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Abstract 

Abnormal lipid metabolisms are closely associated with cancers. In this study, mass spectrometry 
was employed to in situ investigate the associations of membrane lipid phenotypes of six human 
lung cancer cell lines (i.e., A549, H1650, H1975 from adenocarcinoma, H157 and H1703 from 
squamous cell carcinomas, and H460 from a large cell carcinoma) with cancer cell types and finally 
total 230 lipids were detected. Based these 230 lipids, partial least-square discriminant analysis 
indicated that fifteen lipids (i.e., PE 18:0_18:1, PI 18:0_20:4, SM 42:2, PE 16:0_20:4, PE 36:2, PC 
36:2, SM 34:1, PA 38:3,C18:0, C22:4, PA 34:2, C20:5, C20:2, C18:2, and CerP 36:2) with variable 
importance in the projection (VIP) value of > 1.0 could be used to differentiate six cancer cell lines 
with the Predicted Residual Sum of Square (PRESS) score of 0.1974. Positive correlation between 
polyunsaturated fatty acids (i.e., C20:4, C22:4, C22:5, and C22:6) and polyunsaturated phospholipids (PE 
16:0_20:4, PE 38:4, and PI 18:0_20:4) was observed in lung adenocarcinoma cells, especially for 
H1975 cells. Three adenocarcinoma cell lines (i.e., A549, H1650, and H1975) could be 
differentiated from other lung cancer cell lines based on the expression of C18:1, C20:1, C20:2, C20:5, 
and C22:6. 
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Introduction 
Lung cancer is the major cause of cancer-related 

death worldwide. Non-small-cell lung carcinoma 
represents 85%-90% of all lung cancer death, 
including adenocarcinoma, squamous cell carcinoma, 
and large cell carcinoma [1]. The American Cancer 
Society reported that estimated deaths of lung cancer 
account for high proportion (28% in males and 26% in 
females) among ten leading cancers in the United 
States [2]. Lipids as important membrane biological 
molecules are responsible for membrane structure, 
signal transduction, and efficient fueling [3]. Recent 
studies have shown that cancer cells generate fatty 
acids (FAs) through de novo lipogenesis to maintain a 
constant supply of lipids or energy requirements in 

the rapid growth of tumors [4, 5]. Deregulation of 
lipid metabolism can lead to pathophysiological 
processes and changes in lipid mediators [6]. Changes 
in the levels of membrane lipids are associated with 
diseases. Significantly increased monounsaturated 
FAs (MUFAs, i.e., C16:1 and C18:1) and 
monounsaturated phosphatidylcholines (MUPCs, i.e., 
PC 32:1, PC 34:1, and PC 36:1) are observed in the 
cancer microenvironment [7]. In addition, differences 
in lipid molecular species are found to be associated 
with cell morphology and cancer phenotype [8].  

Recent advancements in mass spectrometry (MS) 
have increased its applications to analyze lipidome 
[9]. Liquid chromatography coupled with 
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electrospray ionization mass spectrometer is suitable 
for global lipid profiling of complex biological 
samples based on its effective separation and 
identification of individual lipid species. Different 
lipid classes (i.e., phosphatidylcholines (PCs), 
sphingomyelins (SMs), phosphatidic acids (PAs), 
phosphatidylethanolamines(PEs), phosphatidylino-
sitols (PIs), phosphatidylserines (PSs), triacylglycerols 
(TGs), and lysophosphatidylcholines (LPCs)) can be 
detected within a single run [10, 11]. Matrix-assisted 
laser desorption ionization-mass spectrometry 
(MALDI-MS) offers a distinct advantage for lipid 
analysis as it has enabled in situ direction of lipids 
while maintaining cell integrity [12, 13]. Lipids such 
as phospholipids and sphingolipids including 
sphingomyelin (SM) and ceramide (Cer) are 
efficiently detected in positive ion mode with a 
commonly used MALDI matrix (i.e., 2, 
5-dihydroxybenzoic acid (DHB)) [14], while 
1,8-bis(dimethylamino) naphthalene (DMAN) as 
highly basic matrix is usually employed for the 
detection of FAs and phospholipids in negative ion 
mode [15, 16], with a limited amount of time after its 
application under high vacuum condition. In 
addition, peak intensities detected using MALDI-MS 
are usually normalized to quantify relatively each 
detected species. 

To investigate the associations of lipid 
phenotypes with six lung cancer cell lines (A549, 
H1650, and H1975 from adenocarcinoma, H157 and 
H1703 from squamous cell carcinomas, and H460 
from a large cell carcinoma), MALDI-Fourier 
transform ion cyclotron resonance mass spectrometry 
(MALDI-FTICR MS) was performed to profile their 
membrane lipids. Two matrixes (DHB and DMAN) 
were used to coat on the cell samples, respectively, 
and the detected membrane lipids including PEs, PIs, 
SPLs, PCs, PAs, and FAs have significantly different 
distributions among six lung cancer cell lines. 

Materials and Methods 
Cell lines and culture  

Human lung cancer cell lines (A549, H157, 
H1650, H1703, H1975, and H460) were obtained from 
the Cell Resource Center, Chinese Academy of 
Medical Sciences. Cells were cultivated in Roswell 
Park Memorial Institute 1640 media supplemented 
with 10% fetal bovine serum, 100 U/mL penicillin, 
and 100 mg/mL streptomycin. A conductive indium 
tin oxide (ITO)-coated glass slide was placed at the 
bottom of each 100-mm culture dish before cells were 
seeded. Cells were grown at 37℃ in 5% CO2 
atmosphere, followed by incubating until 80% 
confluence.  

Cell sample preparation 
The cell-coated glass slides were washed with 

phosphate buffer saline three times and then were 
air-dried at room temperature. Matrix deposition was 
performed as previously described [7]. Briefly, 
approximately 4 mg of DHB or 8 mg of DMAN was 
coated homogeneously on the surface of each 
cell-coated slide using a sublimation device and then 
for mass spectrometric analysis in positive or negative 
ion mode. Matrix-coated slides were placed at -20 °C 
for 30 min for matrix re-crystallization in a Petri dish 
(100 mm diameter × 15 mm depth), followed by 
parallelly placing the cold slide and a piece of filter 
paper wetted totally with methanol/water (1:1, v/v) 
at the bottom of the Petri dish for approximately 3 
min at room temperature to re-crystallize the 
deposited matrix. 

Mass spectrometric analysis 
Lipid profiling was performed using a 9.4 T 

Apex-ultraTM hybrid Qh-FTICR mass spectrometer 
(Bruker Daltonics, Billerica, MA, USA) equipped with 
a 200 Hz, 355 nm Nd:YAG laser. In positive ion mode, 
Instrument calibration was performed using a 
phospholipid mixture (PC 24:0 at m/z 622.44423, PC 
32:0 at m/z 734.56943, PC 36:0 at m/z 790.63203, and PC 
44:2 at m/z 898.72593 from Avanti Polar Lipids, Inc.), 
and mass spectra were obtained over the m/z range of 
500 ~1000. Three commercially available standard 
FAs (C16:0 at m/z 255.23296, C18:0 at m/z 283.26425, and 
C22:6 at m/z 327.23294 from Sigma-Aldrich) with the 
ESI Tuning Mix (Part No. G2432A, Agilent 
Technology, Inc.) were used for instrument 
calibration over the m/z range of 100~1000 in negative 
ion mode. For data acquisition, a mass spectrum was 
accumulated in broadband mode by three full scans 
once with 100 laser shots using 1Mb data points over 
the above-mentioned ranges in the positive and 
negative ion modes, respectively. Ten mass spectra 
were randomly collected over a whole slide. All 
spectra were acquired using ApexControl 3.0.0 
(Bruker Daltonics). 

Data handling and statistical analysis 
Raw MS data were processed with DataAnalysis 

4.0 (Bruker Daltonics). Peaks with signal-to-noise ratio 
of > 5, relative intensity of > 0.1%, and absolute 
intensity of > 10,000 were selected as reliable 
variables. After isotopic deconvolution, monoisotopic 
peaks among different samples were aligned within a 
narrow mass tolerance window (±0.001 Da) as a single 
variable, and their individual intensities were 
obtained. The resulting data were subsequently 
exported to Microsoft Excel and the peaks from 
[M+H]+, [M+Na]+, and [M+K]+ ions in the positive ion 
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mode were further combined as one variable. Peaks 
detected less than two-thirds of six lung cancer cell 
lines were excluded. The half of the baseline intensity 
in each spectrum was adopted as their intensities of 
missing peaks. The intensities of lipids (or variables) 
from each mass spectrum were normalized to a 
constant number of 1000. Resulting datasets in the 
positive and negative ion modes from each cancer cell 
line were combined into one dataset before statistical 
analyses.  

Partial least-square discriminant analysis 
(PLS-DA) was performed to evaluate differences 
among six lung cancer cell lines. On the basis of 
variables (or lipids) with variable importance in the 
projection (VIP) values of > 1.0 in the PLS-DA model, 
lipids responsible for distinguishing between 
different cell lines were obtained. Then univariate 
analysis was performed to validate statistical 
significance in the above-mentioned lipids using 
non-parametric Wilcoxon-Mann-Whitney test. 
Moreover, based on the detected lipids with different 
saturation, correlation and cluster analysis were used 
to analyze the correlation between saturated and 
unsaturated lipids among six cancer cell lines. 
Statistical analyses were performed using SAS 
software (version 9.2, SAS Institute Inc., Cary, NC) 
and SPSS software (version 12.0, SPSS Inc., Chicago, 
IL). A p value < 0.05 was considered to be statistically 
significant.  

Structural identification of lipids of interest 
The lipids of interest were identified as 

previously described [7, 17]. Briefly, significantly 
different lipids were searched against the Lipid maps 
(http://www.lipidmaps.org/) or the METLIN 
database (http://metlin.scripps.edu/), with a mass 
tolerance of < 2 ppm and the relative intensity error of 
isotopic peaks < 5%. The collision-induced 
dissociation was selected to obtain tandem mass 
spectra of the lipids of interest. 

Results and Discussion 
Direct lipid profiling of lung cancer cell lines 

Membrane lipids are central to the regulation 
and control of cellular function and disease. Different 
lipid composition in cell membranes can affect cell 
behaviour such as phagocytosis and signaling 
cascades [18]. Due to the diversity and complexity of 
lipids, lipid analysis usually contains many steps 
including lipid extraction, MS-based analysis, and 
data processing using bioinformatics tools [9]. In this 
study, we have employed a rapid and relatively 
simple procedure to directly analyze intact cell 
samples avoiding extraction and/or separation of 
lipids. Representative mass spectra of two cell-coated 

slides from H1703 cancer cell line were acquired in the 
positive (Figure 1A) and negative ion modes (Figure 
1B), respectively. Compared with Raman 
micro-spectroscopy and nuclear magnetic resonance 
spectroscopy which can only analyze and diagnose a 
group of lipids [19-21], MALDI-FTICR MS could in 
situ detect simultaneously many lipid species. After ion 
combination and intensity normalization, a total of 
230 variables (146 in the positive ion mode and 84 in 
the negative ion mode) were selected for further 
statistical analyses.  

 

 
Figure 1. Mass spectra of membrane lipids of H1703 cells. Positive ion mass 
spectrum of H1703 cells coated with DHB (A) and negative ion mass spectrum of 
H1703 cells coated with DMAN (B). 

 

Discrimination among six lung cancer cell lines 
PLS-DA score plot revealed the obvious 

separation trends among six lung cancer cell lines 
(A549, H157, H1650, H1703, H1975, and H460) with 
the Predicted Residual Sum of Square (PRESS) score 
of 0.1974 (Figure 2A). Six distinct clusters are 
observed based on the above-mentioned variables 
among six cell lines. H1975 (adenocarcinoma) and 
H1703 (squamous cell carcinoma) cells are located in 
the upper right hand quadrant, H460 (large cell 
undifferentiated carcinoma) cell line is located in the 
lower right hand quadrant, A549 (adenocarcinoma) 
and H157 (squamous cell carcinoma) cells are located 
in the lower left hand quadrant, and H1650 
(adenocarcinoma) cell line is located in the upper left 
hand quadrant. Characterization of genetic status has 
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showed that A549 cells are epidermal growth factor 
receptor (EGFR) wild-type and K-ras proto-oncogene 
mutants, but both H1650 and H1975 cells are EGFR 
mutants and K-ras wild-type. H157 and H460 cells are 
EGFR wild-type and K-ras mutants, while H1703 cells 
are EGFR and K-ras wild-type [22-24]. A total of 43 
lipids with VIP values of >1.0 are contributed to 
differentiate these cancer cell lines in this PLS-DA 
model. In order to identify the above-mentioned 
lipids, collision-induced dissociation experiment was 
implemented to get fragment information. Fifteen 
lipids (i.e., PE 18:0_18:1, PI 18:0_20:4, SM 42:2, PE 
16:0_20:4, PE 36:2, PC 36:2, SM 34:1, PA 38:3,C18:0, C22:4, 
PA 34:2, C20:5, C20:2, C18:2, and CerP 36:2) were 
identified (Figure 2B and Supplementary Table S1).  

 

 
Figure 2. Differentiation of six lung cancer cell lines based on change in 
the levels of their membrane lipids. (A) PLS-DA model analysis of 230 variables 
to differentiate six different lung cancer cell lines (A549, H1650, H1975, H157, 
H1703, and H460). (B) Changes in expression levels of fifteen lipids (i.e., PE 18:0_18:1, 
PI 18:0_20:4, SM 42:2, PE 16:0_20:4, PE 36:2, PC 36:2, SM 34:1, PA 38:3,C18:0, C22:4, PA 
34:2, C20:5, C20:2, C18:2, and CerP 36:2) with VIP values of > 1.0 for six lung cancer cells. 

 
These 15 common lipids can be classified into six 

categories of lipids (PEs, PIs, SPLs, PCs, PAs, and 
FAs), most of which are polyunsaturated species. 
Their relative abundance is significantly different 
among six cancer cell lines (Figure 2B and 
Supplementary Figure S1). Significantly increased 

levels of PI 18:0_20:4, SM 42:2, and PE 16:0_20:4 and 
decreased levels of PA 34:2 and C18:2 in A549 cells 
relative to other cancer cells were observed. 
Significantly increased levels of SM 34:1, PA 34:2, 
C20:5, C18:2, and CerP 36:2 and decreased levels of SM 
42:2 and C20:2 in H1650 cells relative to other cancer 
cells were observed. The levels of C18:0 and C22:4 in 
H1975 cells relative to other cancer cells were 
significantly increased, and PA 38:3 level was 
obviously decreased. Interestingly, only decreased 
levels of PE 18:0_18:1, PI 18:0_20:4, and PE 36:2 in 
H157 cells relative to other cancer cells were observed. 
The levels of PE 36:2 and PC 36:2 in H1703 cells 
relative to other cancer cells were obviously increased, 
and the levels of PE 16:0_20:4 and C18:0 were 
decreased. The levels of PE 18:0_18:1, PA 38:3 and 
C20:2 in H460 cells relative to other cancer cells were 
significantly increased, and decreased levels of PC 
36:2, SM 34:1, C22:4, C20:5, and CerP 36:2 were obviously 
observed. Statistically significant differences (p 
values) in the levels of these lipids between six cancer 
cell lines are listed in Supplementary Table S2. 
Previous study indicated that significantly decreased 
levels of serum polyunsaturated FAs (PUFAs, C18:3, 
C18:2, C20:4, and C22:6) were observed in cancer patients 
compared with healthy controls [25]. Dietary PUFAs 
and long-chain n-3 FAs as assessed by the Healthy 
Eating Index 2005 are positively associated with lung 
health [26]. Increased intake of n-3 PUFAs, such as 
C20:5 and C22:6 , can influence the cellular properties, 
activities and pathways against the inflammation and 
neoplastic disorders of lung [27]. In this study, 
significant differences in the levels of PUFAs (i.e., 
C22:4, C20:5, C20:2, and C18:2) among six cancer cell lines 
were observed (Figure 2B). For example, the levels of 
these PUFAs are significantly different in three 
adenocarcinoma cell lines (A549, H1650, and H1975) 
(p < 0.001; Supplementary Table S2), which may 
provide some clues to perform personalized 
treatment and/or medicine for the patients with lung 
cancer. 

Correlation and cluster analysis of 
characteristic lipids in different lung cancer 
cell lines 

To confirm the correlation of lipid expression 
with specific fatty acyl chains and saturation in lung 
cancer cell lines, Spearman correlation analysis was 
performed to explore their relationships. For lung 
adenocarcinoma A549 cells (Figure 3), C16:0 and C16:1 

were negatively correlated with polyunsaturated 
phospholipids (PE 16:0_20:4, PE 38:4, and PI 
18:0_20:4). Saturated PCs (PC 30:0 and PC 32:0) were 
significantly negatively correlated with MUPCs (i.e., 
PC 32:1 and PC 34:1), but positively correlated with 
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SM 34:1. MUFAs (i.e., C18:1 and C20:1) were positively 
correlated with PC 36:1 and PUFAs (C20:3, C22:5, and 
C22:6). PUFAs (i.e., C20:4 and C22:4) were positively 
correlated with polyunsaturated phospholipids (PE 
16:0_20:4, PE 38:4, and PI 18:0_20:4). For lung 
adenocarcinoma H1650 and H1975 cells, C16:0 and C16:1 
were negatively correlated with polyunsaturated 
species (i.e., C20:3, C20:4, C22:4, C22:5, PE 16:0_20:4, PE 38:4, 
and PI 18:0_20:4). The positive correlations between 
PUFAs and polyunsaturated phospholipids became 
more significant in these two cell lines. Especially in 
H1975 cells, C20:4, C22:4, C22:5, and C22:6 were 
significantly positively correlated with PE 16:0_20:4, 
PE 38:4, and PI 18:0_20:4 (r > 0.45, p < 0.01) (Figure 3 
and Supplementary Tables S3-8). C18:0 was 
significantly positively correlated with C20:3, C20:4, and 
PI 18:0_20:4 in both A549 and H1650 cells, while PC 
30:0 and PC 32:0 in H1975 cells were positively 
correlated with C18:1, C20:1, SM 34:1, C20:3, C22:5, and 
C22:6. For squamous cell carcinoma H157 cells, PC 32:1 
and PC 34:1 were positively correlated with C20:1 and 
SM 34:1, but negatively correlated with 
polyunsaturated species (i.e., C20:3, C20:4, C22:5, C22:6, PE 
16:0_20:4, PE 38:4, and PI 18:0_20:4). PUFAs (i.e., C20:3 
and C22:5) were negatively correlated with saturated 
species (i.e., C16:0, C18:0, and PC 32:0) while positively 

correlated with PE 16:0_20:4, PE 38:4, and PI 18:0_20:4. 
These polyunsaturated phospholipids were 
negatively correlated with monounsaturated species 
(i.e., C20:1, PC 32:1, PC 34:1, and SM 34:1). For H1703 
cells, C18:1 and C20:1 were negatively correlated with 
C18:0, PC 30:0, C20:4, C22:6, PE 16:0_20:4, PE 38:4, and PI 
18:0_20:4. However, PC 32:1, PC 34:1, and PC 36:1 
were positively correlated with PC 30:0, C22:6, PE 
16:0_20:4, and PE 38:4. In addition, these MUPCs were 
negatively correlated with PC 32:0 and SM 34:1, and 
PUFAs (i.e., C20:4, C22:4, C22:5, and C22:6) were positively 
correlated with PE 16:0_20:4 and PE 38:4. For large cell 
carcinoma H460 cells, there were no obvious 
correlations among the above-mentioned lipids, 
except that C22:4, C22:5, and C22:6 were positively 
correlated with PE 16:0_20:4 and PE 38:4. Recent 
studies suggested that aberrant lipid metabolism is 
involved in human lung carcinogenesis [17, 28, 29] 
and PEs are required for completion of cytokinesis 
[30]. In this study, PE 16:0_20:4 and PE 38:4, which 
were positively correlated with PUFAs (C20:3, C20:4, 
and C22:4), especially in H1650 and H1975 cells (Figure 
3), may indicate that these PUFAs and short fatty acid 
chains (i.e., C16:1, C16:0, C18:1 or C18:0) as precursors were 
esterified to the synthesis of PE 16:0_20:4 and PE 38:4.   

 
 
 

 
Figure 3. Correlation between membrane lipids in each of six different lung cancer cell lines. Red represents positive correlation and blue represents negative 
correlation. The detailed information on the correlation coefficient (r) and p values are listed in Electronic Supplementary Material Table S3-8. 
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The hierarchical cluster analysis of the lipid 
expression for each cell line was portrayed as a heat 
map according to similarity measure. As shown in 
Figure 4A, two branches of cell lines were produced 
based on the expression of five kinds of phospholipids 
(PEs, PIs, SPLs, PAs, and PCs). One branch clustered 
three cell lines (H157, H460, and H1650) with the high 
expression levels of PAs and low expression levels of 
PEs, PIs, SPLs, and PCs. Other branch clustered 
H1703 and two adenocarcinoma cell lines (H1975, and 
A549) with the high expression levels of 
phospholipids, except PAs. PAs may serve as 
precursors for the synthesis of glycerol phospholipids 
(including PCs, PEs, and PIs) and as second 
messengers involved in cellular signaling [31, 32]. 
These two branches of cell lines were still obtained 
when the phospholipids were classified according to 
the specific species (Figure 4B). The distinct profiles of 
17 common lipids (PC 34:1, PI 18:0_20:4, PC 32:1, PC 
36:2, PA 38:3, SM 34:1, PA 36:2, PE 16:0_20:4, PE 38:4, 
SM 42:2, PE 18:0_18:1, PE 36:2, CerP 36:2, PA 34:2, PC 

36:1, PC 32:0, and PC 30:0) were characterized by 
several subgroups. For example, SM 34:1, PA 36:2, 
and PA 38:3 as a cluster can be used to classify 
different lung cancer cell lines. It has been shown that 
SM 34:1 and PA 36:3 as a panel can be used to 
distinguish between malignant and benign thyroid 
tumors [33]. PC 36:1, PC 32:0, and PC 30:0 as a cluster 
were generally expressed at low levels in H460 and 
H1650 cell lines while at high levels in H1975 cells. 
Moreover, a heat map of the expression pattern of 13 
FAs can also be used to discriminate different cell 
lines (Figure 4C). Three adenocarcinoma cell lines 
(A549, H1650, and H1975) as a cluster expressed low 
levels of C18:1, C20:1, and C20:2 and high levels of C20:5 
and C22:6. 

In addition, it should be noted that the shortage 
in this study is that a comparison of normal lung cell 
and six NSCLC cell lines was not performed due to 
the poor-cultivation status of normal lung cancer cell 
(BEAS-2B cell line). 

 

 
Figure 4. Hierarchical cluster analysis of membrane lipids of six different lung cancer cell lines. Changes in expression levels of five kinds of lipid species (PEs, PIs, 
SPLs, PAs, and PCs) (A), 17 common lipids (B), and 13 fatty acids (FAs) (C) in six lung cancer cell lines. 
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Conclusions 
This study has demonstrated that MALDI-MS 

combined with multivariate statistical analysis is able 
to detect cell type-specific membrane lipids. 
Alterations in the levels of the detected membrane 
lipids including PEs, PIs, SPLs, PCs, PAs, and FAs can 
help to differentiate and classify lung cancer cells, 
which may be associated with lung cancer cell 
phenotypes.  

Supplementary Material  
Supplementary tables and figures.  
http://www.jcancer.org/v07p0810s1.pdf 
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