERKII reaction with

Ca as a modifier.

4. In case a readout is simply the sum of multiple active states of a molecule, use an equation

to define this summation.

Fig 3. HillTau version of synaptic plasticity rules. A. Mass-action model for generating Bienenstock-Cooper-Munro

(BCM) rule for synaptic plasticity. p_AMPAR is the phospho-receptor, and is the output of the model. It is assumed to

localize to the synapse and is thus also referred to as synAMPAR. Calcium triggers both an inhibitor (Calcineurin,

CaN) and a stimulus (CaMKII) for receptor phosphorylation and insertion into the synapse. CaN activates at lower

[Ca2+], so there is initially a reduction in p_AMPAR. CaMKII is present at very high levels, so at higher Ca2+ it out-

competes CaN to give an increase in p_AMPAR. B. BCM rule implemented in HillTau. Here the species synAMPAR is

the output of the model. C-E: Comparison of mass-action model p_AMPAR with HillTau model synAMPAR. Orange

is HillTau, blue is mass action. C: 1s stimulus at 0.5 μM Ca2+ gives a reduction in synaptically localized AMPAR

(synAMPAR). D: 1s stimulus at 5 μM Ca2+ gives an increase in synAMPAR. E: Dose-response curve of steady-state

synAMPAR as a function of [Ca2+] for mass-action (blue) and HillTau (orange) models. In both cases settling time for

each point was 1000s. F: Schematic for BCM rule model feeding into bistable model, implemented in HillTau. The

circular node labeled S represents weighted summation of multiple inputs. G: time-course of simulation of

bidirectional plasticity using different Ca2+ stimuli. At t = 20, a 1s stimulus of 2μM Ca2+ (green trace) causes a

transition to the active state, using synaptic AMPAR (maroon trace) as a readout. At t = 50s, a 30s stimulus of 0.3 μM

Ca2+ pulls the system back to resting state.

https://doi.org/10.1371/journal.pcbi.1009621.g003
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5. Obtain best model fit as per flowchart in Fig 4. If model accuracy does not meet criteria for

your objectives, identify poorly performing intermediate readouts and insert further inter-

mediate reaction steps.

Note that in principle many of these steps can be automated. For example, one can generate

a family of models algorithmically (e.g., [42]) and optimize over topology as well as parameters,

but this is out of the scope of the current study. Other algorithmic approaches for model

reduction are discussed in [14].

In the current paper we have used the above heuristics to generate HillTau schemes (model

topology) by hand.

There are also simple steps to obtain initial parameter estimates for each HillTau ‘reaction’:

1. KA from the activator concentration at half-maximum of the experimental activation

curve, or directly from mass-action model rates.

2. Time-course τ from the experimental time-course of the reaction, or from the slowest inter-

mediate step of a mass-action model. If there is a distinct time-course when the reaction

turns off, use this as τ2.

3. When the modulator is present, assign Kmod and Amod from the half-maximum and the

steepness of modulation curve.

This approach works in the same way for model construction from experimental response

curves, and for model reduction from response curves taken from detailed models. Following

generation of an initial, roughly parameterized HillTau model, we can deploy the model fitting

approaches described in FindSim[43]. In brief, FindSim provides a Python-based framework

for matching models to experiments. It codifies the experiment design (e.g., time-series, dose-

response, bar-chart) and experimental results into a single machine-readable file. FindSim

runs the experiment on the model and returns a numerical score for goodness of fit. The

model may be defined in SBML (run using MOOSE) or using HillTau. Thus FindSim can be

used as the scoring function for optimizing model fit to experiments using a variety of optimi-

zation methods available in scipy.optimize.

For the special case of model reduction, where we already have a detailed SBML model and

wish to fit a reduced, HillTau version, the utility MASH provides a shortcut alternative to the

FindSim and optimization pipeline (discussed above and in the Methods section).

As an example of this flowchart and the use of HillTau fitting to match an existing, detailed

chemical ODE model, we derived a HillTau model of synaptic activity-triggered protein syn-

thesis. Our reference data was obtained by running a series of ‘experiments’ on a published

model implemented in mass-action kinetics [44]. The original model was based on numerous

experiments, and included 123 molecules and 120 reactions (Fig 5A). The input pathways

were Ca2+ and brain-derived neurotrophic factor (BDNF), and the final output was protein

synthesis rate.

We started with the most reduced form, a single reaction to replace the entire synaptic pro-

tein synthesis network. We specified amino acids as the input, BDNF as an activator, Ca as a

modifier, and protein as the product of this reaction, (Fig 5B) to obtain our starting reduced

model. We used MASH to carry out the optimization (Methods). In a model with a single reac-

tion, MASH obtained a fit of about 11% normalized RMS. This is remarkable for such a simple

Fig 4. Flowchart for model building using HillTau. Left: flowchart. Right top: initial reaction with inputs A, B, and C. Right

middle: successive local increments to model, introducing reactions X and Y respectively. Right lower: Final HillTau scheme with

good fit at all stages.

https://doi.org/10.1371/journal.pcbi.1009621.g004
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Fig 5. Model fitting and model reduction. A: Block diagram of source model with 123 molecules and 120 reactions, from [44]. B: First pass reduced model in

HillTau, with 1 reaction and 4 molecules. C: Final reduced HillTau model including activated S6K (aS6K) and activated CaMKIII (aCaMKIII) as intermediate

readouts which also were fit to data. This model has 4 reactions and 10 molecules. D-K: Eight ‘experiments’ on reference and HillTau models, not part of stimulus

PLOS COMPUTATIONAL BIOLOGY HillTau: A fast, compact abstraction for modeling signaling pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009621 November 29, 2021 13 / 31

https://doi.org/10.1371/journal.pcbi.1009621


model. It does well with the dose-response experiments (Scores of 7% and 5%, S2 Fig). How-

ever, it does not do a good job of replicating the dynamics of the experimental data, achieving

scores in the range of 10% to 42%. (S2 Fig). We therefore increased the HillTau model detail.

To do this, we introduced two additional key intermediates into the HillTau model: S6K, and

CaMKIII. We first made a HillTau model involving inputs to S6K alone. Based on the known

pathway, we chose BDNF as the activator, and Ca as the modulator for S6K. The S6K responses

to combinations of these two inputs were used in MASH to obtain a fit to within 3.3% (Indi-

vidual panel fits were between 3% and 22%, see S3 Fig). We then held S6K parameters fixed

while we fit CaMKIII. CaMKIII is activated by Ca, and modulated by S6K. MASH gave a CaM-

KIII fit of 1.9% (Individual panels 2% to 20% but most of the poor scores were small differ-

ences at baseline; S4 Fig).

Collectively, the optimizations for S6K and CaMKIII correspond to the inner loop of Fig 4.

Finally, we added a final protein synthesis reaction that took the already fitted S6K and CaM-

KIII activity as activator and modifier. We held the earlier reactions (S6K and CaMKIII) fixed,

and optimized only the protein synthesis reaction. After this, the composite model fit the opti-

mization waveform in MASH to within 3.2% (normalized RMS), and the figure panels fit

within a mean of 9.3% (Fig 5D–5K).

At this stage one could choose to perform further optimization in a couple of ways. We

could have obtained closer fits had we optimized to the same stimuli as in the figure panels.

Instead we used more general input time-series and dose-response stimuli to the MASH opti-

mizer to see how well the model would generalize. This gives a HillTau model that behaves

well across a wider range of conditions than the experiments in Fig 5. Second, there is a small

systematic difference in baseline in panels 5F and 5G arising from a difference in output at

resting BDNF, seen in panel 5I. The introduction of additional intermediate reactions in the

model as per Fig 4 could further improve the fit. Such tradeoffs between generality, accuracy,

and model complexity are common, and given that HillTau is meant for building compact

models we considered this fit sufficiently good for illustration.

Overall, the abstract HillTau model captures many of the key properties of the mass-action

system. These include steady-state and time-series responses of two inputs (BDNF and Ca),

and three readouts: S6K, CaMKIII, and the end-product protein (Figs S3, S4, and S5 respec-

tively). This is a highly effective dimension reduction, from over 360 to 31 parameters.

It is important to note that the efficiency of HillTau made the optimization calculations

quite tractable. In the final optimization run for the entire model, the single reference ODE

run took ~60 seconds, and the cumulative time for 746 HillTau evaluations was around 18 sec-

onds. The optimization algorithm itself took about 75 seconds, excluding function evaluations.

Can we create a reverse mapping from these simplified HillTau models to ODE forms? A

close but not exact mapping is obtained by taking the small-time limit of the HillTau event-

driven form (Equations 3.x) and converting to an ODE (rate) form (Equations 4.x). ODE

equations are supported by many systems biology simulators. It is not an exact mapping

because HillTau may use different values for rising and falling time-courses (tau and tau2),

whereas the ODE form can accommodate just a single value, tau. We implemented this con-

version in a program, ht2sbml.py, which is provided on the GitHub repository for HillTau.

set used to tune parameters for HillTau version. In all cases protein production rate is readout. Blue plots are reference, orange areHillTau. D: BDNF@3.7 nM

+ Ca2+@0.2 μM, 900 seconds. E: BDNF@3.7nM, Ca2+@1μM. F: 3 pulses of BDNF@3.7 nM for 5s, coincident with Ca2+@10μM for 1s, pulses separated by 300 s. G:

Same as F, but Ca2+ held at baseline of 0.08 μM. H: Dose-response of protein vs. Ca2+, holding BDNF fixed at 3.7 nM. I: Dose-response of protein vs BDNF,

holding Ca2+ fixed at 0.08 μM. J: Protein production rate for fixed BDNF@3.7 nM, where Ca2+ was given in 1 second pulses at intervals of 300, 120, 60 and 10

seconds; each pulse sequence lasting for 1200 s.. K: Dose response of protein production rate vs. Ca2+, holding BDNF at basal levels of 0.05 nM. The average

normalized RMS difference across the eight ‘experiments’ was under 10%, and in all cases the qualitative properties such as direction of change, matched well.

https://doi.org/10.1371/journal.pcbi.1009621.g005
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Using this mapping we were able to export HillTau to SBML, and tested that SBML-capable

simulators such as COPASI could run the reduced, ODE form models, and give approximately

matching results (Methods, S5 Fig). Thus we can use the HillTau toolchain to make reasonably

reduced ODE models, though these are neither as efficient as their HillTau counterparts, nor

do they have the same capabilities to use two time-courses to improve model fitting.

In summary, we developed a systematic procedure for developing reduced HillTau models

to fit mass-action simulations, including a model optimization utility MASH. We illustrate

this procedure by developing a HillTau model of 10 molecules and 4 reactions to fit a mass-

action model having 123 molecules and 120 reactions. The resultant HillTau models generalize

well and the fit improves when intermediate reaction steps are added.

HillTau models are compact and efficient

We next took a set of HillTau models of various levels of complexity, and compared various

measures of computational cost with the ODE equivalents (Table 1 and Fig 6.)

We first compared model complexity, measured as the number of parameters needed to

specify the model. The number of parameters scales roughly as

# of molecular species + 2 � # of reactions.
This is a slight overestimate, since some of the molecules are state variables and we do not

need initial concentration values for them. Here we consider state variables to be those which

are computed, as opposed to defined using initial conditions. In ODE models we estimate this

by counting the number of rate terms plus the number of molecular species with a non-zero

initial value. In HillTau models we count the rate terms and the species which are not reaction

outputs. This yields the approximate scaling terms below. Each reaction needs two parameters,

Kf and Kb for conversion reactions, and Km and kcat for enzymes. We sampled from among

the mass-action models presented in the above sections, ranging from 3 to over 360 parame-

ters, and included an additional model with almost 750 parameters. (Fig 6A). The HillTau

form had a similar scaling with molecules and reactions, except that HillTau also allows for a

number of optional terms in the reactions so the average scaling is somewhat larger than 2 � #
of reactions. We found that the HillTau form became increasingly effective at model reduction

for larger models. Note that here the optimization goal was to obtain a single end-point

response (3 end points in the case of the model in Fig 5). Further reactions would be needed to

also represent intermediate pathway readouts.

Table 1. Parameters used to define a HillTau model. Concentration units can be any of M, mM, uM, and nM, and are specified in the JSON file. The default concentra-

tion units are mM.

Parameter Units Meaning Default Required?

ConcInit Concentration (can be any of M, mM,

uM, nM)

Initial concentration. Only applies to species definitions 0 No

KA Concentration Association constant N/A Yes

τ Time (seconds) Time course for relaxation to steady state N/A Yes

τ2 Time (seconds) Time course of relaxation if output is falling. τ No

Gain None Scaling factor for reaction output. Used to indicate enzymatic

amplification.

1 No

Baseline Concentration Baseline value of reaction output 0 No

Kmod Concentration Half-saturation concentration for modifier N/A Only if modifier molecule is

specified.

Amod None Activation term for modifier 4 No

Nmod None Order of modifier action 1 No

https://doi.org/10.1371/journal.pcbi.1009621.t001

PLOS COMPUTATIONAL BIOLOGY HillTau: A fast, compact abstraction for modeling signaling pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009621 November 29, 2021 15 / 31

https://doi.org/10.1371/journal.pcbi.1009621.t001
https://doi.org/10.1371/journal.pcbi.1009621


Fig 6. Efficiency of HillTau method. A. Scaling of number of parameters. The HillTau form uses far fewer parameters

than mass-action, and becomes relatively more concise with larger models. B, C: run-time scaling. All run-times are

expressed in μs of wall-clock time to execute 1 second of simulation time. Calculations were done on an Intel(R) i7-

7700HQ processor, running Ubuntu 18.04. B. Comparison of run-times of the HillTau and mass-action forms, where

the numerically intensive sections of HillTau were implemented in C++, and C++ was also used for ODE calculations

in two simulators: MOOSE and COPASI. Due to the combination of model reduction and efficient calculation,

HillTau has a huge efficiency advantage which grows to over 3 orders of magnitude for larger models. The accuracy

with which this set of HillTau models fit their ODE counterparts was in the range 3 to 9%. C. HillTau model run-time

increases with number of parameters. R2 = 0.79, slope = 0.015, intercept = 0.006, units in μs/s.

https://doi.org/10.1371/journal.pcbi.1009621.g006
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We then examined run-time efficiency. We took run-times for two ODE simulators,

MOOSE and COPASI, whose numerical cores are in C++. We compared these with matching

HillTau models run using the C++ version of HillTau (Methods, Fig 6B). For small models,

HILLTAU was typically about 100 times faster than the ODE calculations, but for large models

HillTau became over 3 to 4 orders of magnitude faster (Fig 6B). This set of HillTau models fit

their ODE counterparts within 3 to 9% accuracy, but note that the approximations were inher-

ent in the HillTau model structure, and did not arise from lack of numerical convergence. The

run-time for HillTau models grew with the number of parameters (Fig 6C, slope = 0.015 μs/s,

R2 = 0.79), but also had a dependence on model stiffness due to the requirement that the inter-

nal timestep should be smaller than the smallest τ in the model. This suggests that the HillTau

calculation cost could be further improved by utilization of a variable-timestep similar to

methods for ODE solutions frequently used for chemical kinetic calculations.

Dose-response experiments are particularly efficient to compute using HillTau. An ineffi-

cient way to do these for ODE models is to run them out to steady-state for each successive

dose. This may take a long while especially if the system is stiff or converges slowly. It is also

possible to use linear algebraic root-finding to find the steady-state value in one step, possibly

following a short presimulation to bring the system closer to the steady-state [45,46]. In Hill-

Tau, the form itself incorporates the steady-state value, so in principle one could leap to the

steady value in one step. To be more conservative, the HillTau does so in 10 steps to smooth

out transients and to allow any feedback signals to propagate through the system. As an illus-

tration, COPASI performed the steady-state calculation for a large model (accession 92,

DOQCS, ~100 reactions, [44]) in ~1 second after some relaxation of convergence criteria. The

HillTau equivalent model (same as final model in Fig 5) took about 4 microseconds.

Overall, HillTau models are compact and highly efficient compared to ODE-solved mass-

action models. The efficiency improves for larger models.

Discussion

We have designed HillTau, a compact, computationally efficient abstraction of chemical sig-

naling that is particularly effective in building reduced models of complex signaling networks.

It uses an event-driven algebraic representation based on the Hill equation and exponential

relaxation to steady state. HillTau is effective in representing a range of chemical signaling

motifs and complex synaptic models, using biological observables of molecules, reactions,

association constants and time-courses. We show its applicability for model reduction by opti-

mizing the fit of its responses to those of a reference mass-action model. This generates very

compact models. A similar optimization approach works to build a HillTau model directly

from experimental data. ThusHillTau addresses many of the concerns of model-building with

limited data, and serves as a scaffold for eventual development of more detailed models.

HillTau is phenomenological and semi-heuristic, in that it uses the Hill equation to achieve

concentration dependencies that fit well, but ignores many intervening chemical steps. This com-

bination gives it the strong points indicated above, namely speed, compactness, and consistent

mapping to experimental observables, but it also sets out clear limitations. Foremost among these

is that it can only make limited predictions on detailed pathway chemistry, since it is missing

many reaction steps. For example, a HillTau model would be limited in its ability to predict drug

targets or side-effects because it may have lumped together potential molecular targets into a sin-

gle reaction step. It is, however, quite effective in representing and predicting emergent signaling

properties because it captures dynamics and topology of signaling networks.

The current HillTau formulation is limited in its handling of two important aspects of sig-

naling in neurons: stochasticity and diffusion. These phenomena are out of the scope of our

PLOS COMPUTATIONAL BIOLOGY HillTau: A fast, compact abstraction for modeling signaling pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009621 November 29, 2021 17 / 31

https://doi.org/10.1371/journal.pcbi.1009621


current implementation, which has focused on development, validation, simplicity and speed.

Many biochemical signaling processes experience substantial stochasticity, particularly in

small-volume systems such as the synapse which is a target of our modeling. One possible way

to introduce stochasticity would be through the linear noise approximation of the chemical

Langevin equation [47], which if used in an event-driven manner could be quite efficient. We

anticipate it will take extensive validation to establish its utility in the HillTau framework. Sim-

ilarly, there are potential ways to elaborate upon HillTau to use an event-driven approximation

to diffusion, but these will require later follow-up.

Based on these attributes, we discuss four major use-cases for HillTau: model reduction,

system abstraction, scaffolds for data-driven optimization, and efficient approximations to

complex cellular signaling.

Model reduction

Several algorithmic approaches have been brought to bear on the model reduction problem,

including collapsing multiple mass-action steps into one [48], and power-law generalizations

of mass-action signaling [16]. Simulators such as COPASI provide utilities for partitioning a

reaction system into fast and slow reactions, thus allowing one to approximate the fast steps

with their algebraic counterparts [12,13]. In our test model (Accession 92, DOQCS, [44]) we

were able to partition about 80% of the steps into the fast domain (<100 s) using the ILDM

method implemented in COPASI. With HillTau one can use a well-known heuristic/optimiza-

tion approach to simplifying large networks [49,50]. This reduced the same test model down

to 4 reactions, about 25-fold (Figs 4 and 5). The approach reported in our current study relies

on the modeler starting from a minimal input-> output mapping, then iteratively picking rele-

vant major nodes in the network, and optimizing each subset of the model to fit the data

(Fig 4).

Thus one can converge on the minimal set of intermediate nodes (illustrated in Figs 4, 5,

and S2, S3, S4) to achieve the desired accuracy of model fit to data. Like other model reduction

approaches, this minimal set of nodes is a compromise between available data and model accu-

racy [15]. Unlike several other reduction approaches, HillTau retains a direct mapping to

observable biological entities. Indeed, the HillTau representation of a signaling node may be

closer to the conventional intuition based on pathway schematics, than is a full mass-action

reaction representation. Like pathway diagrams, each HillTau reaction receives excitatory,

inhibitory and modulatory inputs. A further point of similarity is the HillTau models may con-

dense several intermediate steps into a single node on the reaction network. A more subtle

point of similarity is that pathway block diagrams typically assume implicit back reactions and

decay of activity when stimuli are removed. This too is built into how HillTau reactions work.

In contrast to these simple mappings from pathway diagrams to the HillTau form, it is often

difficult to map between signaling diagrams and the full mass-action reaction schemes [51,52].

While previous model reduction studies have worked on different pathways than the synapti-

cally biased set explored in our study, a comparison with the survey of methods in [15], sug-

gests that HillTau achieves as good or better model reduction for large models than most other

methods.

System abstraction

Next, system abstraction and functional modules help to make sense of complex biological sig-

naling. We propose that HillTau forms a useful tool for arriving at functional modules in com-

plex signaling networks. Such modules have long been considered a conceptual basis for

understanding complex signaling [53]. Typically they have been ascertained by manual
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inspection and dynamical analysis of components of signaling networks, for example, the

nested feedback loops in the cell cycle [54]. A more scalable approach to uncovering such

modules is to use graph theory for motif analysis on detailed mass-action models, but this

approach loses key aspects of system dynamics [55]. With the HillTau formalism and our pro-

cedures for model reduction, we are able to generate highly reduced reaction graphs that nev-

ertheless support rather accurate dynamics. The formalism encourages models that can be

readily mapped to biology. ThusHillTau supports a data-driven approach to arrive at func-

tional modules.

While functional modules are good for analysis, we note that biology does not necessarily

partition signaling networks into neat modules [52]. Indeed, cross-talk between pathways is

common. HillTau supports explicit cross-talk interactions, but does not introduce implicit

interactions. In this regard it differs from mass-action reaction systems, in which mechanisms

such as back-reactions or enzyme sequestration may introduce subtle effects, such as implicit

feedback. For example, one can achieve bistability through multistage phosphorylation/

dephosphorylation cascades [56]. To represent such effects in HillTau one would have to intro-

duce explicit feedback steps between reactions, such as in the bistability example in Fig 2. Simi-

larly, interesting behavior emerging from chemical saturation, such as zero-order

ultrasensitivity [57] would require the use of the explicit math expressions supported by

HillTau.

Protein-protein interaction networks are a commonly derived form of abstract networks.

These can be purely topological, or may also include reaction dynamics [17]. Can these be

parsed into HillTau networks? To first order, protein interaction networks lack the distinction

that HillTau ‘reactions’ make between inputs, activators and modulators. Additional informa-

tion is needed to disambiguate these. Data from sources such as pathway maps, protein

domain properties, or Gene Ontology relationships are required to resolve HillTau topologies

for a given protein-protein network [10].

Next, can the rates be assigned? In networks that include dynamics (e.g., [17]) this is rela-

tively straightforward to accomplish. In Figs 4 and 5 we illustrate how experimental data, or

simulated dynamics of an existing model can be used to parameterize a HillTau model. The

same approach could utilize the original timing constraints that went into the Nyman model

[17]. Alternatively, a program similar to MASH could explore dynamics of the reference (pro-

tein-protein network) model, and use the output to search for parameters of the corresponding

HillTau model.

ThusHillTau promotes abstraction through model reduction. The abstracted models expose

all interactions explicitly.

Scaffolds for model fitting

Third, HillTau is a useful intermediate step, or scaffold, for model fitting of large mass-action

models. Direct model-fitting is difficult in at least two ways: there are typically far fewer experi-

ments than parameters, and it is computationally costly to run a large ODE model many times

for carrying out an optimization approach to model fitting. We propose that the HillTau form

may provide a useful bridge on both these counts. As we have illustrated in Figs 2, 3 and 5,

HillTau models lend themselves to fitting to experiments because they have few parameters

and they run quickly. Several advantages accrue from an initial pass to make and fit a HillTau

model. 1. In building and optimizing a HillTau model, the optimization dataset will be use-

tested, and gaps identified. 2. The essential pathway structure of the model will be defined by

the HillTau model, and key interactions identified. The mass-action model must, at minimum,

incorporate these interactions. 3. The parameters of the HillTau model set bounds for those of
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the detailed reaction sets. For example, the time-course of any individual mass-action reaction

step must be faster than the HillTau reaction in which it is embedded.

Efficient approximations to complex signaling

Finally, HillTau models are useful because they are efficient. One of the key use-cases envi-

sioned for HillTau was to model complex cellular signaling, with synaptic signaling as an

exemplar. Several of the examples in the current paper are in this domain, specifically the

BCM curve (Fig 3A–3E, the coupled BCM curve with bistables (Fig 3F and 3G), and a synaptic

protein synthesis pathway (Fig 5). While even these large ODE signaling models run somewhat

faster than wall-clock time (Fig 6), there are at least two cases where far greater efficiency is

desirable. First, as mentioned above, model parameter optimization requires a large number of

evaluations of complete simulations (100s to 1000s in our experience). To perform a single

evaluation, these synaptic simulations may have to run for many thousands of seconds of sim-

ulation time to compare with typical plasticity experiments [58]. Further, one typically opti-

mizes a pathway to fit numerous experiments, all of which must be simulated for each

evaluation. Together, this is computationally expensive. In our HillTau optimizations using

MASH, the total simulation time for large numbers of pathway simulations was typically even

smaller than the time spent by the minimizer code itself.

A second use case for highly efficient signaling models is in synaptic signaling. A single neu-

ron may have over 10,000 spines, and there may be many such neurons in a network. If each

synapse is to implement a complex biochemical pathway the computational costs may be for-

midable. Network plasticity models [59], and cellular sequence selectivity models [29] are

examples of this scale of model. Indeed, Higgins et al. [59] have used an efficient event-driven

calculation of synaptic weights with a similar exponential decay calculation as in HillTau. Hill-

Tau signaling provides a way to implement biologically detailed synaptic dynamics in every

synapse, even in large networks.

In summary, the HillTau form and its supporting toolkits for running and optimizing mod-

els provide a compact, efficient way to perform data-driven abstraction of complex signaling

models.

Methods

HillTau formulation

The HillTau formulation is an event-driven variant of a Hill equation with modifiers. It is spec-

ified and evaluated in two stages: the steady-state value, and an exponential time-course of

approach to steady-state. As detailed below, reactions in a HillTau model are evaluated in suc-

cessive layers such that the next estimate for steady-state value of a given layer depends only

on boundary conditions and on outputs from preceding layers. In the equations below we

expand out the equations for a range of use-cases. In equations 1.x we specify the steady-state

values for each use case. In equations 2.x we define the approach to steady state. In equations

3.x we combine Eqs 1 and 2 to summarize the evaluations done in HillTau. In equations 4.x we

provide interpretations of the HillTau equations as rate terms which can be evaluated by regu-

lar ODE solvers and form the basis for the SBML export of HillTau model systems. However,

the definitive form of HillTau is event-driven and the rate-term form should be regarded as a

convenient but approximate mapping to conventional mass-action solvers. In equations 5.x

we provide a motivation for the form of HillTau as an approximation to complex signaling

chemistry.
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HillTausteady-state

The HillTau formulation stipulates that the steady-state level Y1 of each signaling step (which

may involve multiple chemical steps) is approximated by a Hill function

Y1=Yinput ¼ Y ¼ Ln=ðKAn þ LnÞ Eq 1:1

Here Yinput is the input concentration to this signaling step, where Yinput is either a molecule

with a predefined concentration (i.e, a boundary condition) or coming from an upstream reac-

tion. Likewise, the reactant L can either be predefined or come from an upstream reaction. KA
is the association constant of L with Y.

We elaborate this slightly to accommodate an optional gain term:

Y1 ¼ YgainYinputL
n=ðKAn þ LnÞ Eq 1:2

We utilize a slightly modified form to permit the Ligand L to act in an inhibitory manner:

Y1 ¼ YgainYinputð1 � Ln=ðKAn þ LnÞÞ Eq 1:3

In cases where there are modifiers, we include a further term based on the analysis of Hof-

meyer and Cornish-Bowden [34]:

Y1 ¼
YgainYinputLn

Ln þ KAnð1þ ðM=KmodÞ
h
Þ=ð1þ AmodðM=KmodÞ

h
Þ

Eq 1:4

Here M is the concentration of the modifier, Kmod is the half-effect value, Amod is the modi-

fier action, and h is the order of the modifier. The modifier acts in an inhibitory manner when

Amod< 1, and as an activator when Amod> 1. When Amod = 1, clearly, the modifier has no

effect.

Similarly we define the action of the modifier on an inhibitory reaction:

Y1 ¼ YgainYinput 1 �
Ln

Ln þ KAnð1þ ðM=KmodÞ
h
Þ=ð1þ AmodðM=KmodÞ

h
Þ

 !

Eq 1:5

We use a different equation to define steady-state behavior of a system where a single sub-

strate molecule Yinput is converted into a product Y:

Y1 ¼ Yn
input=KA Eq 1:6

For the rare cases where a non-chemical formulation is needed to describe the system, we

provide an alternative algebraic expression for Y1:

Y1 ¼ f ðY1;Y2; . . .Þ Eq 1:7

where f is an arbitrary algebraic function and Y1, Y2. . . are concentrations of other mole-

cules. The use of this algebraic form is discouraged as it weakens the mapping of the model to

the underlying chemistry. This form does not admit of modifiers.

Note that these equations are entirely feed-forward: the concentrations of molecules L, M,

and Yinput are not affected by their participating in any downstream reactions.

HillTau time course

Equations 1 define the steady state estimate for molecule Y, given a set of molecule concentra-

tions in the preceding layer. We then assume that the approach of the system to steady-state is
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governed by a simple exponential with characteristic time τ (Fig 1A):

Yðt þ DtÞ � YðtÞ
Y1 � YðtÞ

¼ 1 � expð� Dt=tÞ Eq 2

where Y(t) is the value of Y at time t. For a simple binding reaction, the time course τ is an

experimental observable, and is approximated by τ ~ 1/(kf+kb) where kf and kb are the for-

ward and backward rates for the first-order Hill binding reaction (Figs 1 and S1).

As a slight extension to this, we permit an optional separate time course τ2 when Y is fall-

ing:

If Y1 > Y tð Þ
Yðt þ DtÞ � YðtÞ

Y1 � YðtÞ
¼ 1 � expð� Dt=tÞ Eq 2:1

If Y1 < Y tð Þ
Yðt þ DtÞ � YðtÞ

Y1 � YðtÞ
¼ 1 � expð� Dt=t2Þ Eq 2:2

The occurrence of different time-courses for buildup and decay is quite common. It hap-

pens in a simple binding reaction (S1A, S1C and S1E Fig). It also occurs when there are differ-

ent chemical steps, such as enzymes with different rates, mediating competing processes for

buildup and decay.

HillTau composite form

Putting Eq 1 and Eq 2 together, we have the following closed-form expression for the value of

Y at time t + Δt:

Yðt þ DtÞ ¼ YðtÞ þ ðY1 � ðYðtÞ � YbaselineÞÞð1 � expð� Dt=tÞÞ Eq 3

The term Ybaseline is an optional (positive) baseline level of molecule Y. Δt is the timestep.

Note that this is a closed form: Δt can be as large as the end of the simulation.

In the limit of large Δt, we have,

Yðt¼1Þ ¼ Y1 þ Ybaseline Eq 3:1

The initial conditions for molecule Y are either specified in the model definition, or as a fall-

back we estimate the steady-state concentration as in Eq 3.1.

Rate interpretation of HillTau

Formally, HillTau can be seen as an approximation to the following rate equations:

Y 0ðtÞ ¼ ðY1 � YðtÞÞ=t Eq 4

In cases where we have a separate τ2, and Y1< Y(t):

Y 0ðtÞ ¼ ðY1 � YðtÞÞ=t2 Eq 4B

SBML, and most ODE solvers, will not readily handle this switch between τ and τ2. For the

purposes of the equations below we just use τ.

Expanding out Y1, we have five variants of Eq 4:
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Basic activation reaction:

Y 0 tð Þ ¼
YgainYinputLn=ðKAn þ LnÞ � YðtÞ

t
Eq 4:1

Basic inhibition reaction:

Y 0 tð Þ ¼
YgainYinputð1 � Ln=ðKAn þ LnÞÞ � YðtÞ

t
Eq 4:2

Activation reaction with modifier:

Y 0ðtÞ ¼
1

t

YgainYinputLn

Ln þ KAnð1þ ðM=KmodÞ
h
Þ=ð1þ AmodðM=KmodÞ

h
Þ
� YðtÞ

 !

Eq 4:3

Inhibition reaction with modifier:

Y 0ðtÞ ¼
1

t
YgainYinput 1 �

Ln

Ln þ KAnð1þ ðM=KmodÞ
h
Þ=ð1þ AmodðM=KmodÞ

h
Þ

 !

� YðtÞ

 !

Eq 4:4

Conversion reaction:

Y 0 tð Þ ¼
ðYn

input=KAÞ � YðtÞ
t

Eq 4:5

Although the HillTau calculations can be done using equations 4.x with a regular ODE

solver, the HillTau definition envisions event-driven calculations. Further, the complete Hill-

Tau form uses τ2 extensively, which is not handled by the above equations. In principle, the

optimization for the HillTau model could just use τ throughout, in which case the reduced

HillTau model could be rendered in mass-action form with a reasonable degree of accuracy

(S5A Fig).

In Table 1 we summarize the parameters for HillTau. All but the first apply to Reactions.

Simple HillTau models only need species concentrations, and the KA and τ terms for the

reactions. The optional terms greatly facilitate the design goals of compactly specifying diverse

signaling reactions.

Computing time-evolution and steady-states

To build complex reaction systems, we permit cascading of reactions so that any molecule can

be a substrate or equation term in any other reaction. To reiterate, this is a purely feed-forward

formulation, so substrates are not affected by any of their downstream targets. We obtain a

dependency tree so that on each timestep the updates are carried out in an order which ensures

that inputs ripple in order through the cascade of reactions. This may lead to inaccurate esti-

mation of transient responses if the updates are carried out at greater intervals (timestep Δt)
than the time-course (τ) of the fastest reaction in the model (S7 Fig). To address this, HillTau

assigns an internal timestep Δt which is smaller than the smallest τ in the model. Since one

normally performs time-series sampling of reactions at a time finer than the fastest reaction,

this restriction usually has little impact on run-time. Further, multi-step systems may include

feedback. In such cases the program has to explicitly break the dependency chain. HillTau

identifies dependency cycles, picks a reaction based on definition order, and assigns it the next

open level in the dependency tree.

A distinct case arises when the HillTau system is used to compute steady state values (e.g.,

in a dose-response curve). These could ideally be solved by taking an infinitely long time-step.
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Given the possible presence of feedback, we instead take a long settling time and subdivide it

into 10 equal steps so as to allow feedback reactions to also settle.

Motivation for the HillTau formalism

The initial motivation for the HillTau form was the observation that many stimulus-response

curves in signaling have a saturating, Hill-like concentration dependence on input strength

even if there are multiple intermediate steps [4,44]. Further, many stimulus-response time-

courses are visually similar to exponential time-courses. This suggested that a combination of

these two properties might be a good approximation even to multi-step signaling cascades.

In order to mathematically support this idea, we considered two of the common motifs in

signaling: enzyme-activation of molecules such as phospho-proteins, with a balancing deacti-

vation reaction; and binding of activators to a reagent. Below, we show that the HillTau form

achieves a reasonable approximation both to the amplitude and time-course of the response.

First, we considered outcomes of an enzymatic cascade with back reactions. We approxi-

mate the rate of production using a Michaelis-Menten- form:

dP=dt ¼ ES:kcat=ðKmþ SÞ Eq 5:1

This is balanced by a first-order back reaction:

dP=dt ¼ � Kr:P Eq 5:2

Then the steady-state at dP/dt = 0 is obtained by combining these:

P1 ¼ ES1 kcat1=ððKm1 þ S1ÞKr1Þ Eq 5:3

This is of the same form as Eq 1, showing that a single enzymatic stage in the cascade can be

approximated by HillTau. Here we add a subscript 1 to indicate that it is the first reaction in

the cascade. Now we stipulate that P1 is the catalyst for the next step, substituting for enzyme

E2. This stage results in the formation of product P2:

P2 ¼ ðES1 kcat1=ððKm1 þ S1ÞKr1ÞÞ � S2 kcat2=ððKm2 þ S2ÞKr2Þ Eq 5:4

And so on for multiple steps. Now, suppose that we only have 2 variable inputs to this path-

way: the first stage input E and one of the substrates. All other substrates are held fixed. This is

a reasonable assumption for HillTau, because any further variable inputs should be treated

explicitly either as modulators or as separate reaction steps. Then, all the (Kmn + Sn) terms are

constant except the one variable substrate Sv. By combining all the constant terms into Kcascade,

we end up with:

Pn ¼ ESv Kcascade=ðKmv þ SvÞ Eq 5:5

This is equivalent to the Hill equation form at the basis of HillTau (See Eq 1.2). We treat

inhibition using the same analysis, except resulting in depletion of a substrate (Eq 1.3).

For the time-course, we assume that one of the reactions is rate-limiting. For this step, the

rate of formation of product is given by:

dP=dt ¼ ES:kcat=ðKmþ SÞ � KrP Eq 5:6
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This yields an exponential settling curve with a final value P1., as shown from Eq 5.3. The

time-course is given by:

PðtÞ ¼ P1 � ðP1 � P0Þexpð� t=tÞ Eq 5:7

where

τ = 1/kr and P0 is the initial value of P.

Note that Eq 5.7 can be rearranged to give Eq 3.

Overall, this approximation yields a consolidated HillTau ‘reaction’ in which we have one

stimulus (E, mapping to the activator L in Eq 1), one reactant (Sv mapping to the reagent Yinput

in Eq 1), to represent a cascade of enzymatic steps with back reactions.

Next, we consider binding reactions in the pathway. These give the same steady-state Hill

Equation form, by definition. From Eq 1.1, setting n = 1, and considering the first reaction

generating Y1:

Y1 ¼ L1R1=ðL1 þ KA1Þ ¼ R1=ð1þ KA1=L1Þ Eq 5:8

A cascade of similar binding reactions, where Y1 feeds into reaction 2, can also be reduced

into the same form:

Y2 ¼ R2=ð1þ KA2=Y1Þ ¼ R2=ð1þ KA2 � ð1þ KA1=L1Þ=R1Þ ¼ Rx=ð1þ KAx=L1Þ Eq 5:9

where Rx = R1R2/(R1+KA2) and KAx = KA1.KA2/(R1+KA2)

Here Eq 5.9 has the same form as Eq 1.1 and Eq 5.8.

Using a similar approach, any number of cascading binding reactions will end up fitting the

same Hill form. Further, from Eq 5.5 we see that the enzyme/back-reaction steps have a similar

Hill-like form. Thus they too can be folded into this cascade.

What is the time-course of this cascaded reaction? As before, we assume that the cascade

has one rate-limiting step i. A standard analysis shows that this too has an exponential time-

course.

dYi=dt ¼ KfiLiRi � Kbi:Yi Eq 5:10

which yields the same exponential settling time-course as Eq 5.7:

YðtÞ ¼ Y1 � ðY1 � Y0Þexpð� t=tÞ Eq 5:11

where tau = 1/(L.Kf + Kb) and Y0 is the initial value of Y.

It is important to note that this value of tau has a dependence on a variable, L, and hence

the use of a constant value of tau is approximate. This is partially mitigated by utilizing differ-

ent values of tau for rising and falling phases of the signal Y. During the rising phase, L will

have a different (typically larger) mean value than during the falling phase. The use of tau for

rising and tau2 for falling phases of the response reflects this.

Thus the steady-state terms for cascading binding and enzymatic reactions can be consoli-

dated into a single HillTau ‘reaction’ step of the Hill form, and the time-course can be approxi-

mated by an exponential when there is one rate-limiting step.

Model definition and reference implementation

HillTau reaction systems are set up in a simple JSON format (Fig 1C), for which we have pro-

vided a schema. We have implemented a small reference driver program in Python (hillTau.

py) that loads the model, runs it with optional stimuli, and plots or saves the output. The hill-

Tau.py file also provides a set of library functions for use in larger programs. An equivalent

implementation in C++ using PyBind11 for identical Python bindings is also provided. Three
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additional utilities are also provided, as described below: for model illustration, model abstrac-

tion, and model conversion to SBML. Python scripts for generating the figures in this paper

(except Fig 4, which is a schematic only) are also provided in S1 Data and on the GitHub site.

Benchmarking was done using the program fig6.py, which calls MOOSE and HillTau through

their Python interfaces, and calls COPASI through thePyCoTools Python interface [60]. The

output values of multiple benchmarking runs were averaged and used for generating the

graphs in fig6_plotting.py. All HillTau and supporting code is licensed under GPL version 3 or

later.

Model illustration

We developed a utility htgraph.py, which generates a reaction diagram for HillTau models

specified in the.json format. This diagram gives a complete specification of the model topol-

ogy, in that one can rebuild the structure of the HillTau model by inspection of the reaction

diagram, though of course the parameters are not provided in the diagram. htgraph.py uses

the dot module of the open-source package graphviz [61] to generate the network graphs.

Model reduction and abstraction: MASH

We provide a utility for performing Model Abstraction from SBML to HillTau: MASH. Briefly,

MASH runs the original SBML model with a reference stimulus to explore the key dimensions

of its input-output mappings. Typical reference stimuli (built into MASH) include dose-

response curves and pulsatile time-series stimuli. MASH then uses standard minimization

routines (scipy.optimize library, method “L-BFGS-B”, [62]) to tweak the HillTau model

parameters to improve its fit to the original model.

MASH is implemented as a Python script mash.py which uses an ODE model (SBML) as a

reference to which it fits a HillTau model. The user provides an initial HillTau model and spec-

ifies a series of stimuli to deliver. As part of this the user also defines which are the input mole-

cules, and which are the readouts, and the ODE and HillTau models. MASH generates a

topologically identical HillTau model to the original, with parameters optimized to fit. It also

reports initial and final scores, expressed as normalized RMS difference between reference

model and HillTau. As per Fig 4, the user may introduce additional intermediate steps in the

pathway in order to achieve the target model fit. The user specifies a set of stimuli (typically a

combination of dose-response and time-series calculations) that explore the model response

space. MASH generates a reference response to these stimuli using an ODE solver (MOOSE).

The function evaluation for the minimization is carried out by running the HillTau model

with the same stimulus, and comparing the HillTau output point-by-point with the reference.

The normalized RMS difference over all points is returned as the score. A score of below 0.05

means that on average the original response differs from the HillTau response by less than 5%.

MASH uses the scipy.optimize library to tweak the HillTau model parameters to improve the

fit, as measured by this RMS score. MASH documentation and examples are provided on the

HillTau website. MASH was used to fit the HillTau models for Figs 2, 3 and 5, and the scores

are reported. S2, S3 and S4 Figs, and S1 Data specify how these fits were done.

Model conversion to SBML

The utility ht2sbml.py performs a conversion of HillTau models defined in the reference JSON

format, into equivalent ODE models defined in SBML. It uses simplesbml (https://github.com/

sys-bio/simplesbml for generating the SBML. This uses the forms defined in equations 4.x in

Methods. The conversion is approximate on two counts, first, HillTau is an event-driven, not

continuous method, and second, HillTau may use different time-courses for rising and falling

PLOS COMPUTATIONAL BIOLOGY HillTau: A fast, compact abstraction for modeling signaling pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009621 November 29, 2021 26 / 31

https://github.com/sys-bio/simplesbml
https://github.com/sys-bio/simplesbml
https://doi.org/10.1371/journal.pcbi.1009621


phases as a reaction proceeds, whereas the ODE form uses only a single time-course. If the

HillTau model is generated (for example, after model reduction) such that each reaction only

utilizes tau and not tau2, then the approximation is very good. In S5 Fig, we performed

ht2sbml.py conversion of 3 HillTau models to SBML and then compared the HillTau output

with COPASI calculation of the converted model, under 5 conditions. We obtained an excel-

lent fit (<1% normalized RMS) for an oscillatory model that did not use tau2. The feedback-

inhibition model used in Fig 2, which does use tau2, gave a mediocre fit of 29%. The full pro-

tein synthesis model was tested under 3 conditions: protein response to BDNF, S6K response

to BDNF, and CaMKIII response to Ca. These gave fits of 30%, 26% and 1.7% respectively,

though the qualitative response was similar in all cases. Thus the ht2sbml.py conversion works

for all HillTau models, but the conversion may be approximate for models which have very

different tau and tau2 parameters in their reactions.

Supporting information

S1 Fig. HillTau fits to simple mass-action reactions. Fits are indicated on top of each figure

panel. Each of these is a single HillTau ‘reaction’ where ‘input’ is activator in all but Panel E,

where ‘input’ is an inhibitor. In all cases the rising phase fits exactly, but in panels A, C and E

the falling phase has a different time-course.

(TIF)

S2 Fig. Fit of single-reaction HillTau Model to protein synthesis pathway. Model is as in

Fig 5B. Panels A-F correspond to panels D-I in Fig 5. In all cases protein production rate is

readout. Blue plots are reference, orange areHillTau. A: BDNF@3.7 nM + Ca2+@0.2 μM, 900

seconds. B: BDNF@3.7nM, Ca2+@1μM. C: 3 pulses of BDNF@3.7 nM for 5s, coincident with

Ca2+@10μM for 1s, pulses separated by 300 s. D: Same as C, but Ca2+ held at baseline of

0.08 μM. E: Dose-response of protein vs. Ca2+, holding BDNF fixed at 3.7 nM. F: Dose-

response of protein vs BDNF, holding Ca2+ fixed at 0.08 μM. G: MASH optimization wave-

form used to fit the HillTau model for protein synthesis.

(TIF)

S3 Fig. Fitting S6K to the protein synthesis pathway model. HillTau reactions as in Fig 5C.

Panels A-F correspond to panels D-I in Fig 5. In all cases activated S6K concentration is read-

out. Blue plots are reference, orange areHillTau. A: BDNF@3.7 nM + Ca2+@0.2 μM, 900 sec-

onds. B: BDNF@3.7nM, Ca2+@1μM. C: 3 pulses of BDNF@3.7 nM for 5s, coincident with Ca2

+@10μM for 1s, pulses separated by 300 s. D: Same as C, but Ca2+ held at baseline of 0.08 μM.

E: Dose-response of protein vs. Ca2+, holding BDNF fixed at 3.7 nM. F: Dose-response of pro-

tein vs BDNF, holding Ca2+ fixed at 0.08 μM. G: MASH optimization waveform used to fit the

HillTau model for S6K activation.

(TIF)

S4 Fig. Fitting CaMKIII to the protein synthesis pathway model. HillTaureactions as in Fig

5C. Panels A-F correspond to panels D-I in Fig 5. In all cases activated CaMKIII concentration

is readout. Blue plots are reference, orange areHillTau. A: BDNF@3.7 nM + Ca2+@0.2 μM, 900

seconds. B: BDNF@3.7nM, Ca2+@1μM. C: 3 pulses of BDNF@3.7 nM for 5s, coincident with

Ca2+@10μM for 1s, pulses separated by 300 s. D: Same as C, but Ca2+ held at baseline of

0.08 μM. E: Dose-response of protein vs. Ca2+, holding BDNF fixed at 3.7 nM. F: Dose-

response of protein vs BDNF, holding Ca2+ fixed at 0.08 μM. G: MASH optimization wave-

form used to fit the HillTau model for CaMKIII activation.

(TIF)
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S5 Fig. Conversion of HillTau models to SBML, and comparison of the resultant responses

simulated in HillTau and COPASI respectively. A: Oscillator model. This uses only ‘tau’ in

its formulation, and fits to within 1%. B. Feedback inhibition model from Fig 2. A 1 uM stimu-

lus is delivered at t = 20, and it lasts till t = 60. This has a mediocre fit of 29%. C-E: Protein syn-

thesis model. C. Comparing protein synthesis response to a BDNF stimulus of 5 nM from

t = 2000s to t = 3000s. Fit = 30% is mediocre. D. S6K activation in response to a BDNF stimulus

of 5 nM from t = 2000s to t = 3000s. Fit = 26% is mediocre. E. CaMKIII activation in response

to a calcium stimulus of 5 uM from t = 2000 to t = 3000s. This fits well, 1.7%. F. HillTau reac-

tion scheme for oscillator model.

(TIF)

S6 Fig. HillTau model schematic for largest model in Fig 6, with 35 HillTau parameters

and 11 reactions.

(TIF)

S7 Fig. Dependence of HillTau simulation output on timestep. In all panels the dashed lines

represent the time-series, and the dots represent the sample points for estimating error using

the smallest timestep as reference. Accuracy is reported as normalized root-mean square dif-

ference from smallest timestep. A: Feedback inhibition. Step stimulus of 1 uM is given at

t = 10s, which lasts till t = 50s. 1% accuracy is achieved for dt = 1s. B: feedforward inhibition.

Stimulus same as A. 1.5% accuracy at dt = 1s. C: BCM curve. Stimulus of 1 uM is given at

t = 10s and stays till the end of the simulation. 1% accuracy at dt = 1s. D: Kholodenko oscilla-

tor. Here the system is free-running. 1.2% accuracy at dt = 6s.

(TIF)

S1 Data. Supplementary code directory. The zipfile S1 Data with supplementary code

expands out into a directory which has Python scripts and model definition files for generating

all the simulated components of the figures in the paper, including supplementary figures.

Detailed instructions for running the scripts are provided in the README.txt file in the same

directory. The scripts should run with Python 3.x, but many figures require additional software

installation for the ODE simulators MOOSE and COPASI, as well as some other packages.

Details are provided in the README.txt.

(ZIP)

Acknowledgments

Nisha Viswan provided useful feedback from use-testing HillTau. G.V. HarshaRani did much

of the coding for htgraph.py and configured the HillTau repository for installation using pip.

Author Contributions

Conceptualization: Upinder S. Bhalla.

Data curation: Upinder S. Bhalla.

Formal analysis: Upinder S. Bhalla.

Funding acquisition: Upinder S. Bhalla.

Investigation: Upinder S. Bhalla.

Methodology: Upinder S. Bhalla.

Project administration: Upinder S. Bhalla.

PLOS COMPUTATIONAL BIOLOGY HillTau: A fast, compact abstraction for modeling signaling pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009621 November 29, 2021 28 / 31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009621.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009621.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009621.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009621.s008
https://doi.org/10.1371/journal.pcbi.1009621


Resources: Upinder S. Bhalla.

Software: Upinder S. Bhalla.

Supervision: Upinder S. Bhalla.

Validation: Upinder S. Bhalla.

Visualization: Upinder S. Bhalla.

Writing – original draft: Upinder S. Bhalla.

Writing – review & editing: Upinder S. Bhalla.

References
1. Mayer J, Khairy K, Howard J. Drawing an elephant with four complex parameters. Am J Phys. 2010; 78:

648–649. https://doi.org/10.1119/1.3254017

2. Bayés A, van de Lagemaat LN, Collins MO, Croning MDR, Whittle IR, Choudhary JS, et al. Characteri-

zation of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci. 2011;

14: 19–21. https://doi.org/10.1038/nn.2719 PMID: 21170055

3. Bhalla US. Multiscale modeling and synaptic plasticity. Prog Mol Biol Transl Sci. 2014; 123: 351–386.

https://doi.org/10.1016/B978-0-12-397897-4.00012-7 PMID: 24560151

4. Bhalla US, Iyengar R. Emergent properties of networks of biological signaling pathways. Science. 1999;

283: 381–387. https://doi.org/10.1126/science.283.5400.381 PMID: 9888852

5. Shouval HZ, Bear MF, Cooper LN. A unified model of NMDA receptor-dependent bidirectional synaptic

plasticity. Proc Natl Acad Sci U S A. 2002; 99: 10831–10836. https://doi.org/10.1073/pnas.152343099

PMID: 12136127

6. Wils S, De Schutter E. STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with

Python. Front Neuroinformatics. 2009; 3: 15. https://doi.org/10.3389/neuro.11.015.2009 PMID:

19623245

7. Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W, Kim M, et al. The role of type 4 phosphodies-

terases in generating microdomains of cAMP: large scale stochastic simulations. PloS One. 2010; 5:

e11725. https://doi.org/10.1371/journal.pone.0011725 PMID: 20661441

8. Stiles JR, Bartol TM. Monte Carlo methods for simulating realistic synaptic microphysiology using

MCell. Computational Neuroscience: Realistic Modeling for Experimentalists, editor De Schutter Erik.

CRC Press; 2001. pp. 87–127.

9. Andrews SS, Addy NJ, Brent R, Arkin AP. Detailed simulations of cell biology with Smoldyn 2.1. PLoS

Comput Biol. 2010; 6: e1000705. https://doi.org/10.1371/journal.pcbi.1000705 PMID: 20300644

10. Sorokina O, Sorokin A, Armstrong JD. Towards a quantitative model of the post-synaptic proteome. Mol

Biosyst. 2011; 7: 2813–2823. https://doi.org/10.1039/c1mb05152k PMID: 21874189

11. Barak O, Tsodyks M. Recognition by variance: learning rules for spatiotemporal patterns. Neural Com-

put. 2006; 18: 2343–2358. https://doi.org/10.1162/neco.2006.18.10.2343 PMID: 16907629

12. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. COPASI—a COmplex PAthway SImula-

tor. Bioinforma Oxf Engl. 2006; 22: 3067–3074. https://doi.org/10.1093/bioinformatics/btl485 PMID:

17032683

13. Deuflhard P, Heroth J. Dynamic Dimension Reduction in ODE Models. In: Keil F, Mackens W, Voß H,

Werther J, editors. Scientific Computing in Chemical Engineering. Berlin, Heidelberg: Springer;

1996. pp. 29–43. https://doi.org/10.3109/02656739609023525 PMID: 8877472

14. Radulescu O, Gorban AN, Zinovyev A, Noel V. Reduction of dynamical biochemical reactions networks

in computational biology. Front Genet. 2012; 3: 131. https://doi.org/10.3389/fgene.2012.00131 PMID:

22833754

15. Snowden TJ, van der Graaf PH, Tindall MJ. Methods of Model Reduction for Large-Scale Biological

Systems: A Survey of Current Methods and Trends. Bull Math Biol. 2017; 79: 1449–1486. https://doi.

org/10.1007/s11538-017-0277-2 PMID: 28656491

16. Savageau MA. Design principles for elementary gene circuits: Elements, methods, and examples.

Chaos. 2001; 11: 142–159. https://doi.org/10.1063/1.1349892 PMID: 12779449

17. Nyman E, Stein RR, Jing X, Wang W, Marks B, Zervantonakis IK, et al. Perturbation biology links tem-

poral protein changes to drug responses in a melanoma cell line. PLOS Comput Biol. 2020; 16:

e1007909. https://doi.org/10.1371/journal.pcbi.1007909 PMID: 32667922

PLOS COMPUTATIONAL BIOLOGY HillTau: A fast, compact abstraction for modeling signaling pathways

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009621 November 29, 2021 29 / 31

https://doi.org/10.1119/1.3254017
https://doi.org/10.1038/nn.2719
http://www.ncbi.nlm.nih.gov/pubmed/21170055
https://doi.org/10.1016/B978-0-12-397897-4.00012-7
http://www.ncbi.nlm.nih.gov/pubmed/24560151
https://doi.org/10.1126/science.283.5400.381
http://www.ncbi.nlm.nih.gov/pubmed/9888852
https://doi.org/10.1073/pnas.152343099
http://www.ncbi.nlm.nih.gov/pubmed/12136127
https://doi.org/10.3389/neuro.11.015.2009
http://www.ncbi.nlm.nih.gov/pubmed/19623245
https://doi.org/10.1371/journal.pone.0011725
http://www.ncbi.nlm.nih.gov/pubmed/20661441
https://doi.org/10.1371/journal.pcbi.1000705
http://www.ncbi.nlm.nih.gov/pubmed/20300644
https://doi.org/10.1039/c1mb05152k
http://www.ncbi.nlm.nih.gov/pubmed/21874189
https://doi.org/10.1162/neco.2006.18.10.2343
http://www.ncbi.nlm.nih.gov/pubmed/16907629
https://doi.org/10.1093/bioinformatics/btl485
http://www.ncbi.nlm.nih.gov/pubmed/17032683
https://doi.org/10.3109/02656739609023525
http://www.ncbi.nlm.nih.gov/pubmed/8877472
https://doi.org/10.3389/fgene.2012.00131
http://www.ncbi.nlm.nih.gov/pubmed/22833754
https://doi.org/10.1007/s11538-017-0277-2
https://doi.org/10.1007/s11538-017-0277-2
http://www.ncbi.nlm.nih.gov/pubmed/28656491
https://doi.org/10.1063/1.1349892
http://www.ncbi.nlm.nih.gov/pubmed/12779449
https://doi.org/10.1371/journal.pcbi.1007909
http://www.ncbi.nlm.nih.gov/pubmed/32667922
https://doi.org/10.1371/journal.pcbi.1009621


18. Bray D. Protein molecules as computational elements in living cells. Nature. 1995; 376: 307–312.

https://doi.org/10.1038/376307a0 PMID: 7630396

19. Maurya MR, Bornheimer SJ, Venkatasubramanian V, Subramaniam S. Reduced-order modelling of

biochemical networks: application to the GTPase-cycle signalling module. IEE Proc Syst Biol. 2005;

152: 229–42. https://doi.org/10.1049/ip-syb:20050014 PMID: 16986265

20. Danø S, Madsen MF, Schmidt H, Cedersund G. Reduction of a biochemical model with preservation of

its basic dynamic properties. FEBS J. 2006; 273: 4862–4877. https://doi.org/10.1111/j.1742-4658.

2006.05485.x PMID: 17010168

21. Taylor SR, Doyle FJ, Petzold LR. Oscillator model reduction preserving the phase response: application

to the circadian clock. Biophys J. 2008; 95: 1658–1673. https://doi.org/10.1529/biophysj.107.128678

PMID: 18487303

22. Lomnitz JG, Savageau MA. Design Space Toolbox V2: Automated Software Enabling a Novel Pheno-

type-Centric Modeling Strategy for Natural and Synthetic Biological Systems. Front Genet. 2016; 7:

118. https://doi.org/10.3389/fgene.2016.00118 PMID: 27462346

23. Dan Y, Poo M-M. Spike timing-dependent plasticity of neural circuits. Neuron. 2004; 44: 23–30. https://

doi.org/10.1016/j.neuron.2004.09.007 PMID: 15450157

24. Roelfsema PR, Holtmaat A. Control of synaptic plasticity in deep cortical networks. Nat Rev Neurosci.

2018; 19: 166–180. https://doi.org/10.1038/nrn.2018.6 PMID: 29449713
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