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Abstract
Introduction: Connectome analysis of the human brain's structural and functional 
architecture provides a unique opportunity to understand the organization of the 
brain's functional architecture. In previous studies, connectome fingerprinting using 
brain functional connectivity profiles as an individualized trait was able to predict an 
individual's neurocognitive performance from the Human Connectome Project (HCP) 
neurocognitive datasets.
Materials and Methods: In the present study, we extend connectome fingerprinting 
from functional connectivity (FC) to structural connectivity (SC), identifying multiple 
relationships between behavioral traits and brain connectivity. Higher-order neuro-
cognitive tasks were found to have a weaker association with structural connectivity 
than its functional connectivity counterparts.
Results: Neurocognitive tasks with a higher sensory footprint were, however, found 
to have a stronger association with structural connectivity than their functional 
connectivity counterparts. Language behavioral measurements had a particularly 
stronger correlation, especially between performance on the picture language test 
(Pic Vocab) and both FC (r = .28, p < .003) and SC (r = 0.27, p < .00077).
Conclusions: At the neural level, we found that the pattern of structural brain con-
nectivity related to high-level language performance is consistent with the language 
white matter regions identified in presurgical mapping. We illustrate how this ap-
proach can be used to generalize the connectome fingerprinting framework to 
structural connectivity and how this can help understand the connections between 
cognitive behavior and the white matter connectome of the brain.
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1  | INTRODUC TION

Recently, a growing number of studies have looked at “connec-
tome fingerprinting” of resting-state functional magnetic reso-
nance imaging data (Finn et  al.,  2015;Gratton et  al.,  2018;Smith 
et al., 2015;Waller et al., 2017;Yoo et al., 2018). In these studies, 
a functionally driven parcellation of the brain is used to assess 
the relationship between the underlying functional connectivity 
(FC) among the parcels and an individual's performance of various 
cognitive tasks. They show that this characterization provides a 
unique fingerprint for each individual that is capable of predicting, 
a priori, the individual's performance on various cognitive tasks. 
These studies (Garyfallidis et al., 2018;Jbabdi, Sotiropoulos, Haber, 
Essen, & Behrens,  2015;Le Bihan & Johansen-Berg,  2012;Lin 
et al., 2014;Pestilli, Yeatman, Rokem, Kay, & Wandell, 2014), how-
ever, have not established to what extend the underlying brain's 
neuronal fiber architecture is responsible for the performance of 
these tasks.

The human connectome project HCP provides an opportu-
nity to investigate the relationship between an individual's under-
lying brain's neuronal fiber architecture, that is, the individual's 
structural connectivity (SC) fingerprint, and the individual's brain's 
ability to perform various cognitive tasks. Previous studies have 
attempted to investigate the relationship between SC and cog-
nitive performance using SC measures derived from functional 
parcellations (Hermundstad et  al.,  2013, 2014;Mišić et  al.,  2016). 
These studies found a weaker association between SC and cogni-
tive performance than that between FC and cognitive performance 
(Fukushima et  al.,  2018;Zimmermann, Griffiths, Schirner, Ritter, 
& McIntosh,  2018). This weaker association has been attributed 
to the lack of extensive neuronal fiber connections between such 
functional parcels (Chamberland, Bernier, Fortin, Whittingstall, & 
Descoteaux, 2015;Gomez et al., 2015). To avoid this problem, new 
“structurally driven” parcellations have been developed that provide 
a more robust foundation to explore the SC–function relationships 
of the brain (Cammoun et  al.,  2012;Daducci et  al.,  2012;Desikan 
et al., 2006;Maier-Hein et al., 2017;Tzourio-Mazoyer et al., 2002).

The aim of this study was to develop a systematic assessment 
of brain SC connectivity to identify white matter pathways that can 
be a significant determinant of behavioral performance. To this end, 
we calculated a structural connectivity matrix for each individual 
based on the aforementioned structural parcellations. These struc-
tural connectivity matrices are then used to develop a predictive 
model between specific structural connectivity measures and cog-
nitive performance, such as language comprehension and decod-
ing, working memory, executive function, visual-spatial processing, 
and fluid intelligence, using HCP data. Our work demonstrates that 
such “structural parcellations” can be used to clearly document a 
strong association between an individual's SC fingerprint and his/
her performance of lower-level cognitive tasks (e.g., reading com-
prehension). Conversely, this SC fingerprint was also found to have 
a weaker association with the individual's performance of high-level 
cognitive tasks (e.g., working memory).

2  | MATERIAL S AND METHODS

2.1 | In vivo acquisition

In vivo subject's datasets were downloaded from the Human 
Connectome Project (HCP) consortium (Van Essen et al., 2012, 2013) 
led by Washington University, University of Minnesota, and Oxford 
University. We follow the selection criteria from previous HCP stud-
ies (Smith et al., 2015) and include subjects with right-handed, with 
four runs of rs-fMRI (two sessions (REST1/REST2), with two phase-
encoding (LR/RL)), with good movement (mean square displacement 
<0.1 mm frame-to-frame motion), available with quality control DWI 
data. Less than <200 subjects had valid measurement (too many 
missing data >700 subjects). After selection of participants from 
the original HCP sample (N  =  900) to achieve a final sample size 
(N  =  144), we focused on 144 subjects from the December 2015 
release (S900, 64/80 male/female, 28.5 ± 4.0 y/o) for which both 
diffusion MRI and resting-state fMRI scans are available (Siemens 
Connectome Skyra 3T, 32-channel head coil). Resting-state fMRI 
time series data (HCP filenames: rfMRI_REST1 and rfMRI_REST2) 
were acquired with TR/TE = 720/33.1 ms, 2 mm3 isotropic resolu-
tion, multiband acceleration factor of 8 (Setsompop et  al.,  2012), 
and included four runs (two sessions, phase-encoding (LR/RL), scan 
time of 14:33 min/run). Diffusion MRI scan parameters were 6 b0-
images, 270 diffusion weighting directions, b-max = 3,000 s/mm2, 
TR/TE  =  5520/89.5 ms, 1.25 mm3 isotropic resolution, multiband 
acceleration factor of 3 (Setsompop et al., 2012), and included six 
runs (three different gradient table, two phase-encoding directions 
(right-to-left and left-to-right), scan time of 9:50 min/run). Structural 
imaging (MPRAGE; TR/TE = 2400/2.14 ms, 192 slices, 0.7 mm3 iso-
tropic resolution, TI = 1000 ms, parallel imaging (2×, GRAPPA), and 
total scan time of 7:40 min) was used for registration.

2.2 | Data preprocessing

The preprocessing of the HCP dataset was performed by the 
Human Connectome Project consortium as described in Glasser 
et al. (2013). The processing pipeline included artifact removal, mo-
tion correction, and registration to the standard MNI and individual 
space. For the HCP resting-fMRI datasets, postprocessing included 
regressing out the global mean time course of WM and CSF, linear 
drift removal, artifact removal, frame-to-frame motion correction (a 
Friston 24-parameter motion model was applied, this included first 
derivative regression of the mean time courses of the white matter 
and CSF as well as the global signal), exclusion of motion-affected 
datasets (frame-to-frame motion, threshold <0.1  mm), and band-
pass filtering (0.01–0.2 Hz) in the BioImage Suite1  (Joshi et al., 2011). 
Spatial smoothing was performed with a Gaussian kernel with a 
full-width half-maximum (FWHM) of 5–6 mm using 3dBlurToFWH-
Min AFNI2  to reduce the motion confounds in resting-state fMRI 
(Cox, 1996;Scheinost, Papademetris, & Constable, 2014). This large 
amount of smoothing was justified as many contiguous voxels in a 
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single parcellation are averaged when calculating network connec-
tivity. Mean BOLD was calculated within each parcel to reduce the 
variance associated with the spatial regularization of the template's 
parcels.

The HCP multiband diffusion-weighted images were recon-
structed using generalized q-space imaging as implemented in 
DSIStudio3  (Yeh, Wedeen, & Tseng,  2010). Diffusion MRI partial 
volume effects are similar to those of BOLD fMRI. Smooth parcel 
boundaries (instead of binary parcel boundaries) were used to re-
duce the variance associated with parcel size across individuals 
and for reducing flooding error due to gyral connectivity bias (Van 
Essen & Ugurbil,  2012;Van Essen et  al.,  2012, 2014). All parcella-
tions were registered to the individual's diffusion data using Elastix4  
(Klein, Staring, Murphy, Viergever, & Pluim, 2010). Image alignment 
was further enhanced by using b-spline interpolation (Rueckert 
et  al.,  1999). Tractography was performed with an optimized de-
terministic streamline tracking algorithm (Yeh, Verstynen, Wang, 
Fernández-Miranda, & Tseng,  2013) (eliminate few fibers due to 
tissue contamination, turning angle threshold 45⁰, fiber length be-
tween 20 and 500mm, one million tracts).

2.3 | HCP Cognitive measures

As in previous studies (Smith et  al.,  2015), we focused on a total 
of 29 nonimaging measures, namely demographic (age, sex, in-
come, education level, etc.) and cognitive performance (including 
handedness, working memory, attention control, intelligence score, 
language score, and visual spatial) from the HCP data diction-
ary.5  Specifically, these 29 measures included demographic data: 
age of participant in years (Age_in_Yrs), handedness of participant 
(Handedness), total household income (SSAGA_Income), years of 
education completed (SSAGA_Educ), and Pittsburgh sleep quality 
total scores (PSQI_Score); and behavioral data: NIH Toolbox Picture 

Sequence Memory Test (PicSeq_Unadj, PicSeq_AgeAdj), Penn Word 
Memory Test (IWRD_TOT, IWRD_RTC (Gur et al., 2010)), NIH Toolbox 
List Sorting Working Memory Test (ListSort_Unadj, ListSort_AgeAdj), 
NIH Toolbox Dimensional Change Card Sort Test for executive 
function/cognitive flexibility (CardSort_Unadj, CardSort_AgeAdj 
(Zelazo et  al.,  2014)), Delay Discounting for self-regulation/im-
pulsivity (DDisc_AUC_200, DDisc_AUC_40K (Myerson, Green, & 
Warusawitharana,  2001)), NIH Toolbox Flanker Inhibitory Control 
and Attention Test for executive function/inhibition (Flanker_Unadj, 
Flanker_AgeAdj), Fluid Intelligence (PMAT24_A_CR, PMAT24_A_SI, 
PMAT24_A_RTCR (Bilker et  al.,  2012)), NIH Toolbox Oral Reading 
Recognition Test (ReadEng_Unadj, ReadEng_AgeAdj (Gershon 
et  al.,  2014)), NIH Toolbox Picture Vocabulary Test (PicVocab_
Unadj, PicVocab_AgeAdj (Gershon et al., 2014)), NIH Toolbox Pattern 
Comparison Processing Speed Test (ProcSpeed_Unadj, ProcSpeed_
AgeAdj (Carlozzi, Beaumont, Tulsky, & Gershon, 2015)), and Variable 
Short Penn Line Orientation (VSPLOT_TC, VSPLOT_CRTE, VSPLOT_
OFF (Gur et al., 2010)).

2.4 | Parcellations

To perform the analysis, we used three different parcellations. The 
first parcellation employed 268 regions identified on the basis of 
functional coherence nodes, as recently reported by Shen et al. (Shen, 
Tokoglu, Papademetris, & Constable, 2013). This parcellation can be 
subdivided into eight resting-state cortical and subcortical networks 
(see Figure 1a) based on their functional activation patterns: (i) medial 
frontal network (MFN), (ii) frontal-parietal network (FPN), (iii) default 
mode network (DMN), (iv) subcortical network (SUB), (v) somatosen-
sory motor network (SMN), (vi) ventral attention network (VAN), (vii) 
visual network (VN), and (viii) dorsal attention network (DAN) (Finn 
et al., 2015;Shen et al., 2017). As described before (Finn et al., 2015), 
the level of activity within these subnetworks is then used to derive 

F I G U R E  1  Behavioral traits are correlated with connectivity measures using two methods: FC using FC-network parcellation (a) and SC 
using SC-bundle parcellation (b). These areas are colored according to the cognitive network or majority white matter bundles that they 
are most connected to. FC-network parcellation: medial frontal network (MFN), frontal-parietal network (FPN), default mode network, 
subcortical network (SUB), somatosensory motor network (SMN), ventral attention network (VAN), visual network (VN), and dorsal attention 
network (DAN). SC-bundle parcellation: corpus callosum (CC), cingulum (Cingulum), optic radiation (OR), fornix (Fx)+ posterior (CP)+ anterior 
commissure (CA), middle + superior+inferior cerebellar peduncle (MCP + SCP+ICP), cortical-spinal tract + frontal+parietal-occipital pontine 
tract (CST + FPT+POPT), and uncinated + superior longitudinal + inferior longitudinal fasciculus (UF + SLF+ILF)
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each individual's FC fingerprint through Pearson's correlation analysis 
with the individual's performance data, including Fisher's z-transform. 
In this analysis from r-value to p-value, all positive or negative cor-
relations above a p-value threshold (Finn et al., 2015)are considered 
significant. The correlation analysis includes a leave-one-out cross-
validation (LOOCV) training and testing step followed by a false dis-
covery rate (FDR) correction (Benjamini & Hochberg, 1995;Scheinost 
et al., 2019). No thresholding or binary transformations were applied 
to the connectivity matrices.

The second parcellation was based on WM bundles as the 
basis, from which twenty-five fiber bundle templates were used to 
develop the structural connectivity matrix, specifically (Figure 1b, 
(Maier-Hein et  al.,  2017)), corpus callosum (CC), cingulum 
(Cingulum), optic radiation (OR), fornix (Fx)+posterior (CP)+anterior 
commissure (CA), middle  +  superior+inferior cerebellar peduncle 
(MCP + SCP+ICP), cortical-spinal tract + frontal+parietal-occipital 
pontine tract (CST  +  FPT+POPT), and uncinated  +  superior lon-
gitudinal  +  inferior longitudinal fasciculus (UF  +  SLF+ILF). These 
bundles were further reduced into a set of seven anatomically 
homologous sets. For each subject, the SC matrices were calcu-
lated as either the number of the streamlines connecting each pair 
of these regions (NS), the normalized length of the connecting 
streamlines (ML), or the quantitative anisotropy (QA) value (Yeh 
et al., 2010) along the connecting streamlines. Intersecting bundles 
providing a physical path between two parcels were also included 
in the count (Figure 1b).

The final parcellation was based on the AICHA atlas (Joliot 
et  al.,  2015), which defines 384 homotopic regions of interest 
(ROIs) based on their anatomical location. The structural connec-
tivity matrix for this parcellation was calculated as before. The re-
sulting matrix was then subdivided into eight submatrices grouping 
functionally homologous regions (superior temporal gyrus (STG), 
superior temporal sulcus (STS), middle temporal gyrus (MTG), supe-
rior temporal pole (STP), IFG triangularis (IFGt), IFG orbitalis (IFGo), 
middle, frontal gyrus (MFG), and angular gyrus (AG) (Del Gaizo, 
et al., 2017).

2.5 | HCP individual identification analysis

Individual subjects were identified using functional connectome 
fingerprints derived from different scanning sessions. To this end, 
similarity scores SC (k), where k = 1,…, N, were calculated for each 
individual between the individual connectivity matrix from the 
first (reference) session and all connectivity matrices of the sec-
ond (target) scan sessions (HCP filenames: rfMRI_REST1 and rfMRI_
REST2). During the analysis, subject id's and reference and target 
scans were shuffled, that is, first using DAY1 as the reference then 
using DAY2 as the reference. The subject was identified as that 
corresponding to the highest correlation between the reference 
and target connectome fingerprints. As before, permutation tests 
(1,000) were performed to increase the statistical significance of 
the results.

3  | RESULTS

3.1 | Individual identification using FC connectome

We first identified the FC connectivity associated with two time-
points to test reproducibility of an individual's identification. As 
reported elsewhere (Finn et al., 2015;Waller et al., 2017), FC con-
nectivity leads to an identification accuracy between sessions of 
90% (Figure S1).

3.2 | High-level cognition identification on 
connectome in FC subnetworks

We explored the relationship of the FC fingerprints with 29 nonimage 
behavioral measurements (Table S1). Figure 3a illustrates the positive 
(upper triangular) and negative (lower triangular) r-values calculated 
using subject's traits (sleeping quality, working memory, executive 
function, control attention, intelligent, language, visual spatial) and 

F I G U R E  2  The LOOCV identification 
of the language test results based on the 
negative correlations of the language test 
results with functional (a) and structural 
(b) parcellations
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the aforementioned FC subnetworks (MFN, FPN, DMN, SUB, SMN, 
VAN, VN, DAN) with a LOOCV method. A similar analysis was also 
performed using the FC connectivity information without subnetwork 
partitioning. Significant correlations were found with working mem-
ory, language/vocabulary comprehension, and executive function. For 
the language behavioral measurements, we found a particularly strong 
correlation between FC and the picture language scores (Pic Vocab) 
(r = .28, p < .003; Figure 2a). These correlations remain when the same 
analysis is performed across subnetworks (Figure 3a).

3.3 | High-level cognition identification on 
connectome in SC

For the SC connectome fingerprinting approach in specific white 
matter bundles, we found strong negative correlations with age, 
sleep quality, attention control, language, and vocabulary compre-
hension. These correlations associate white matter bundles and 
their underlying fiber properties with individual behavioral meas-
urements. For the language behavioral measurements, we found 

F I G U R E  3  The connectome fingerprints calculated using (a) FC and (b) SC parcellations showing positive correlations (in red) and 
negative correlations (in blue) with individual behavior traits in LOOCV model fitting. FC networks and SC bundles (horizontal axis) are 
related to behavioral traits (vertical axis) and highlight highly significant traits, p < .05 with FDR correction (Tables S2-S3)
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strong negative correlations with language ability in the picture 
language measurements (Pic Vocab) and SC (r  =  .27, p  <  .00077; 
Figure  2b). Significant positive and negative correlations of the 
SC subnetworks with behavior traits are summarized in Figure 3b. 
The results shown identify not only the locations involved in 
higher cognitive function based on FC, but also using SC (p < .01 
with FDR correction). Connectome fingerprinting identifies posi-
tive and negative correlations of both FC subnetworks and SC of 
major fiber bundles with behavioral traits. These results indicate 
the ability of connectome fingerprinting to relate not only FC, but 
also SC, with neurocognitive measures.

3.4 | High-level cognition identification based on SC 
language networks

In this section, we focus on SC/FC brain–behavior network based 
on SC-derived language subnetworks. In particular, SC and FC con-
nectome fingerprints were derived in eight SC language subnet-
works (Figure 4a). Because this study focuses on language-related 
fiber bundles (Figure 4b), we further validate these tracts using eight 
SC language subnetworks (traditional connectome lesion mapping) 
to relate white matter networks with behavior. The most distinc-
tive language measurements (Pic Vocab)correlate negatively (r = .19, 

F I G U R E  4  Language-specific SC ROI used in this study (a), (b) streamlines connecting the language subregions in (a) in a healthy 
individual. The streamlines are filtered from one million generated streamlines and displayed with (left) and without (right) the 
subregions. The analysis focuses on eight subnetworks of SC language network. The complete language network, connecting 52 parcels, 
consists in total of (52x52)/2 connections assigned to 8 subnetworks

F I G U R E  5  The LOOCV modeling 
of a language measurement (Pic Vocab) 
calculated using (a) FC based on the 
positive (red) and negative (blue) 
correlations of the language test and 
related to the most significant language 
subregions. (b) The connectome 
fingerprints calculated using FC showing 
positive correlations (in red) and negative 
correlations (in blue) with individual 
behavior. Language subnetworks 
(horizontal axis) are related to behavioral 
traits (vertical axis), and we highlight 
highly significant traits, p < .05 with FDR 
correction (Table S4). The FC analyses 
focus on eight language subnetworks 
(superior temporal gyrus (STG), superior 
temporal sulcus (STS), middle temporal 
gyrus (MTG), superior temporal pole (STP), 
IFG triangularis (IFGt), IFG orbitalis (IFGo), 
middle, frontal gyrus (MFG), angular gyrus 
(AG))
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p  <  .048; Figure  5a) with FC at the individual's whole brain level 
and at the SC language subnetwork level (p < .01 with FDR correc-
tion; Figure  5b). Similarly, also SC connectome fingerprints based 
on quantitative anisotropy (QA, r = .34, p < 1.9504E-05; Figure 6a), 
mean fiber length (ML, r = .29, p < .00028; Figure 6a), and normalized 
number of streamlines (NS, r  = 0.16, p  <  .044; Figure 6a)correlate 
with language measures both at the individual whole brain level and 
at the SC language subnetwork level (p < .01 with FDR correction; 
Figure 6b). These eight language networks were the most significant 
predictors of language function (Pic Vocab) when using FC connec-
tome fingerprints. In addition, connectome fingerprinting identifies 
positive correlations of SC subnetworks with language traits. These 
results demonstrate that both FC and SC connectome fingerprints 
can be used to relate the underlying language regions with individual 
language function.

4  | DISCUSSION

Previous studies suggest that a systematic view of brain networks 
could provide a means to describe the functional organization of 

the brain from its structural anatomy (Hagmann et al., 2008; Honey 
et al., 2009; Biswal et al., 2010; van den Heuvel & Hulshoff Pol, 2010; 
Sporns,  2013; Mišić & Sporns,  2016; Griffa et  al.,  2017; Bennett, 
Kirby, & Finnerty, 2018; Gratton et al., 2018; Huang et al., 2018).

The functional connectivity (FC), a.k.a. connectome fingerprinting 
or connectome-based predictive modeling (CPM (Finn et al., 2015)), 
framework can be used to derive a quantitative relationship between 
functional connectivity parameters and cognitive performance. Our 
results confirm some of these findings and provide a scaffold for the 
analysis of similar relationships between structural connectivity and 
cognitive performance. This analysis is, however, inherently more 
challenging as cognitive performance can be altered on a time scale 
that is not consistent with changes in structural brain connectivity. 
Nevertheless, as various cognitive processes are subserved by sen-
sory inputs, their performance is expected to be modulated by the 
“efficiency’ of the structural connectivity supporting such inputs. 
Our results support this thesis using three different structural par-
cellation models. Specifically, we derived fiber bundle structural con-
nectivity parameters based on the major fiber bundles in the brain 
by (i) using anatomical information to isolate the desired tracts while 
at the same time eliminating spurious tracts; and (ii) quantifying the 

F I G U R E  6  LOOCV modeling of a language measurement (Pic Vocab) calculated using (a) SC based on the positive correlations of the 
language test results with QA (quantitative anisotropy), ML (mean streamline length), and NS (normalized number of streamlines). Significant 
language subnetworks are indicated (lower). (b) The connectome fingerprints calculated using SC showing positive and negative correlations 
with individual behavior traits. Subnetworks (horizontal axis) are related to behavioral traits (vertical axis), and we highlight highly significant 
traits, p < .05 with FDR correction (Tables S5-S7)
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number of intersectingss fibers between major fiber bundles. These 
steps reduce the number of network features that are used to derive 
subject-specific correlations (Kahn et al., 2017;Powell, Garcia, Yeh, 
Vettel, & Verstynen,  2018;Zimmermann et  al.,  2018) and provide 
more global measures of structural connectivity than what could 
be derived from voxel-wise correlations (Baete et al., 2018; Powell 
et al., 2018; Yeh, Badre, & Verstynen, 2016).

Using the aforementioned approach, we have established that 
structural connectivity could be an important determinant of be-
havioral performance. Specifically, we have shown that subject's 
performance on vocabulary comprehension tasks has a dependence 
SC measures that is similar to those shown in previous studies (Bizzi 
et al., 2012;Del Gaizo, et al., 2017). In terms of language performance, 
we found a strong correlation between language ability during the 
picture vocabulary tests and SC fingerprints (r = .33). Moreover, our 
results demonstrate that SC measures have a stronger effect on lan-
guage performance than their FC counterparts.

In conclusion, our results have identified white matter pathways 
that have a strong influence on cognitive performance and these 
structural–functional relationships can be used to infer neurocogni-
tive measures from neuroimaging data.
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