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Abstract: The essential contribution of CD4+ T cells in allergic airway diseases has been demonstrated,
especially by using various murine models of antigen-induced airway inflammation. In addition to
antigen-immunized mouse models employing mast cell-deficient mice and CD4+ T cell-depleting
procedure, antigen-specific CD4+ T cell transfer models have revealed the possible development of
allergic inflammation solely dependent on CD4+ T cells. Regardless of the classical Th1/Th2 theory,
various helper T cell subsets have the potential to induce different types of allergic inflammation.
T cell receptor (TCR)-transgenic (Tg) mice have been used for investigating T cell-mediated immune
responses. Besides, we have recently generated cloned mice from antigen-specific CD4+ T cells
through somatic cell nuclear transfer. In contrast to TCR-Tg mice that express artificially introduced
TCR, the cloned mice express endogenously regulated antigen-specific TCR. Upon antigen exposure,
the mite antigen-reactive T cell-cloned mice displayed strong airway inflammation accompanied by
bronchial hyperresponsiveness in a short time period. Antigen-specific CD4+ T cell-cloned mice are
expected to be useful for investigating the detailed role of CD4+ T cells in various allergic diseases
and for evaluating novel anti-allergic drugs.
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1. Introduction

Antigen-specific CD4+ cells play a central role in the acquired immune system. After differentiation
and maturation in the thymus, unprimed naive CD4+ T cells are distributed in peripheral tissues.
Upon recognition of a foreign antigen with antigen-presenting cells (APCs), CD4+ T cells differentiate
into various helper T (Th) cell subsets such as Th1 and Th2 according to the surrounding environment
including their responsible cytokines [1,2]. Among various cells and soluble factors, Th subsets and
their signature cytokines are individually or collaboratively implicated in various immune disorders
including allergic diseases (Figure 1). A variety of murine models have been developed and utilized
to investigate the contribution of CD4+ T cells to allergic inflammation. In this review, we describe
the current knowledge about the role of CD4+ T cells in the pathogenesis of allergic airway diseases
mainly revealed by employing their murine models. Furthermore, we introduce antigen-specific T
cell-cloned mice as new useful animals for investigating allergic airway inflammation.
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Figure 1. Key players in the development of allergic airway inflammation. Foreign antigens
exposed to airway epithelium are processed and presented by APCs to unprimed naive CD4+ T
cells. Then the naive CD4+ T cells differentiate into various Th cell subsets, largely depending on their
respective cytokines in the surrounding environment. Individual Th subsets produce their characteristic
cytokines and contribute to the development of allergic airway inflammation. The involvement of
new lymphoid cells such as group 2 innate lymphoid cells (ILC2) and ILC3 has recently been reported.
BC, B cell; EOS, eosinophil; CMs, chemical mediators; MC, mast cell; NEU, neutrophil; TSLP, thymic
stromal lymphopoietin.

2. Role of CD4+ T Cells in Allergic Inflammation

In the latter half of 1980s, pathogenetic understanding of allergic diseases advanced drastically
due to the establishment of pathological investigation methods, such as in situ hybridization and
immunostaining. Numerous evidences indicating the importance of CD4+ T cells and T cell cytokines
for the development of inflammatory responses in allergic diseases were accumulated in the early
1990s. Activated CD4+ T cells were found to be abundant in bronchial mucosa of patients with chronic
asthma and in skin tissue of atopic dermatitis patients [3,4]. Moreover, the expression of various
cytokines in CD4+ T cells was augmented upon antigenic challenge [5] and it was correlated with
local eosinophil infiltration [6]. T cell cytokine levels in bronchoalveolar lavage fluid (BALF) were
elevated in both atopic and non-atopic bronchial asthma patients [7]. T cell cytokine concentrations
were also elevated in the blood of asthmatics, whereas the concentrations were decreased in parallel
with symptomatic remission following steroid treatment [8]. In antigen-immunized murine models of
allergic airway inflammation, the infiltration of eosinophils induced by local antigen exposure was
strongly suppressed by the elimination of CD4+ T cells [9]. These data suggest that activation of CD4+

T cells may be a predisposing factor for the development of asthma.

3. IgE/Mast Cell- and CD4+ T Cell-Dependent Cascades in Allergic Inflammation

Since the discovery of immunoglobulin (IgE) by Ishizaka et al. in 1966 [10], it has been widely
recognized that the activation of mast cells via IgE cross-linkage directly causes various allergic
symptoms. This IgE/mast cell-mediated pathway is substantially implicated in the pathogenesis of
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allergic inflammation. A humanized anti-IgE antibody, omalizumab, was approved for treating allergic
diseases including asthma, urticaria, and rhinitis [11–15]. The IgE/mast cell-mediated responses are
closely related with T cell-dependent mechanisms in the development of allergic inflammation. IgE is
not produced in T cell-deficient nude mice [16], in which thymus development is impaired due to
Foxn1 mutation [17]. Mast cells contribute to the activation of T cells through antigen presentation and
production of TNF-α and IL-6 [18].

To investigate the role of mast cells in the development of allergic eosinophilic inflammation,
many studies employing mast cell-deficient WBB6F1-W/Wv mice (W/Wv) [19] were performed in the
1990s, though the findings were controversial. The critical contribution of mast cells was demonstrated
in some groups [20,21], whereas others appealed their dispensability [22]. To solve the confusion,
a time course study of antigen-induced airway inflammation was performed. Airway eosinophil
infiltration induced by antigen challenge in immunized W/Wv mice was about half of that in wild-type
mice 48 h after the challenge, whereas almost the same degree of eosinophil infiltration was observed
in both groups at 6, 24, 96, and 216 h, respectively [23]. This suggests that mast cells were responsible
for half of the eosinophil infiltration 48 h after the challenge, while the other half of infiltration at 48 h
and almost all at other time points was not mediated by mast cells (Table 1).

Table 1. Animal models showing involvement of IgE/mast cells and CD4+ T cells in allergic
airway inflammation.

Antigen-Challenged Animals Antigen-Specific
IgE/mast Cells

Antigen-Specific
CD4+ T Cells

Eosinophil
Infiltration

Non-immunized IgE-Tg Yes No No

Immunized wild-type Yes Yes Yes

Immunized W/Wv No Yes Yes

Immunized wild-type
+ anti-CD4 antibody Yes No No

Immunized W/Wv

+ anti-CD4 antibody No No No

Non-immunized wild-type
+ antigen-specific CD4+ T cells No Yes Yes

Significant induction of antigen-induced airway eosinophil infiltration was reported in immunized wild-type
and W/Wv mice and non-immunized wild-type mice transferred with antigen-specific CD4+ T cells but not in
non-immunized anti-ovalbumin immunoglobulin (Ig) E-Tg mice. The depletion of CD4+ T cells by anti-CD4 antibody
treatment diminished the eosinophil accumulation both in immunized wild-type and W/Wv mice, suggesting the
essential contribution of CD4+ T cells to allergic airway inflammation.

To investigate the contribution of CD4+ T cells to mast cell-independent eosinophil infiltration,
immunized mice were treated with an anti-CD4 antibody prior to antigen exposure. Along with the
potent depletion of peripheral CD4+ T cells, the infiltration of eosinophils observed in W/Wv mice after
48 and 96 h of the challenge largely disappeared. By conducting the same treatment in immunized
normal littermate mice, the infiltration of eosinophils was also found to be reduced to approximately
half at 48 h, and almost completely suppressed at 96 h [23]. It was suggested that the development of
allergic eosinophilic inflammation, largely depended on CD4+ T cells, while IgE/mast cells were only
partly involved (Table 1). Using CD4+ T cell-depleting procedure, the essential contribution of CD4+ T
cells were also demonstrated by other researchers [9,24] and in other allergy models [11,25].

Particularly related with allergic skin diseases, Mukai et al. reported the possible development
of IgE- but not mast cell- or T cell-dependent eosinophilic skin inflammation in murine models [26].
Delayed-type ear swelling with eosinophil infiltration was induced in anti-2,4,6-trinitrophenol
(TNP)-IgE transgenic (Tg) mice upon challenge with TNP-conjugated ovalbumin. They discovered that
these responses were almost completely dependent on basophils. Interestingly, the crucial contribution
of basophils to allergic airway inflammation was hardly observed. Antigen-induced lung accumulation
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of eosinophils in immunized mice was weakly suppressed, though bronchial hyperresponsiveness
(BHR) was not affected, by depleting basophils [27]. Obvious eosinophil accumulation in the nasal
mucosa was observed in antigen-immunized wild-type mice but not in non-immunized anti-ovalbumin
IgE-Tg mice even upon challenge with the corresponding antigen [28]. It is suggested that the existence
of IgE, despite its mast cell and basophil activating property, is insufficient for the development of
airway eosinophilic inflammation (Table 1).

Nevertheless, considering the clinical effectiveness of omalizumab, it was unlikely that asthma-like
airway inflammation could be reproduced even in mouse models without antigen-specific IgE.
To confirm this and evaluate the CD4+ T cell-dependent reaction alone, novel mouse models were
developed [29,30]. A number of antigen-specific T cells were prepared by cultivating splenic CD4+ T
cells of immunized mice in the presence of the corresponding antigen and APCs in vitro, then they
were adoptively transferred to non-immunized wild-type mice. Surprisingly, asthma-like airway
eosinophilic inflammation, accompanied by BHR, was reproduced in those mice upon inhalation
of the challenge with the corresponding antigen [29]. Regardless of the lack of enough time to
produce antigen-specific IgE in this procedure, the airway inflammation induced in antigen-specific T
cell-transferred mice was comparable to the response observed in antigen-immunized and -challenged
mice. Therefore, CD4+ T cells have potential to elicit allergic airway inflammation without assistance of
the IgE/mast cell-mediated pathway (Table 1). Recently, CD4+ T cell-dependent allergic inflammation
models are widely used and applied for investigating allergic diseases not only in the respiratory tract
but also in other target organs, such as nasal mucosa, skin, and the digestive tract [31–33]. These
findings suggest that antigen-specific CD4+ T cells are universally responsible for allergic diseases in
various organs.

4. T Cell Subsets and Allergic Airway Diseases

Concerning the relationship between T cell subsets and allergic airway diseases, the Th1/Th2
theory proposed by Mossman et al. [2,34,35] in the 1980s largely influenced the understanding of disease
pathogenesis and strategies for their treatments. The theory explains that allergic airway diseases
associated with eosinophilic inflammation develop due to the dominant differentiation of Th2 cell
subset, which preferentially produces IL-4, -5, and -13 rather than Th1 cell subset, which produces IFN-γ
and TNF-〈 [36–42]. Increase in Th2 cytokine levels and the number of Th2 cytokine-expressing T cells
are observed in the bronchial mucosa of asthmatic patients [3,5,43–45]. Among Th2 cytokines, we found
that human peripheral CD4+ T cells in both atopic and non-atopic asthmatics exhibited increased
IL-5-producing capacity [46]. The in vitro IL-5-producing ability of various antigen-specific T cell clones
correlated with the degree of in vivo antigen-induced airway eosinophil infiltration that developed in T
cell-transferred mice [47]. Furthermore, T cell-mediated eosinophilic inflammation was suppressed by
anti-IL-5 antibody treatment [29], suggesting that Th2 cell subset plays a crucial role in the development
of allergic airway diseases, especially via the production of IL-5. Although the contribution of
eosinophils to BHR was sometimes controversial in conventional antigen-immunized models [48,49],
antigen-induced BHR developed in Th2 cell-transferred mice disappeared when eosinophil-deficient
mice were used as recipients [50]. Consistently, anti-IL-5 (mepolizmab) and anti-IL-5 receptor 〈
(benralizmab) antibodies are frequently used to treat bronchial asthma accompanied by obvious
eosinophilic inflammation [29].

Until the latter half of the 1990s, the Th1/Th2 theory in allergic diseases was supported by the
improvement of airway inflammation in murine models of asthma by introduction of Ifnγ gene or
transfer of Th1 cells [51,52]. However, since Hansen et al. reported in 1999 that antigen-induced BHR
developed even in Th1 cell-transferred mice [53], many investigations have demonstrated that not
only Th2 cell-mediated eosinophilic inflammation, but also other Th subset-dependent mechanisms
are involved in the development of allergic diseases (Figure 1, Table 2). The existence of various T
cell subsets, such as Th9 [54–56], Th17 [57–59], Th22 [60], Th25 [61], and Th31 [62], has been proposed.
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The differentiation into individual T cell subsets and production of their characteristic cytokines are
associated with epigenetic regulation such as DNA methylation and histone modifications [63,64].

Table 2. Different features of Th cell subset-induced airway inflammation.

Features Th2 Th9 Th1 Th17

Requirement of IgE/mast cells No No No No
BHR Yes Yes Yes Yes

Eosinophilia Yes Yes No No
Contribution of eosinophils of BHR Yes No No No

Steroid resistance No Yes No Yes

Among Th subsets, Th1, Th2, Th9, and Th17 cells have been reported to elicit antigen-induced bronchial
hyperresponsiveness (BHR) in normal mice by adoptive transfer without assistance of IgE/mast cells. The typical
eosinophilic inflammation was induced by both Th2 and Th9 cells, though only Th2-mediated BHR depended on
eosinophils. The BHR mediated by Th9 and Th17 cells showed steroid resistance.

Among various Th subset, Th9 and Th17 cells have been proven to induce airway inflammation
accompanied by significant BHR in mice via adoptive transfer (Table 2) [65–67]. The airway
inflammation mediated by Th17 cells, as well as Th1 cells, was characterized by massive accumulation
of neutrophils [65,66]. On the other hand, Th9 cells, like Th2 cells, have potential to induce
eosinophil-dominant airway inflammation [50,67], though Th2- but not Th9-mediated BHR was
dependent on eosinophils [50]. Interestingly, antigen-induced BHR developed in mice transferred with
Th2, but not Th9 or Th17 cells, was suppressed by systemic administration of dexamethasone [65,67],
suggesting that Th9 and Th17 cells play a role in the development of steroid-resistant asthma (Table 2).
At least in some of the patients with bronchial asthma, the accumulation of Th1 or Th17 cells into the
respiratory tract [68,69] and increase in Th9 cells and IL-9 concentration in peripheral blood [70,71]
were observed. Significant correlation between serum IL-17 level and clinical severity was reported in
allergic rhinitis patients [72]. The pathogenesis independently of the Th2/IL-5/eosinophil-axis may be
involved in those patients (non-Th2 asthma). Mouse models of typical Th2, non-Th2, and their mixed
type airway inflammation has recently been developed by employing procedures with different route
and dose of antigen administration and with the usage of lipopolysaccharide [73,74].

Regulatory T cell (Treg), a non-helper T cell subset, plays a crucial role in antigen tolerance
induction [75]. Possible involvement of Tregs in allergic airway diseases has been suggested by their
suppressive activity against various cell types including T cells, eosinophils, and mast cells [76]. Beyond
T cell subsets, the contribution of new lymphoid cells such as group 2 innate lymphoid cells (ILC2),
which do not have antigen specificity and produce IL-5, IL-9, and IL-13, and ILC3, which produce IL-17,
has recently been reported [77–81] (Figure 1). Due to the appearance of these cytokine-producing non-T
cells, the type 2/non-type 2 classification is becoming more popular than Th2/non-Th2. The relative
participation of these T cells and non-T cells in the pathogenesis of allergic airway inflammation
deserves further investigation.

Based on new evidence showing the difference in the processes leading to the disease conditions
and in their responsible Th and other cells among patients with allergic airway diseases, a new concept
for developing an appropriate treatment according to the endotype of each patient has recently been
proposed [82,83].

5. Antigen-Specific T Cell Receptor Tg Mice

Tg mice expressing an antigen-specific T cell receptor (TCR), which is composed of α and β chains,
are frequently used to examine T cell-mediated immune responses [84]. DO11.10, a typical TCR-Tg
mouse, expresses TCR that recognizes a peptide sequence derived from ovalbumin (OVA323-339) [85].
In part of the T cell-transfer models, DO11.10 mice were employed to prepare antigen-specific CD4+ T
cells as donor cells [50,65–67,86,87]. OVA23-3 is another TCR-Tg mouse expressing OVA323-339-reactive
TCR [88]. Interestingly, OVA23-3 mice developed food allergy-like intestinal inflammation with
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Th2-favoured responses upon feeding with an egg white diet [89,90], whereas DO11.10 mice were used
for a tolerance induction model showing Th1-phenotype [91]. Tg mice expressing mite antigen-reactive
TCR generated by Jarman et al. developed weak airway inflammation following repeated intratracheal
antigen instillation [92]. Surprisingly, Th1/Th17 dominant airway inflammation is induced in DO11.10
mice with BALB/c-background upon antigen challenge [93], although BALB/c is known to be a
Th2-favoured inbred strain.

The differential and unexpected phenotypes of TCR-Tg mouse lines are probably caused, at least
in part, by TCR artificially introduced in the mouse genome. The antigen reactivity of T cells as well as
the differentiation into distinct Th cell subsets is largely affected by the amount and quality of antigen
stimulation received through TCR. Hosken et al. and Constant et al. demonstrated that weak TCR
stimulation with low antigen concentration causes Th2 differentiation, whereas strong stimulation
promotes Th1 differentiation in vitro [94,95]. Therefore, the Th1/Th17 dominant airway inflammation
observed in DO11.10 mice [93] might be induced by stronger activation of T cells through the artificially
introduced TCR. Most importantly, the expression pattern of the antigen-specific TCR and resulting
antigen reactivity in the Tg mouse T cells are, at least in some cases, likely to differ from those in
wild-type mouse T cells.

Among patients with allergic diseases, the antigen reactivity, as well as kinds of reactive antigens,
is also extremely different. However, these differences are hardly explained by the diversity of TCR,
because the germline TCR locus is highly conserved. Since major histocompatibility complex (MHC)
haplotype shows extensive diversity [96], stimulation by a certain antigen epitope through the distinct
MHC leads to different responses of T cells in individual patients, including their subset differentiation.
This may be one of the reasons for the existence of various disease phenotypes and endotypes in
allergic airway diseases.

6. Generation of Cloned Mice Derived from Antigen-Specific CD4+ T Cells

To further investigate CD4+ T cell-dependent allergic inflammation beyond the limits of TCR-Tg
mice as described above, we generated a new mouse model containing T cells that express endogenously
regulated antigen-specific TCR via somatic cell nuclear transfer technology. Somatic cell-cloned animals,
which came into the limelight with the birth of “Dolly”, the cloned sheep, in 1997 [97], are animals
generated from somatic cells that had differentiated into specific tissues, such as skin and other organs.
They are generally produced by transferring a somatic cell nucleus into an enucleated oocyte of another
individual, then the reconstructed embryos are transplanted into foster mothers. In the resulting born
animals, the genetic information of the donor somatic cell is conserved.

In typical murine allergy models, production of antigen-specific CD4+ T cells is induced in normal
mice by the systemic administration of an antigen with an adjuvant. In response to subsequent antigen
exposure, mice exhibit organ-specific allergic inflammation in vivo. The antigen-specific CD4+ T cells
that develop in the immunized mice, in which Tcrα and Tcrβ genes are optimally rearranged, express a
functional TCR. If cloned mice inheriting the genetic information of the rearranged TCR are generated,
it is expected that the antigen-specific TCR would be expressed in all the mature T cells in their body.

However, there were technical problems associated with producing cloned mice from
antigen-specific T cells. Since the birth of the first cloned mouse was revealed by Wakayama et al. in
1998 [98], cloned mice have been produced from various somatic cells, including those of T-cell lineages.
The first T cell-originated monoclonal mouse was generated from a peripheral T cell [99,100]. T cells
of the cloned mice were identified as MHC class I-restricted, though their reactive antigen was not
clarified. Cloned mice were also generated using freshly isolated antigen-specific CD8+ T cells [101].
We found that the developmental potential of a characteristic T-cell population, natural killer T (NKT)
cell, was unexpectedly high, and that live cloned fetuses could be obtained from purified liver NKT
cells [102]. Several technical improvements, including the use of histone deacetylase inhibitors to treat
reconstructed embryos, have also enabled cloning from peripheral blood lymphocytes [103].
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Nevertheless, until about 20 years after the birth of the first cloned mouse, cloned mice derived
from antigen-specific CD4+ T cells had not been produced. A major obstacle was that cells suitable for
nuclear transfer cloning were limited to non-proliferating cells. The cell cycle of donor T cells is required
to be in the G1/G0 phase to synchronize with that of recipient oocytes. Nonetheless, antigen-specific
CD4+ T cells are usually obtained by in vitro stimulation culture of T cells from antigen-immunized
animals in the presence of antigen and APCs. Thereafter, the cell cycle of antigen-reactive CD4+ T
cells progresses asynchronously during the culture period. Therefore, it appeared to be difficult to
prepare G1/G0 phase-synchronized antigen-specific T cells. This may have been one of the reasons
why the production of cloned mice derived from antigen-specific CD4+ T cells had been unsuccessful.
To overcome this problem, T cells grown by stimulation culture were once recovered, then they were
further cultured for a few more days in a medium without growth factors, such as IL-2 (Figure 2).
In addition, because donor cells from mice of mixed backgrounds are much more efficient than those
from inbred mice for somatic cell nuclear transfer (SCNT) [104,105], and because MHC class I and II
haplotypes in BALB/c are identical to those in DBA2 mice, donor CD4+ T cells were prepared from
antigen-immunized male (BALB/c × DBA/2) F1 (CDF1) mice. These modifications allowed us to obtain
more antigen-specific CD4+ T cells in the stationary phase, and to produce cloned mice from them [106]
(Figure 2).
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Figure 2. Schematic procedure for generating cloned mice from antigen-specific CD4+ T cells.
Antigen-specific CD4+ T cells obtained from immunized BALB/c × DBA/2 mice were expanded by
antigen stimulation culture in vitro. Upon removal of IL-2, G1/G0 phase-synchronized cells were used
for somatic cell nuclear transfer. Various lines of cloned mice were obtained.

7. Antigen Reactivity of CD4+ T Cells in Cloned Mice

Cloned mice from CD4+ T cells reactive to various antigens were successfully generated (Table 3):
OVA323-339 same as the epitope of DO11.10 T cells; and two major mite antigens, Dermatophagoides
farinae (Der f ) and D. pteronyssinus (Der p). When the antigen reactivity was examined using the
peripheral lymphocytes of the cloned mice, the cloned mice showed a proliferative response against
the reactive antigen of the CD4+ T cells used as nuclear transfer donors. CD4+ T cells in these cloned
mice expressed a pair of rearranged TCRα and β chains. Interestingly, the TCRα and β were identical
in several cloned mice produced from Der p-reactive CD4+ T cells. It is likely that these mice were born
from T cells originating from a single cell proliferated by antigen stimulation in vitro.
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Table 3. Antigen-reactivity with the reconstituted TCR〈 and/or®chains in the cloned mice.

Reactive
Antigen

No. of
Coned
Mice

Requirement of Reconstituted TCRα and/or β for Antigen Reactivity

In Vitro In Vivo

Both rα and rβ Either rα or rβ Both rα and rβ Either rα or rβ

OVA323-339 1 Yes N.T. Yes Yes
Der f 2 Yes No Yes Yes
Der p 5 Yes No N.T. N.T.

Only the offspring of cloned mice that had both reconstituted TCRα (rα) and β (rβ) alleles showed in vitro antigen
reactivity. In contrast, in the in vivo experiments, those expressing either rα or rβ allele also displayed antigen
reactivity. N.T.: not tested.

The rearranged TCRα and β alleles of the cloned mice were inherited by their offspring upon
mating with wild-type BALB/c mice according to Mendel’s law. Only CD4+ T cells of the F1 mice
that had both rearranged TCRα and β alleles proliferated significantly upon stimulation with the
corresponding antigen in vitro. These findings suggest that the heterodimerization of the arranged
TCRα and β chains in T cells is required for their in vitro antigen reactivity (Table 3). Furthermore, CD4+

T cells, which proliferated in response to the antigen, showed different cytokine producing patterns
among the cloned mouse strains. Since stimulation intensity of TCR affects the subset differentiation
of CD4+ T cells as described above [94,95,107], it was suggested that various cloned mice containing
TCRs with different binding intensity to the antigen/MHC complex were established.

8. Usefulness of Antigen-Specific T Cell-Cloned Mice for Investigating Allergic Airway
Inflammation In Vivo

Non-immunized wild-type mice required exposure to mite antigen more than a few dozen
times over the course of a month to induce asthma-like airway inflammation [108–110]. However,
strong airway inflammation with eosinophilic infiltration and BHR was developed in the cloned
mice generated from Der f -reactive CD4+ T cells upon only four incidences of antigen exposure.
OVA323-339-reactive cloned mice developed obvious nasal inflammation following 3 to 5 incidences of
intranasal OVA challenge. Similar but weaker nasal inflammatory responses were induced in DO11.10
mice, whereas stronger responses were observed in wild-type mice transferred with CD4+ T cells of
the cloned mice. Moreover, in this in vivo experimental system, unlike the in vitro antigen reactivity
mentioned above, the cloned mice expressing both or either antigen-specific rearranged TCR〈 and
®chains displayed significantly stronger airway inflammation compared with wild-type mice (Table 3).

These nuclear transfer cloned mouse strains exhibited diverse phenotypes, although they were
generated from CD4+ T cells reactive to the same antigen. For example, two strains of cloned mice
(Df#1 and Df#2) generated from Der f -reactive T cells showed differences in thymus and peripheral
CD4/CD8 ratios, as well as in the pattern of antigen-induced cytokine production. CD4+ T cells
of Df#1 preferentially produced Th1 and Th17 cytokines, whereas those of Df#2 produced large
amounts of Th2 cytokines upon antigen stimulation. Based on these in vitro findings, it was assumed
that the in vivo allergic phenotype of Df#1 was close to that of DO11.10 mice represented by Th1/

Th17 dominant airway inflammation as described above. However, large amounts of IL-4, IL-5,
and IL-13, and massive infiltration of eosinophils were detected in the BALF of Df#1 after antigen
exposure, whereas almost no production of IFN-γ and IL-17 was observed. In contrast, eosinophil-less
airway inflammation developed in Df#2, notwithstanding its in vitro Th2 dominant feature. Therefore,
the subset differentiation property of peripheral T cells of the cloned mice may differ between in vitro
and in vivo conditions.

9. Conclusions

In this review, we described the role of CD4+ T cells in allergic airway diseases indicated by various
mouse models. Upon differentiation into various Th cell subsets, CD4+ T cells contribute to diverse
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phenotypes and endotypes of allergic inflammation. Furthermore, we revealed that stable allergic
airway inflammation could be easily induced in our cloned mice derived from antigen-specific CD4+

T cells. Since it is becoming clear that the cloned mice produce antigen-specific IgE in parallel with
the onset of airway inflammation after only a few airway antigen challenges (unpublished data), the
usefulness of the cloned mice could be extended to include analyzing the interaction between the T cell
and IgE/mast cell cascades. TCRs expressed in the cloned mice are expected to differ in expression level
and behavior from those in TCR-Tg mice. Therefore, some of the immunological theories substantiated
by studies with TCR-Tg mice may need revision, by comparing the features of cloned mice and TCR-Tg
mice. In these cloned mice, not only asthma-like airway inflammation, but also phenotypes that mimic
various allergic diseases, such as allergic rhinitis, atopic dermatitis, and gastrointestinal allergies are
now able to be reproduced. These new models of CD4+ T cell-mediated allergic inflammation using
the cloned mice exert their full potential for elucidating the pathogenesis of allergic diseases and
evaluating the efficacy and/or screening of anti-allergic drugs.
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