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ABSTRACT
Background and objective Morphologic variations of
disease are often linked to underlying molecular events
and patient outcome, suggesting that quantitative
morphometric analysis may provide further insight into
disease mechanisms. In this paper a methodology for the
subclassification of disease is developed using image
analysis techniques. Morphologic signatures that
represent patient-specific tumor morphology are derived
from the analysis of hundreds of millions of cells in
digitized whole slide images. Clustering these signatures
aggregates tumors into groups with cohesive
morphologic characteristics. This methodology is
demonstrated with an analysis of glioblastoma, using
data from The Cancer Genome Atlas to identify
a prognostically significant morphology-driven
subclassification, in which clusters are correlated with
transcriptional, genetic, and epigenetic events.
Materials and methods Methodology was applied to
162 glioblastomas from The Cancer Genome Atlas to
identify morphology-driven clusters and their clinical and
molecular correlates. Signatures of patient-specific
tumor morphology were generated from analysis of 200
million cells in 462 whole slide images. Morphology-
driven clusters were interrogated for associations with
patient outcome, response to therapy, molecular
classifications, and genetic alterations. An additional
layer of deep, genome-wide analysis identified
characteristic transcriptional, epigenetic, and copy
number variation events.
Results and discussion Analysis of glioblastoma
identified three prognostically significant patient clusters
(median survival 15.3, 10.7, and 13.0 months, log rank
p¼1.4e-3). Clustering results were validated in
a separate dataset. Clusters were characterized by
molecular events in nuclear compartment signaling
including developmental and cell cycle checkpoint
pathways. This analysis demonstrates the potential of
high-throughput morphometrics for the subclassification
of disease, establishing an approach that complements
genomics.

INTRODUCTION
Variations in disease morphology are often linked to
underlying molecular events and patient outcomes,
suggesting that quantitative morphometric anal-
ysis may provide further insight into disease
mechanisms. Advances in computing and imaging
devices now put large-scale morphometric analysis

within reach; whole slide imaging devices are
capable of rapidly producing detailed digital repre-
sentations of an entire glass slide at high magnifi-
cation, and image analysis algorithms now
automate tasks ranging from antibody scoring to
the segmentation and classifications of cells.
There is currently intense interest in identifying

subclassifications of disease with the aim of devel-
oping improved personalized therapies that target
class-specific mechanisms. Several large-scale disease
characterization efforts are underway, all genomic in
nature, and most focused on cancers. The Cancer
Genome Atlas (TCGA) is the largest, targeting more
than 20 cancers for comprehensive genomic char-
acterization. Several efforts have resulted in
subclassification of human malignancies, one
example being the identification of a molecular
classification of glioblastoma (GBM) into four
classes defined by gene expression: the proneural,
neural, classical, and mesenchymal.1 These classes
have associations with specific genetic alterations,
patient outcome, and response to therapy, and have
been the subject of considerable study.
Although most tumor classification efforts have

focused on molecular data, TCGA is also producing
large collections of whole slide images from tissues
submitted for molecular analysis. The linkage of
pathology images with genomics presents a unique
opportunity to study morphology in the context of
genetics and patient outcome. For example, GBM,
the most common form of primary brain tumor in
adults, exhibits tremendous variations in the
morphologies of both nuclear and cytoplasmic
morphology. What is the underlying molecular
basis for this heterogeneity? Is there a spectrum of
morphologies or are there discrete morphologic
groups? How does morphology associate with
survival or response to therapy? High-throughput
morphometric analysis has the potential to address
these questions.
In this paper we propose a methodology for high-

throughput characterization of morphology to
identify morphologic subtypes of disease. Signatures
of patient-specific tumor morphology are generated
by quantitative analysis of hundreds of millions of
cells in whole slide images, and are clustered to
reveal morphologically cohesive groups. Associa-
tions with patient outcome and treatment response
as well as genetic associations are analyzed
within groups to provide a complete picture of
morphology-driven classes. This methodology
consists of four layered components (see figure 1).
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Morphometric analysis
This component segments individual nuclei and calculates
a quantitative description of each nucleus using a collection of
features that describe nuclear shape, and the texture and
contrast of nuclear and cytoplasmic staining. The derived
segmentation boundaries and cellular features are delivered to
a database implementing the Pathological and Analytic Imaging
Standards.2 This database provides query capabilities for the
recall and analysis of the hundreds of millions of cells repre-
sented in each dataset.

Morphometry-driven patient clustering
The clustering component generates and clusters patient-level
summaries of morphology by generating statistical models of
the millions of cells found in digitized tissues. This component
performs the necessary normalizations required for statistical
modeling and clustering, and provides feature selection capa-
bility to eliminate redundant, non-informative features to
improve clustering performance.

Correlative analysis
The correlative component analyzes morphology-driven patient
clusters for significant associations with outcome and well

recognized genetic alterations. Associations between
morphology clusters and published molecular classes are also
examined. A variety of statistical tests are employed, including
the log rank test, KaplaneMeier estimation, and the hyper-
geometric test for enrichment and depletion.

Genome-wide analysis
The genome-wide analysis component goes beyond well recog-
nized genetic alterations to perform a deeper analysis that
identifies significant transcriptional, epigenetic, and copy
number events. Transcriptional events are mapped to copy
number and epigenetic events to determine causation of tran-
scriptional differences. Lists of significant genes are further
analyzed to identify enrichment of concepts defined by gene
ontology (GO) and to determine which signaling pathways are
enriched in the clusters. Significant gene lists are also filtered to
identify recognized cancer-related genes for abbreviated
reporting.
We demonstrate this methodology using an analysis of GBM

data from TCGA to identify three prognostically significant
morphologic clusters. Correlative and genome wide analysis
shows that these clusters are characterized by nuclear
compartment signaling networks related to development, DNA

Figure 1 The integrative morphologic/
genomic analysis framework consists
of four modules. The morphology engine
produces and manages quantitative
descriptions of hundreds of millions of
cells. The clustering engine normalizes
and filters data and identifies
morphology-driven patient clusters. The
correlative module analyzes clusters for
associations with survival, treatment
response, human evaluations of
pathology, and recognized genetic
alterations. Genome-wide analysis
performs a deeper investigation of the
transcriptional, genetic, and epigenetic
associations, and mines these for
biological themes and pathway
activation. *Gene Ontology and
Pathway Analyses are performed offline
with separate commercial and public
software packages.
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transcription regulation, and cell cycle (CC) checkpoint/DNA
repair. This analysis demonstrates the power of morphologic
analysis and the potential of high throughput morphometrics as
a platform that complements genomics in ongoing disease
characterization efforts.

BACKGROUND
Microscopy image analysis
A comprehensive set of techniques has been developed to
address fundamental problems in pathology image analysis over
the last decade. Algorithms are available to automate tasks from
the segmentation of cells and classification of multicellular
regions to the automated grading of entire images. An in-depth
review of these methods has been produced by Gurcan et al.3 We
limit the scope here to focus on complex systems that incor-
porate multiple components. These systems tend to focus on
computer aided evaluation of diagnostic criteria for detection
and grading of disease.

A computer based grading system for neuroblastoma that
distinguishes grades of differentiation and stromal development
was developed by Gurcan et al.4e9 This system uses a texture
based analysis to classify stroma and degree of cellular differ-
entiation to support diagnosis. Other CAD techniques have also
been developed for lymphoma,10e13 and breast14 and prostate
cancers.14e16 For prostate cancer, Madabhushi et al developed an
innovative system to predict recurrence risk following prosta-
tectomy using the fusion of image derived and proteomics
data.14 Recently, Beck et al published an analysis of image
derived breast epithelium and stromal features to generate
a system that assigns an image-based prognostic score inde-
pendent of clinical, molecular, and pathologic factors.17

Molecular subtypes of glioblastoma
Genomic analyses have illustrated molecular heterogeneity in
many cancers, including GBM, resulting in robust molecular
classification.1 18e21 An analysis of TCGA GBM gene expression
data by Verhaak et al identified four classes, named for the genes
that compose each class’s signature: proneural, neural, classical,
and mesenchymal.1 While clustering was driven by gene
expression patterns, subclasses had strong associations with
frequent mutations and copy number alterations. These same
gene expression classifications have also been observed in lower
grade gliomas.22

Subtypes defined by epigenetic criteria have also been identi-
fied for GBM. An analysis of DNA methylation in TCGA
samples identified a CpG island methylator phenotype (GCIMP)
of GBM that is associated almost exclusively with proneural
tumors and secondary GBMs with somatic mutations of
IDH1.23 The non-GCIMP proneural patients have significantly
worse outcome than GCIMP + proneural subjects.

Morphologic analysis of TCGA data
Morphologic analysis of TCGA data has been limited when
compared to the overall scope of TCGA. A texture-based clas-
sification of GBM image regions into normal, necrotic,
apoptotic, and tumor was performed using combined color and
texture features.24 We have previously published an investiga-
tion of GBM tumor morphology that defined a morphology-
driven clustering of patients using patient-level morphologic
signatures.25 This analysis investigated both the top-down
power of morphologic signatures to predict the molecular clas-
sifications of Verhaak et al, and associations between molecular
classifications and a patient grouping defined by a bottom-up
clustering analysis of morphologic signatures. In this paper we

extend the preliminary work in bottom-up clustering analysis to
present an end-to-end pipeline for cluster analysis that examines
the survival, molecular, and pathologic associations of morpho-
logically defined clusters. In this work we demonstrate the
existence of prognostically significant clusters in glioblastoma,
and validate their existence in a separate dataset. We show that
these clusters do not recapitulate previously identified molecular
subtypes, and are not explained by traditional morphologic
analysis performed by human pathologists. We also illustrate the
gene expression, genetic, and epigenetic associations of these
clusters, showing that activities in cancer-related pathways
significantly distinguish each morphology cluster.

MATERIALS AND METHODS
TCGA glioblastoma dataset
The proposed methodology was tested using data from the
TCGA GBM project. Digitized formalin fixed paraffin-embedded
H&E slides were obtained from the TCGA portal.26 Slides were
manually curated to remove images that were poorly focused, or
that contain digitization or preparation artifacts. Survival,
chemotherapy, and radiotherapy data were also obtained from
the TCGA portal. Survival was taken as ‘days to death’ for non-
right-censored patients, and ‘days to last follow-up’ for right-
censored patients. Intensive therapy was defined as three or
more cycles of chemotherapy, or concurrent radiation and
chemotherapy, as in Verhaak et al.1

Transcriptional class labels for the Verhaak and Phillips clas-
sifications were obtained from the TCGA Advanced Working
Group.21 The updated Verhaak labeling extends the original
labeled set presented in Verhaak et al1 by using the originally
labeled samples along with Affymetrix HT_HG-U133A data to
label previously unclassified samples. The original Phillips clas-
sifications were derived from different samples and a similar but
different platform (Affymetrix HG-U133A), and so this scheme
was translated to the TCGA samples and platform. Samples
with a negative silhouette width were discarded from analysis.
Methylation phenotype CIMP status was calculated using level
2 Illumina OMA002 and OMA003 cancer panels as described
previously.23 Genetic alterations of recognized genes were
obtained from the Sloan Kettering CBIO Cancer Genetics portal
(http://cbio.mskcc.org/cancergenomics/).
TCGA consortium neuropathologists evaluated 112 GBMs for

the presence of 18 pathologic criteria including necrosis, micro-
vascular hyperplasia, or inflammatory cell infiltration. Three
pathologists rated each case as absent (0+), present (1+), or
abundant (2+) for each criterion, with a single pathologist
serving as the adjudicator. Ratings were obtained to analyze
associations between human-derived pathologic criteria and
machine based morphologic clustering, serving as a valuable
resource for corroborating computer-based results.
Genome-wide analysis of molecular data was performed on

level 2 normalized data including the Affymetrix HT_HG-
U133A platform, the Agilent Human miRNA 8x15K platform,
and the Illumina OMA002 and OMA003 cancer panels. Patient-
reduced profiles were calculated for each platform when
multiple patient arrays were encountered.
An independent set of GBM slides were obtained from the

Henry Ford health system to validate morphology clustering and
associations with patient outcome. Slides were similarly curated
to remove images unsuitable for analysis.

Segmentation and feature extraction
The first stage of image analysis identifies the boundaries of cell
nuclei and extracts features to describe nuclear and cytoplasmic
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morphology. Color images were first thresholded to identify and
remove blood spills. Remaining areas were processed with a fast
hybrid algorithm for grayscale reconstruction. This stage
permits local discrimination between whole-nuclei to be
retained for analysis and faint out-of-plane nuclei and other non-
nuclear background hematoxylin stain.27 Tightly packed clumps
of nuclei were then separated using watershed segmentation. A
region of high-confidence cytoplasm was identified for each
nucleus in the absence of a membrane marker by dilating the
nuclear boundary by eight pixels.

Each nucleus/cytoplasmic region is then described by a set of
74 features representing shape and staining characteristics. A
complete list of these features and their definitions is available
in Cooper et al.28 The features describing nuclei are taken from
four broad categories: morphology, intensity, texture, and
gradient. Morphology features describe nuclear shape including
size and boundary irregularity. Intensity, texture, and gradient
features describe the distributions and spatial patterns of
intensity values to reflect differences in staining. The corre-
sponding cytoplasmic region is similarly described, however
morphology is not calculated since cytoplasmic region
boundary is strictly derived from the nucleus. The cytoplasmic
region is first decomposed into separate hematoxylin and eosin
signals using a color deconvolution algorithm.29 Features are
extracted separately for both the hematoxylin and eosin signals
as depicted in Cooper et al.30

Clustering morphology signatures
The clustering module uses measurements of typical nuclei to
self-aggregate patients into morphology-driven clusters. For each
patient, the average cell appearance is calculated over all cells to
define a 74-dimensional morphologic signature. These signatures
are then quantile normalized across patients to provide compa-
rability between the different scales of mixed feature types.31

The normalized signature features are then subjected to an
entropy-scoring feature selection that eliminates redundant
features in order to identify a core set that accounts for most of
the variations across patients.32 Clustering of signatures was
performed using the consensus clustering method to robustly
identify structure over many clustering realizations.33 Multiple
clustering hypotheses were considered, from two clusters up to
seven. Maximization of total silhouette area was used as feed-
back to select clustering outcome that best describes the struc-
ture of the dataset.

Correlative and genome-wide analyses
The correlative analysis module evaluates the morphology
clusters for associations with patient outcome and treatment
response, related molecular classifications, recognized genetic
alterations, and human-derived evaluations of pathological
criteria. Differences in outcome and treatment response were
analyzed using the log rank test to compare the outcome of each
cluster against all others, and differences in outcome within each
cluster for patients receiving intensive treatment.34 Associations
between morphology clusters and transcriptional subtypes,
genetic alterations, and human pathology data were evaluated
using the hypergeometric distribution to determine if a property
appears more or less often than by chance within each
morphology cluster, as described in the online appendix.

RESULTS AND DISCUSSION
An analysis of 200 million nuclei associated with TCGA GBMs
revealed three prognostically significant morphology-driven
clusters. For clarity, we name these clusters after the biological
functions of cluster-associated genes: the CC cluster, the chro-
matin modification (CM) cluster, and the protein biosynthesis
(PB) cluster. Outcome and genetic associations of clusters are
presented in table 1. A complete listing of patients and their
characteristics is presented in online appendix table 1, cluster
characteristics and correlates in online appendix tables 2 and 3e6.
A separate analysis was also carried out on the validation

tissue to confirm existence of these morphology clusters and
their associations with survival.

Analysis of glioblastoma identifies clusters of patient
morphology
Means-based signatures were calculated to represent average cell
appearance for each patient. The top 75% of informative
features were selected using entropy-contribution ranking, and
the signatures were quantile normalized. Consensus clustering
was applied to the normalized signatures, varying the number of
clusters from two to seven, with silhouette area used as a clus-
tering quality measure. The three-cluster analysis produced the
best separation, with the maximum silhouette area of 48.6
(online appendix figure 1). The structure formed by these clus-
ters is visible in the heatmap of figure 2.
Representative nuclei from each patient are presented in

figure 3, selected as the segmented cells that most resemble each
tumor ’s morphologic signature. Nuclei in the CC cluster

Table 1 Survival, genomic, and pathology correlates of morphology clusters

CC cluster CM cluster PB cluster

Prognosis Average Poor Better

Subtype associations Neural depleted Neural enriched
Proneural depleted

GCIMP depleted

Pathology Small cells enriched Lymphocytes enriched Inflammation depleted

Genetics NF1 mutant depleted
TP53 mutant depleted

None None

Pathways TP53 signaling
Wnt signaling
b-catenin

Wnt signaling
b-catenin

NF-kB signaling
ATM checkpoint

Differential Expression 2740/663 genes up/down
97/100 miRNAs up/down

200/463 genes up/down
121/81 miRNAs up/down

0/188 genes up/down
15/5 miRNAs up/down

Differential methylation 69 Genes hypermethylated 244 Genes hypermethylated 45 Genes hypomethylated

Copy number 1068 deletions
38 amplifications

301 deletions
5 amplifications

399 deletions
7 amplifications

Expression mapping 23 mapped to methylated sites
595 mapped to CNV sites

8 mapped to methylated sites
27 mapped to CNV sites

1 mapped to methylated
sites
19 mapped to CNV sites

CC, cell cycle; CM, chromatin modification; CNV, copy number variation; GCIMP, CpG island methylator phenotype; PB, protein
biosynthesis.
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appeared to be the most hyperchromatic and slightly larger than
in the CM and PB clusters; the cytoplasm of these cells was the
most basophilic. The CM cluster had the smallest and least
intensely staining nuclei, and also the most eosinophilic cyto-
plasm. The nuclear and cytoplasmic staining and texture of the
PB cluster were intermediate. Trends in nuclear shape were not
obvious to the human eye. Analysis of the most distinguishing
feature types confirms these observations. The 56 selected
signature features were ranked for their power to separate the
clusters in online appendix table 2, where the t-statistic was
used to rank features for each class. We observe that the top 10
features for the PB and CC clusters all describe cytoplasmic
texture and color. In the CM cluster, 8 of 10 features also
describe cytoplasm, but nuclear area and perimeter also appear.

Morphology clusters are prognostically significant
Figure 1B shows the KaplaneMeier estimation of survival of
TCGA GBM patients, organized cluster membership. The PB
cluster has the most favorable overall clinical outcome, followed
by the CC and CM clusters, and contains a subset of patients
with prolonged survival. Log rank tests show that the CM
(p¼4.5e-4) and PB (p¼1.0e-2) clusters have significantly
different outcomes compared with other clusters, but that the
CC cluster is indistinguishable (p¼0.54). Each cluster was also

analyzed to determine the effectiveness of intensive therapy (see
online appendix figure 2). Intensively treated patients have
significantly better outcome in the CM cluster (p¼1.4e-2), but
not in the CC and PB clusters. A Cox proportional hazard model
incorporating both morphology cluster labels and Verhaak
subtypes further shows that the morphology cluster label is
a significant predictor of survival (p¼5.0e-3) where the Verhaak
subtype is not (p¼0.58) (SAS PHREG V.9.2).

Validation
We performed a de novo clustering on 57 million nuclei from 84
GBM samples within the Henry Ford dataset, using the same set
of selected features from the TCGA analysis. Using the In Group
Proportion method (ClusterRepro, version 1.1) we validated the
CC (p¼7.2e-3) and CM (p¼0.013) clusters in the Henry Ford
dataset.35 The survival trends for these clusters remain consis-
tent with observations from the TCGA dataset (online appendix
figure 3). The PB cluster was not observed in the Henry Ford
dataset (p¼0.63).

Morphology clusters are not strongly associated with traditional
neuropathology classification or recognized genetic alterations
We did not observe significant associations between the
morphology-driven clusters and the classification by expert

Figure 2 Glioblastoma (GBM)
clusters, survival, and relationship to
molecular subtypes. (A) Means-based
analysis of GBM morphology reveals
three patient clusters. (B) Survival
differences between these clusters are
statistically significant. CC, cell cycle;
CM, chromatin modification; PB, protein
biosynthesis.

Figure 3 Signature nuclei for: (A) cell
cycle (CC), (B) chromatin modification
(CM), and (C) protein biosynthesis (PB)
clusters. Cluster morphology is
visualized by selecting the most
representative nucleus from each
patient. The selection is defined by the
cell with the shortest distance in feature
space to the patient’s morphology
signature.
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neuropathologists based on tradition morphologic features.
Categorical neuropathologist ratings were analyzed for associa-
tions with morphology clusters. Using a threshold of abundant
or greater, no abundant inflammation was observed within any
case in the PB cluster (hypergeometric p¼4.7e-2); there was
a slight enrichment of small cells in the CC cluster (p¼1.3e-2),
and a slight enrichment of lymphocytes in the CM cluster
(p¼1.3e-2).

We also did not observe a strong association between the
morphology clusters and the gene expression subtypes of
Verhaak et al. Neural samples are conspicuously absent from the
CC cluster (p¼4.7e-3) and are consequently enriched within the
CM cluster (p¼1.7e-3). The proneural subtype is also depleted
within the CM cluster (p¼4.7e-3), and the proneural-GCIMP
phenotype is absent from the PB cluster (p¼4.0e-2). Morphology
clusters were also analyzed for associations with mutations and
copy number variations recognized in the GBM literature. The
CC cluster lacks any NF1 mutations, despite being composed of
34% mesenchymal samples (hypergeometric p¼7.8e-3). TP53
mutations are also slightly underrepresented in the CC cluster
(p¼2.0e-2).

Genome-wide analysis
Genome-wide analysis of gene expression, DNA methylation,
and copy number variation identified characteristic genes for
each morphology cluster. These gene sets were analyzed by GO
and pathway analysis tools to identify cancer-related pathways
and biological functions enriched within each cluster. Detailed
descriptions of these events are presented in online appendix
tables 3e6. Pathways identified by ingenuity pathway analysis
are shown in online appendix figure 5.

Analysis of the genes differentially expressed across the
morphology clusters using the DAVID database determined that
the most significant annotation for each cluster was in fact
nuclear lumen localization cellular component (GO:0031981,
Benjamini FDR¼1.08E-15, 2.8E-36, 2.17E-19 for clusters PB, CC,
and CM respectively). Comparative analysis of gene ontology
enrichment using DAVID analysis indicated that genes involved
in RNA splicing, and transcriptional regulation were enriched in
all three clusters, where genes associated with PB, CC, and CM
were differentially regulated across clusters. Genes involved in
DNA damage and repair were enriched in the CC and PB clusters
(online appendix table 6). These data support our hypothesis
that quantitative analysis of nuclear morphology can detect
subtle differences in gene expression. Moreover, when the sets of
differentially expressed genes were subjected to ingenuity
pathway analysis, several cancer-related pathways were differ-
entially enriched among the morphology clusters, including the
ATM and TP53 DNA damage checkpoints, the NFkB pathway,
and the Wnt signaling and PTEN-AKT pathways. A full
description of differences is presented in the online appendix.

Limitations and future directions
The tumor microenvironment contains a complex mixture of
cell types, each having a specific role in sustaining the tumor and
promoting growth. Developing enhanced models of patient
morphology to represent these heterogeneous cell populations is
the focus of our work moving forward. Capturing this hetero-
geneity within mixture-type models will permit finer morpho-
logic distinctions between patients and also improve
interpretability and reveal the specific cellular populations
associated with prognosis and molecular events. The robust
estimation and comparison of multi-modal models is a chal-
lenging problem for large high-dimensional datasets. Approaches

to estimation are largely iterative and require many realizations
to achieve satisfactory convergence and to avoid poorly fitted
models that correspond to suboptimal local minima. Compar-
ison of estimated models also requires intensive calculations that
span high dimensional spaces and methods that robustly
establish the correspondences of modes across multiple patients.
We are already using this methodology to study other tumor

types included in TCGA. Each tissue presents unique challenges
for segmentation and feature extraction, but the framework
presented here represents a generalizable approach to performing
correlative studies. We also anticipate that this approach can
naturally extend to study diseases other than cancer. As geno-
mics becomes more affordable, and whole slide imaging devices
more common, we expect that efforts similar to TCGA will
describe other diseases and produce datasets that link pathology,
genomics, and patient outcome.

CONCLUSION
This paper presents a methodology for identifying morphologic
subtypes of disease and an end-to-end framework for the anal-
ysis of survival and genomic subtype correlates. We demonstrate
our methodology with an analysis of TCGAGBM data, showing
that tumors self-aggregate into three prognostically significant
clusters, characterized by variations in pathology and genetics,
and the activation of cancer-related pathways in the nuclear
compartment. While the proposed system is demonstrated on
GBM, these techniques can be applied to any of the more than
20 tumor types now included in TCGA. We are currently
translating our system to study lung adenocarcinomas, a disease
that is also rich with morphologic variation.
The ability to quantitatively characterize disease at multiple

biological scales has the potential to improve personalization of
preventive strategies and treatments. Advances in pathology
imaging devices and computing have added quantitative
morphology to the collection of high-throughput technologies
available to describe genetics, biological function, and now struc-
ture. These high-resolution, high-throughput capabilities are being
employed not only in research, but also increasingly in healthcare
settings. We predict that advances in information technology will
distill volumes of multidimensional imaging and genomic data
into the information that will drive discovery and development of
novel mechanisms for preventing and treating disease.
Molecular tests and human interpretations of anatomic

pathology are currently used to guide diagnosis and treatment.
Researchers in the image analysis community have demon-
strated that in some cases algorithms can reproduce the process
of pattern recognition used to produce render diagnoses. The
results presented here take this process beyond recapitulation of
established diagnoses, and represent what we think will become
an increasingly common practice where computational methods
are used to define previously unrecognized categories of disease.
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