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Abstract
Introduction: Connectome analysis of the human brain's structural and functional 
architecture provides a unique opportunity to understand the organization of the 
brain's	functional	architecture.	In	previous	studies,	connectome	fingerprinting	using	
brain functional connectivity profiles as an individualized trait was able to predict an 
individual's	neurocognitive	performance	from	the	Human	Connectome	Project	(HCP)	
neurocognitive datasets.
Materials and Methods: In	the	present	study,	we	extend	connectome	fingerprinting	
from	functional	connectivity	(FC)	to	structural	connectivity	(SC),	identifying	multiple	
relationships	between	behavioral	traits	and	brain	connectivity.	Higher-order	neuro-
cognitive tasks were found to have a weaker association with structural connectivity 
than its functional connectivity counterparts.
Results: Neurocognitive	tasks	with	a	higher	sensory	footprint	were,	however,	found	
to have a stronger association with structural connectivity than their functional 
connectivity	 counterparts.	 Language	 behavioral	 measurements	 had	 a	 particularly	
stronger	correlation,	especially	between	performance	on	the	picture	language	test	
(Pic	Vocab)	and	both	FC	(r	=	.28,	p	<	.003)	and	SC	(r	=	0.27,	p	<	.00077).
Conclusions: At	the	neural	level,	we	found	that	the	pattern	of	structural	brain	con-
nectivity	related	to	high-level	language	performance	is	consistent	with	the	language	
white matter regions identified in presurgical mapping. We illustrate how this ap-
proach can be used to generalize the connectome fingerprinting framework to 
structural connectivity and how this can help understand the connections between 
cognitive behavior and the white matter connectome of the brain.
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1  | INTRODUC TION

Recently,	 a	 growing	 number	 of	 studies	 have	 looked	 at	 “connec-
tome	 fingerprinting”	 of	 resting-state	 functional	 magnetic	 reso-
nance	 imaging	 data	 (Finn	 et	 al.,	 2015;Gratton	 et	 al.,	 2018;Smith	
et	al.,	2015;Waller	et	al.,	2017;Yoo	et	al.,	2018).	 In	these	studies,	
a functionally driven parcellation of the brain is used to assess 
the relationship between the underlying functional connectivity 
(FC)	among	the	parcels	and	an	individual's	performance	of	various	
cognitive tasks. They show that this characterization provides a 
unique	fingerprint	for	each	individual	that	is	capable	of	predicting,	
a	priori,	 the	 individual's	performance	on	various	 cognitive	 tasks.	
These	studies	(Garyfallidis	et	al.,	2018;Jbabdi,	Sotiropoulos,	Haber,	
Essen,	 &	 Behrens,	 2015;Le	 Bihan	 &	 Johansen-Berg,	 2012;Lin	
et	al.,	2014;Pestilli,	Yeatman,	Rokem,	Kay,	&	Wandell,	2014),	how-
ever,	have	not	established	to	what	extend	the	underlying	brain's	
neuronal fiber architecture is responsible for the performance of 
these tasks.

The	 human	 connectome	 project	 HCP	 provides	 an	 opportu-
nity to investigate the relationship between an individual's under-
lying	 brain's	 neuronal	 fiber	 architecture,	 that	 is,	 the	 individual's	
structural	connectivity	 (SC)	 fingerprint,	and	the	 individual's	brain's	
ability to perform various cognitive tasks. Previous studies have 
attempted to investigate the relationship between SC and cog-
nitive performance using SC measures derived from functional 
parcellations	 (Hermundstad	 et	 al.,	 2013,	 2014;Mišić	 et	 al.,	 2016).	
These studies found a weaker association between SC and cogni-
tive performance than that between FC and cognitive performance 
(Fukushima	 et	 al.,	 2018;Zimmermann,	 Griffiths,	 Schirner,	 Ritter,	
&	 McIntosh,	 2018).	 This	 weaker	 association	 has	 been	 attributed	
to	 the	 lack	of	extensive	neuronal	 fiber	 connections	between	such	
functional	 parcels	 (Chamberland,	 Bernier,	 Fortin,	 Whittingstall,	 &	
Descoteaux,	2015;Gomez	et	al.,	2015).	To	avoid	this	problem,	new	
“structurally	driven”	parcellations	have	been	developed	that	provide	
a	more	robust	foundation	to	explore	the	SC–function	relationships	
of	 the	 brain	 (Cammoun	 et	 al.,	 2012;Daducci	 et	 al.,	 2012;Desikan	
et	al.,	2006;Maier-Hein	et	al.,	2017;Tzourio-Mazoyer	et	al.,	2002).

The aim of this study was to develop a systematic assessment 
of brain SC connectivity to identify white matter pathways that can 
be	a	significant	determinant	of	behavioral	performance.	To	this	end,	
we	 calculated	 a	 structural	 connectivity	matrix	 for	 each	 individual	
based on the aforementioned structural parcellations. These struc-
tural connectivity matrices are then used to develop a predictive 
model between specific structural connectivity measures and cog-
nitive	 performance,	 such	 as	 language	 comprehension	 and	 decod-
ing,	working	memory,	executive	function,	visual-spatial	processing,	
and	fluid	intelligence,	using	HCP	data.	Our	work	demonstrates	that	
such	 “structural	 parcellations”	 can	 be	 used	 to	 clearly	 document	 a	
strong association between an individual's SC fingerprint and his/
her	 performance	of	 lower-level	 cognitive	 tasks	 (e.g.,	 reading	 com-
prehension).	Conversely,	this	SC	fingerprint	was	also	found	to	have	
a	weaker	association	with	the	individual's	performance	of	high-level	
cognitive	tasks	(e.g.,	working	memory).

2  | MATERIAL S AND METHODS

2.1 | In vivo acquisition

In	 vivo	 subject's	 datasets	 were	 downloaded	 from	 the	 Human	
Connectome	Project	(HCP)	consortium	(Van	Essen	et	al.,	2012,	2013)	
led	by	Washington	University,	University	of	Minnesota,	and	Oxford	
University.	We	follow	the	selection	criteria	from	previous	HCP	stud-
ies	(Smith	et	al.,	2015)	and	include	subjects	with	right-handed,	with	
four	runs	of	rs-fMRI	(two	sessions	(REST1/REST2),	with	two	phase-
encoding	(LR/RL)),	with	good	movement	(mean	square	displacement	
<0.1	mm	frame-to-frame	motion),	available	with	quality	control	DWI	
data.	 Less	 than	 <200	 subjects	 had	 valid	 measurement	 (too	 many	
missing	 data	 >700	 subjects).	 After	 selection	 of	 participants	 from	
the	 original	 HCP	 sample	 (N	 =	 900)	 to	 achieve	 a	 final	 sample	 size	
(N	 =	 144),	we	 focused	 on	 144	 subjects	 from	 the	December	 2015	
release	 (S900,	64/80	male/female,	28.5	±	4.0	 y/o)	 for	which	both	
diffusion	MRI	 and	 resting-state	 fMRI	 scans	 are	 available	 (Siemens	
Connectome	 Skyra	 3T,	 32-channel	 head	 coil).	 Resting-state	 fMRI	
time	 series	data	 (HCP	 filenames:	 rfMRI_REST1	and	 rfMRI_REST2)	
were	acquired	with	TR/TE	=	720/33.1	ms,	2	mm3 isotropic resolu-
tion,	 multiband	 acceleration	 factor	 of	 8	 (Setsompop	 et	 al.,	 2012),	
and	included	four	runs	(two	sessions,	phase-encoding	(LR/RL),	scan	
time	of	14:33	min/run).	Diffusion	MRI	scan	parameters	were	6	b0-
images,	270	diffusion	weighting	directions,	b-max	=	3,000	s/mm2,	
TR/TE	 =	 5520/89.5	ms,	 1.25	mm3	 isotropic	 resolution,	multiband	
acceleration	 factor	of	3	 (Setsompop	et	al.,	2012),	and	 included	six	
runs	(three	different	gradient	table,	two	phase-encoding	directions	
(right-to-left	and	left-to-right),	scan	time	of	9:50	min/run).	Structural	
imaging	(MPRAGE;	TR/TE	=	2400/2.14	ms,	192	slices,	0.7	mm3 iso-
tropic	resolution,	TI	=	1000	ms,	parallel	imaging	(2×,	GRAPPA),	and	
total	scan	time	of	7:40	min)	was	used	for	registration.

2.2 | Data preprocessing

The	 preprocessing	 of	 the	 HCP	 dataset	 was	 performed	 by	 the	
Human	 Connectome	 Project	 consortium	 as	 described	 in	 Glasser	
et	al.	(2013).	The	processing	pipeline	included	artifact	removal,	mo-
tion	correction,	and	registration	to	the	standard	MNI	and	individual	
space.	For	the	HCP	resting-fMRI	datasets,	postprocessing	included	
regressing	out	the	global	mean	time	course	of	WM	and	CSF,	linear	
drift	removal,	artifact	removal,	frame-to-frame	motion	correction	(a	
Friston	24-parameter	motion	model	was	applied,	this	included	first	
derivative regression of the mean time courses of the white matter 
and	CSF	as	well	as	the	global	signal),	exclusion	of	motion-affected	
datasets	 (frame-to-frame	 motion,	 threshold	 <0.1	 mm),	 and	 band-
pass	filtering	(0.01–0.2	Hz)	in	the	BioImage	Suite1 	(Joshi	et	al.,	2011).	
Spatial	 smoothing	 was	 performed	 with	 a	 Gaussian	 kernel	 with	 a	
full-width	half-maximum	 (FWHM)	of	5–6	mm	using	3dBlurToFWH-
Min	 AFNI2 	 to	 reduce	 the	motion	 confounds	 in	 resting-state	 fMRI	
(Cox,	1996;Scheinost,	Papademetris,	&	Constable,	2014). This large 
amount	of	smoothing	was	 justified	as	many	contiguous	voxels	 in	a	
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single parcellation are averaged when calculating network connec-
tivity.	Mean	BOLD	was	calculated	within	each	parcel	to	reduce	the	
variance associated with the spatial regularization of the template's 
parcels.

The	 HCP	 multiband	 diffusion-weighted	 images	 were	 recon-
structed	 using	 generalized	 q-space	 imaging	 as	 implemented	 in	
DSIStudio3 	 (Yeh,	 Wedeen,	 &	 Tseng,	 2010).	 Diffusion	 MRI	 partial	
volume	effects	are	 similar	 to	 those	of	BOLD	 fMRI.	Smooth	parcel	
boundaries	 (instead	of	 binary	parcel	 boundaries)	were	used	 to	 re-
duce the variance associated with parcel size across individuals 
and for reducing flooding error due to gyral connectivity bias (Van 
Essen	&	Ugurbil,	 2012;Van	 Essen	 et	 al.,	 2012,	 2014).	 All	 parcella-
tions were registered to the individual's diffusion data using Elastix4  
(Klein,	Staring,	Murphy,	Viergever,	&	Pluim,	2010).	Image	alignment	
was	 further	 enhanced	 by	 using	 b-spline	 interpolation	 (Rueckert	
et	 al.,	 1999).	 Tractography	 was	 performed	 with	 an	 optimized	 de-
terministic	 streamline	 tracking	 algorithm	 (Yeh,	 Verstynen,	 Wang,	
Fernández-Miranda,	 &	 Tseng,	 2013)	 (eliminate	 few	 fibers	 due	 to	
tissue	contamination,	 turning	angle	 threshold	45⁰,	 fiber	 length	be-
tween	20	and	500mm,	one	million	tracts).

2.3 | HCP Cognitive measures

As	 in	 previous	 studies	 (Smith	 et	 al.,	 2015),	we	 focused	on	 a	 total	
of	 29	 nonimaging	 measures,	 namely	 demographic	 (age,	 sex,	 in-
come,	 education	 level,	 etc.)	 and	 cognitive	 performance	 (including	
handedness,	working	memory,	attention	control,	intelligence	score,	
language	 score,	 and	 visual	 spatial)	 from	 the	 HCP	 data	 diction-
ary.5 	 Specifically,	 these	 29	measures	 included	 demographic	 data:	
age of participant in years (Age_in_Yrs), handedness of participant 
(Handedness), total household income (SSAGA_Income), years of 
education completed (SSAGA_Educ),	 and	 Pittsburgh	 sleep	 quality	
total scores (PSQI_Score);	and	behavioral	data:	NIH	Toolbox	Picture	

Sequence	Memory	Test	(PicSeq_Unadj, PicSeq_AgeAdj),	Penn	Word	
Memory	Test	(IWRD_TOT, IWRD_RTC (Gur	et	al.,	2010)),	NIH	Toolbox	
List	Sorting	Working	Memory	Test	(ListSort_Unadj, ListSort_AgeAdj),	
NIH	 Toolbox	 Dimensional	 Change	 Card	 Sort	 Test	 for	 executive	
function/cognitive	 flexibility	 (CardSort_Unadj, CardSort_AgeAdj 
(Zelazo	 et	 al.,	 2014)),	 Delay	 Discounting	 for	 self-regulation/im-
pulsivity (DDisc_AUC_200, DDisc_AUC_40K (Myerson,	 Green,	 &	
Warusawitharana,	 2001)),	NIH	Toolbox	Flanker	 Inhibitory	Control	
and	Attention	Test	for	executive	function/inhibition	(Flanker_Unadj, 
Flanker_AgeAdj),	 Fluid	 Intelligence	 (PMAT24_A_CR, PMAT24_A_SI, 
PMAT24_A_RTCR (Bilker	 et	 al.,	 2012)),	 NIH	 Toolbox	 Oral	 Reading	
Recognition Test (ReadEng_Unadj, ReadEng_AgeAdj (Gershon	
et	 al.,	 2014)),	 NIH	 Toolbox	 Picture	 Vocabulary	 Test	 (PicVocab_
Unadj, PicVocab_AgeAdj (Gershon	et	al.,	2014)),	NIH	Toolbox	Pattern	
Comparison Processing Speed Test (ProcSpeed_Unadj, ProcSpeed_
AgeAdj (Carlozzi,	Beaumont,	Tulsky,	&	Gershon,	2015)),	and	Variable	
Short	 Penn	 Line	 Orientation	 (VSPLOT_TC, VSPLOT_CRTE, VSPLOT_
OFF (Gur	et	al.,	2010)).

2.4 | Parcellations

To	perform	the	analysis,	we	used	three	different	parcellations.	The	
first	 parcellation	 employed	 268	 regions	 identified	 on	 the	 basis	 of	
functional	coherence	nodes,	as	recently	reported	by	Shen	et	al.	(Shen,	
Tokoglu,	Papademetris,	&	Constable,	2013).	This	parcellation	can	be	
subdivided	into	eight	resting-state	cortical	and	subcortical	networks	
(see	Figure	1a)	based	on	their	functional	activation	patterns:	(i)	medial	
frontal	network	(MFN),	(ii)	frontal-parietal	network	(FPN),	(iii)	default	
mode	network	(DMN),	(iv)	subcortical	network	(SUB),	(v)	somatosen-
sory	motor	network	(SMN),	(vi)	ventral	attention	network	(VAN),	(vii)	
visual	network	(VN),	and	(viii)	dorsal	attention	network	(DAN)	(Finn	
et	al.,	2015;Shen	et	al.,	2017).	As	described	before	(Finn	et	al.,	2015),	
the level of activity within these subnetworks is then used to derive 

F I G U R E  1  Behavioral	traits	are	correlated	with	connectivity	measures	using	two	methods:	FC	using	FC-network	parcellation	(a)	and	SC	
using	SC-bundle	parcellation	(b).	These	areas	are	colored	according	to	the	cognitive	network	or	majority	white	matter	bundles	that	they	
are	most	connected	to.	FC-network	parcellation:	medial	frontal	network	(MFN),	frontal-parietal	network	(FPN),	default	mode	network,	
subcortical	network	(SUB),	somatosensory	motor	network	(SMN),	ventral	attention	network	(VAN),	visual	network	(VN),	and	dorsal	attention	
network	(DAN).	SC-bundle	parcellation:	corpus	callosum	(CC),	cingulum	(Cingulum),	optic	radiation	(OR),	fornix	(Fx)+	posterior	(CP)+	anterior	
commissure	(CA),	middle	+	superior+inferior	cerebellar	peduncle	(MCP	+	SCP+ICP),	cortical-spinal	tract	+	frontal+parietal-occipital	pontine	
tract	(CST	+	FPT+POPT),	and	uncinated	+	superior	longitudinal	+	inferior	longitudinal	fasciculus	(UF	+	SLF+ILF)
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each individual's FC fingerprint through Pearson's correlation analysis 
with	the	individual's	performance	data,	including	Fisher's	z-transform.	
In this analysis from r-value	 to	p-value,	all	positive	or	negative	cor-
relations above a p-value	threshold	(Finn	et	al.,	2015)are	considered	
significant.	The	correlation	analysis	 includes	a	 leave-one-out	cross-
validation	(LOOCV)	training	and	testing	step	followed	by	a	false	dis-
covery	rate	(FDR)	correction	(Benjamini	&	Hochberg,	1995;Scheinost	
et	al.,	2019).	No	thresholding	or	binary	transformations	were	applied	
to the connectivity matrices.

The	 second	 parcellation	 was	 based	 on	 WM	 bundles	 as	 the	
basis,	from	which	twenty-five	fiber	bundle	templates	were	used	to	
develop	the	structural	connectivity	matrix,	specifically	(Figure	1b,	
(Maier-Hein	 et	 al.,	 2017)),	 corpus	 callosum	 (CC),	 cingulum	
(Cingulum),	optic	radiation	(OR),	fornix	(Fx)+posterior	(CP)+anterior	
commissure	 (CA),	middle	 +	 superior+inferior	 cerebellar	 peduncle	
(MCP	+	SCP+ICP),	cortical-spinal	tract	+	frontal+parietal-occipital	
pontine	 tract	 (CST	 +	 FPT+POPT),	 and	 uncinated	 +	 superior	 lon-
gitudinal	 +	 inferior	 longitudinal	 fasciculus	 (UF	 +	 SLF+ILF).	 These	
bundles were further reduced into a set of seven anatomically 
homologous	 sets.	 For	 each	 subject,	 the	 SC	matrices	were	 calcu-
lated as either the number of the streamlines connecting each pair 
of	 these	 regions	 (NS),	 the	 normalized	 length	 of	 the	 connecting	
streamlines	 (ML),	 or	 the	 quantitative	 anisotropy	 (QA)	 value	 (Yeh	
et	al.,	2010)	along	the	connecting	streamlines.	Intersecting	bundles	
providing a physical path between two parcels were also included 
in	the	count	(Figure	1b).

The	 final	 parcellation	 was	 based	 on	 the	 AICHA	 atlas	 (Joliot	
et	 al.,	 2015),	 which	 defines	 384	 homotopic	 regions	 of	 interest	
(ROIs)	based	on	their	anatomical	 location.	The	structural	connec-
tivity	matrix	for	this	parcellation	was	calculated	as	before.	The	re-
sulting	matrix	was	then	subdivided	into	eight	submatrices	grouping	
functionally	 homologous	 regions	 (superior	 temporal	 gyrus	 (STG),	
superior	temporal	sulcus	(STS),	middle	temporal	gyrus	(MTG),	supe-
rior	temporal	pole	(STP),	IFG	triangularis	(IFGt),	IFG	orbitalis	(IFGo),	
middle,	 frontal	 gyrus	 (MFG),	 and	 angular	 gyrus	 (AG)	 (Del	 Gaizo,	
et	al.,	2017).

2.5 | HCP individual identification analysis

Individual subjects were identified using functional connectome 
fingerprints	derived	from	different	scanning	sessions.	To	this	end,	
similarity scores SC (k),	where	k	=	1,…,	N,	were	calculated	for	each	
individual	 between	 the	 individual	 connectivity	 matrix	 from	 the	
first	 (reference)	 session	 and	all	 connectivity	matrices	of	 the	 sec-
ond	(target)	scan	sessions	(HCP	filenames: rfMRI_REST1 and rfMRI_
REST2).	During	the	analysis,	subject	id's	and	reference	and	target	
scans	were	shuffled,	that	is,	first	using	DAY1	as	the	reference	then	
using	DAY2	 as	 the	 reference.	 The	 subject	was	 identified	 as	 that	
corresponding to the highest correlation between the reference 
and	target	connectome	fingerprints.	As	before,	permutation	tests	
(1,000)	were	performed	to	 increase	the	statistical	significance	of	
the results.

3  | RESULTS

3.1 | Individual identification using FC connectome

We first identified the FC connectivity associated with two time-
points	 to	 test	 reproducibility	 of	 an	 individual's	 identification.	 As	
reported	elsewhere	 (Finn	et	al.,	2015;Waller	et	al.,	2017),	FC	con-
nectivity leads to an identification accuracy between sessions of 
90%	(Figure	S1).

3.2 | High-level cognition identification on 
connectome in FC subnetworks

We	explored	the	relationship	of	the	FC	fingerprints	with	29	nonimage	
behavioral	measurements	(Table	S1).	Figure	3a	illustrates	the	positive	
(upper	 triangular)	 and	 negative	 (lower	 triangular)	 r-values	 calculated	
using	 subject's	 traits	 (sleeping	 quality,	 working	 memory,	 executive	
function,	 control	 attention,	 intelligent,	 language,	 visual	 spatial)	 and	

F I G U R E  2  The	LOOCV	identification	
of the language test results based on the 
negative correlations of the language test 
results	with	functional	(a)	and	structural	
(b)	parcellations
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the	aforementioned	FC	subnetworks	 (MFN,	FPN,	DMN,	SUB,	SMN,	
VAN,	VN,	DAN)	with	 a	 LOOCV	method.	A	 similar	 analysis	was	 also	
performed using the FC connectivity information without subnetwork 
partitioning. Significant correlations were found with working mem-
ory,	language/vocabulary	comprehension,	and	executive	function.	For	
the	language	behavioral	measurements,	we	found	a	particularly	strong	
correlation between FC and the picture language scores (Pic Vocab)	
(r	=	.28,	p	<	.003;	Figure	2a).	These	correlations	remain	when	the	same	
analysis	is	performed	across	subnetworks	(Figure	3a).

3.3 | High-level cognition identification on 
connectome in SC

For the SC connectome fingerprinting approach in specific white 
matter	bundles,	we	 found	strong	negative	correlations	with	age,	
sleep	quality,	attention	control,	language,	and	vocabulary	compre-
hension. These correlations associate white matter bundles and 
their underlying fiber properties with individual behavioral meas-
urements.	For	 the	 language	behavioral	measurements,	we	 found	

F I G U R E  3  The	connectome	fingerprints	calculated	using	(a)	FC	and	(b)	SC	parcellations	showing	positive	correlations	(in	red)	and	
negative	correlations	(in	blue)	with	individual	behavior	traits	in	LOOCV	model	fitting.	FC	networks	and	SC	bundles	(horizontal	axis)	are	
related	to	behavioral	traits	(vertical	axis)	and	highlight	highly	significant	traits,	p	<	.05	with	FDR	correction	(Tables	S2-S3)
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strong negative correlations with language ability in the picture 
language measurements (Pic Vocab)	 and	 SC	 (r	 =	 .27,	p < .00077; 
Figure	 2b).	 Significant	 positive	 and	 negative	 correlations	 of	 the	
SC subnetworks with behavior traits are summarized in Figure 3b. 
The results shown identify not only the locations involved in 
higher	cognitive	function	based	on	FC,	but	also	using	SC	(p < .01 
with	FDR	correction).	Connectome	fingerprinting	 identifies	posi-
tive and negative correlations of both FC subnetworks and SC of 
major fiber bundles with behavioral traits. These results indicate 
the	ability	of	connectome	fingerprinting	to	relate	not	only	FC,	but	
also	SC,	with	neurocognitive	measures.

3.4 | High-level cognition identification based on SC 
language networks

In	 this	 section,	we	 focus	on	SC/FC	brain–behavior	network	based	
on	SC-derived	language	subnetworks.	In	particular,	SC	and	FC	con-
nectome fingerprints were derived in eight SC language subnet-
works	 (Figure	4a).	Because	this	study	 focuses	on	 language-related	
fiber	bundles	(Figure	4b),	we	further	validate	these	tracts	using	eight	
SC	language	subnetworks	 (traditional	connectome	lesion	mapping)	
to relate white matter networks with behavior. The most distinc-
tive language measurements (Pic Vocab)correlate	negatively	(r	=	.19,	

F I G U R E  4  Language-specific	SC	ROI	used	in	this	study	(a),	(b)	streamlines	connecting	the	language	subregions	in	(a)	in	a	healthy	
individual.	The	streamlines	are	filtered	from	one	million	generated	streamlines	and	displayed	with	(left)	and	without	(right)	the	
subregions.	The	analysis	focuses	on	eight	subnetworks	of	SC	language	network.	The	complete	language	network,	connecting	52	parcels,	
consists	in	total	of	(52x52)/2	connections	assigned	to	8	subnetworks

F I G U R E  5  The	LOOCV	modeling	
of a language measurement (Pic Vocab)	
calculated	using	(a)	FC	based	on	the	
positive	(red)	and	negative	(blue)	
correlations of the language test and 
related to the most significant language 
subregions.	(b)	The	connectome	
fingerprints calculated using FC showing 
positive	correlations	(in	red)	and	negative 
correlations	(in	blue)	with	individual	
behavior.	Language	subnetworks	
(horizontal	axis)	are	related	to	behavioral	
traits	(vertical	axis),	and	we	highlight	
highly	significant	traits,	p	<	.05	with	FDR	
correction	(Table	S4).	The	FC	analyses	
focus on eight language subnetworks 
(superior	temporal	gyrus	(STG),	superior	
temporal	sulcus	(STS),	middle	temporal	
gyrus	(MTG),	superior	temporal	pole	(STP),	
IFG	triangularis	(IFGt),	IFG	orbitalis	(IFGo),	
middle,	frontal	gyrus	(MFG),	angular	gyrus	
(AG))
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p	 <	 .048;	 Figure	 5a)	 with	 FC	 at	 the	 individual's	 whole	 brain	 level	
and at the SC language subnetwork level (p < .01 with FDR correc-
tion;	 Figure	 5b).	 Similarly,	 also	 SC	 connectome	 fingerprints	 based	
on quantitative anisotropy (QA,	r	=	.34,	p	<	1.9504E-05;	Figure	6a),	
mean fiber length (ML,	r	=	.29,	p	<	.00028;	Figure	6a),	and	normalized	
number of streamlines (NS,	 r	 =	0.16,	p	 <	 .044;	 Figure	6a)correlate	
with language measures both at the individual whole brain level and 
at the SC language subnetwork level (p < .01 with FDR correction; 
Figure	6b).	These	eight	language	networks	were	the	most	significant	
predictors of language function (Pic Vocab)	when	using	FC	connec-
tome	fingerprints.	In	addition,	connectome	fingerprinting	identifies	
positive correlations of SC subnetworks with language traits. These 
results demonstrate that both FC and SC connectome fingerprints 
can be used to relate the underlying language regions with individual 
language function.

4  | DISCUSSION

Previous studies suggest that a systematic view of brain networks 
could provide a means to describe the functional organization of 

the	brain	from	its	structural	anatomy	(Hagmann	et	al.,	2008;	Honey	
et	al.,	2009;	Biswal	et	al.,	2010;	van	den	Heuvel	&	Hulshoff	Pol,	2010;	
Sporns,	 2013;	Mišić	 &	 Sporns,	 2016;	 Griffa	 et	 al.,	 2017;	 Bennett,	
Kirby,	&	Finnerty,	2018;	Gratton	et	al.,	2018;	Huang	et	al.,	2018).

The	functional	connectivity	(FC),	a.k.a.	connectome	fingerprinting	
or	connectome-based	predictive	modeling	(CPM	(Finn	et	al.,	2015)),	
framework can be used to derive a quantitative relationship between 
functional connectivity parameters and cognitive performance. Our 
results confirm some of these findings and provide a scaffold for the 
analysis of similar relationships between structural connectivity and 
cognitive	 performance.	 This	 analysis	 is,	 however,	 inherently	more	
challenging as cognitive performance can be altered on a time scale 
that is not consistent with changes in structural brain connectivity. 
Nevertheless,	as	various	cognitive	processes	are	subserved	by	sen-
sory	inputs,	their	performance	is	expected	to	be	modulated	by	the	
“efficiency’	 of	 the	 structural	 connectivity	 supporting	 such	 inputs.	
Our results support this thesis using three different structural par-
cellation	models.	Specifically,	we	derived	fiber	bundle	structural	con-
nectivity parameters based on the major fiber bundles in the brain 
by	(i)	using	anatomical	information	to	isolate	the	desired	tracts	while	
at	the	same	time	eliminating	spurious	tracts;	and	(ii)	quantifying	the	

F I G U R E  6  LOOCV	modeling	of	a	language	measurement	(Pic Vocab)	calculated	using	(a)	SC	based	on	the	positive correlations of the 
language	test	results	with	QA	(quantitative	anisotropy),	ML	(mean	streamline	length),	and	NS	(normalized	number	of	streamlines).	Significant	
language	subnetworks	are	indicated	(lower).	(b)	The	connectome	fingerprints	calculated	using	SC	showing	positive and negative correlations 
with	individual	behavior	traits.	Subnetworks	(horizontal	axis)	are	related	to	behavioral	traits	(vertical	axis),	and	we	highlight	highly	significant	
traits,	p	<	.05	with	FDR	correction	(Tables	S5-S7)
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number of intersectingss fibers between major fiber bundles. These 
steps reduce the number of network features that are used to derive 
subject-specific	correlations	 (Kahn	et	al.,	2017;Powell,	Garcia,	Yeh,	
Vettel,	 &	 Verstynen,	 2018;Zimmermann	 et	 al.,	 2018)	 and	 provide	
more global measures of structural connectivity than what could 
be	derived	from	voxel-wise	correlations	(Baete	et	al.,	2018;	Powell	
et	al.,	2018;	Yeh,	Badre,	&	Verstynen,	2016).

Using	 the	 aforementioned	 approach,	we	have	 established	 that	
structural connectivity could be an important determinant of be-
havioral	 performance.	 Specifically,	 we	 have	 shown	 that	 subject's	
performance on vocabulary comprehension tasks has a dependence 
SC measures that is similar to those shown in previous studies (Bizzi 
et	al.,	2012;Del	Gaizo,	et	al.,	2017).	In	terms	of	language	performance,	
we found a strong correlation between language ability during the 
picture vocabulary tests and SC fingerprints (r	=	.33).	Moreover,	our	
results demonstrate that SC measures have a stronger effect on lan-
guage performance than their FC counterparts.

In	conclusion,	our	results	have	identified	white	matter	pathways	
that have a strong influence on cognitive performance and these 
structural–functional	relationships	can	be	used	to	infer	neurocogni-
tive measures from neuroimaging data.
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