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Abstract. Calcineurin is a calcium-dependent protein 
phosphatase that functions in T cell activation. We 
present evidence that calcineurin functions more gener- 
ally in calcium-triggered apoptosis in mammalian cells 
deprived of growth factors. Specifically, expression of 
epitope-tagged calcineurin A induces rapid cell death 
upon calcium signaling in the absence of growth factors. 
We show that this apoptosis does not require new pro- 
tein synthesis and therefore calcineurin must operate 

through existing substrates. Co-expression of the Bcl-2 
protooncogene efficiently blocks calcineurin-induced 
cell death. Significantly, we demonstrate that a calcium- 
independent calcineurin mutant induces apoptosis in 
the absence of calcium, and that this apoptotic response 
is a direct consequence of calcineurin's phosphatase ac- 
tivity. These data suggest that calcineurin plays an im- 
portant role in mediating the upstream events in cal- 
cium-activated cell death. 

OPTOSlS is an active process by which a multicellular 
organism eliminates defective, destructive, or re- 
dundant cells. This process is invoked in many 

steps of development, proliferation, immunological toler- 
ance, and disease (Ellis et al., 1991; Martin et al., 1994; 
Reed, 1994). Genetic studies have uncovered a set of 
genes regulating the onset of apoptosis during pro- 
grammed cell death. The ced-3 and ced-4 genes of Cae- 
norhabditis elegans are necessary for the commitment to 
programmed cell death. Ced-9, which encodes a protein 
with structural and functional homology to mammalian 
Bcl-2, counteracts ced-3 and ced-4 (Yuan and Horvitz, 
1990; Hengartner and Horvitz, 1994). The over-expression 
of Bcl-2 is thought to contribute to B cell lymphomas by 
promoting cell survival despite aberrant proliferation sig- 
nals (Tsujimoto et al., 1984; Bakhshi et al., 1985; Cleary 
and Sklar, 1985). In experimental systems, over-expression 
of Bcl-2 has been shown to prevent apoptosis induced by 
elevated calcium levels, or by c-myc and p53 over-expres- 
sion (Hockenbery et al., 1990; Sentman et al., 1991; 
Strasser et al., 1991; Reed, 1994). 

Many of the stimuli leading to cell death support the 
view that apoptosis is a mechanism to remove cells which 
experience inappropriate or contradictory signals, such as 
in transformation or viral infection (Evan et al., 1992; 
Debbas and White, 1993; Harrington et al., 1994). Thus 
c-myc over-expression, which is generally associated with 
cell proliferation, activates cell death in the absence of co- 
incident growth factor stimulation (Evan et al., 1992). The 
different fates of immature and mature T cells responding 
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to T cell receptor (TCR) 1 activation underscore the com- 
plex interactions between apoptotic and growth pathways. 
Stimulation of the TCR on immature T cells drives them 
into apoptosis rather than the proliferative state assumed 
by mature T cells (Smith et al., 1989; Ucker et al., 1989). 
Moreover, even mature T ceils undergo apoptosis when 
confronted with continuous TCR stimulation, suggesting a 
wide use of cell death at many stages of the immune re- 
sponse (Singer and Abbas, 1994). 

Calcium signaling is upstream of certain pathways that 
lead to apoptosis, including neuronal cell death via 
glutamate-induced excitotoxicity and cell death in T cells 
(Choi, 1992; Reed, 1994). Additionally, calcium iono- 
phores cause apoptosis in a number of experimental sys- 
tems, implying that elevated intracellular calcium influ- 
ences the decision to enter apoptosis. The ability of Bcl-2 
to block most cases of calcium-induced apoptosis suggests 
that calcium stimulates a common pathway affecting the 
commitment to cell death (Barr and Tomei, 1994; Reed, 
1994). While the mechanism of Bcl-2 action is uncertain, it 
has been implicated in antioxidant pathways to prevent 
the generation of reactive oxygen species associated with 
cell death (Hockenbery et al., 1993). More recently, Bcl-2 
has been implicated in regulation of calcium efflux from 
the endoplasmic reticulum, and may thereby influence cal- 
cium-dependent apoptotic pathways (Lam et al., 1994). 

Despite extensive studies linking calcium to cell death, 
the immediate targets of this calcium flux remain largely 
unknown. One potential mediator of calcium signaling 
during apoptosis is the family of calcium-activated phos- 
phatases known as calcineurin (protein phosphatase 2B; 

1. Abbreviations used in this paper: CnA, calcineurin A; CsA, cyclosporin 
A; HA, hemagglutinin; TCR, T cell receptor; TdT, terminal deoxynucleo- 
tidyl transferase; TUNEL, TdT-mediated UTP nick end-labeling. 
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Klee et al., 1988; Guerini and Klee, 1989). We show here 
that expression of this calcium-activated phosphatase in 
mammalian cells greatly potentiates the cell death due to 
calcium signaling. Moreover, a constitutively active, cal- 
cium-independent calcineurin mutant completely bypasses 
the requirement for calcium signaling in this cell death. 

Materials and Methods 

Cell Culture 
BHK-21 cells were obtained from the American Type Culture Collection 
(Rockville, MD) and maintained in a 5% CO2 atmosphere at 37°C in 
DME (GIBCO BRL, Gaithersburg, MD) supplemented with 10% fetal 
bovine serum (Hyclone Labs., Logan, UT), 2 mM glutamine (GIBCO 
BRL), and 100 i~g/ml of penicillin-streptomycin (GIBCO BRL). 

Construction of Calcineurin A and B 
Expression Vectors 
The eDNA encoding human calcineurin A (CnA [3-isotype; Guerini and 
Klee, 1989), and human calcineurin B (Guerini et al., 1989) were obtained 
from a T cell hgtl0 library using oligonucleotides as a hybridization 
probes (Maniatis et aL, 1982). CnA was cloned into the mammalian ex- 
pression vector pCMV1 (Pharmacia, Piscataway, NJ) 200-bp '5-untrans- 
lated sequence from human lamin A and an NH2-terminal influenza he- 
magglutinin (HA)-tag using oligonucleotides and PCR techniques (Heald 
et al., 1993). CnA lacking the autoinhibitory domain and the CaM binding 
domain (ACnA) was constructed using PCR to introduce a stop codon af- 
ter N4o7. CnB was cloned into pCMV1 after the lamin untranslated re- 
gion but without an epitope tag. The Bcl-2 expression vector, pCMV-bcl.2, 
was a generous gift of Stanley Korsmeyer (Washington University School 
of Medicine, St. Louis, MO). 

DNA Transfections 
DNA transfections were performed as described previously (Heald et al., 
1993). 16,000 cells were plated onto each coverslip in 400 ~l of medium. 
On day 1, a total of 2 pLg of cesium chloride-purified plasmid DNA was 
added to 30 ~l of 0.2 M CaC12 and precipitated by adding 30 izL of 2× 
Hepes-buffered saline over 15 s with stirring. After 20 min, 350 p.1 of com- 
plete medium was added to the DNA precipitate, and the mixture applied 
to the cells. Each coverslip was allowed to incubate in the tissue culture in- 
cubator for 4 h. The coverslips were then washed twice with complete me- 
dium and returned to the incubator for an additional 12 h. 

Immunofluorescence 

Cells on coverslips were fixed in 3 % formaldehyde (Baker Co., Inc., San- 
ford, ME) in PBS for 10 min and then washed three times with 0.1% NP- 
40 (Sigma Chem. Co., St. Louis, MO) in PBS (PBS-NP-40). Primary anti- 
bodies were incubated on the coverslips for 30 min, followed by four rapid 
rinses with PBS-NP-40. The 9E10 anti-c-myc epitope monoclonal anti- 
body was obtained from the American Type Culture Collection, and the 
anti-HA epitope monoclonal antibody (12CA5) purchased from BAbCO 
(Berkeley, CA). The polyclonal antibody against the HA epitope was pur- 
chased from MBL International Corporation (MCI, Watertown, MA). 
CyLconjugated secondary antibodies (Jackson ImmunoResearch Labs., 
Inc., West Grove, PA) were incubated on the coverslips for an additional 
30 rain. DNA was labeled using Hoechst dye 33258 (Sigma Chem. Co.) at 
10 p~g/ml PBS-NP40 for 1 min. Coverslips were mounted on glass slides in 
90% glycerol, 20 mM Tris-HCl (pH 9.35). 

Western Blotting 
Coverslips were washed twice with ice-cold PBS, and the cells were ex- 
tracted with 200 pA of pre-heated (70°C) 2× SDS sample buffer containing 
10% 2-mercaptoethanol. The extract was transferred to a microcentrifuge 
tube, boiled for 5 rain, and centrifuged at 10,000 g for 10 min. 25 ~l of each 
sample was analyzed by 8% SDS gel electrophoresis and electrophoreti- 
cally transferred to Immobilon membranes (Millipore Corp., Bedford, 
MA). The membranes were blocked overnight in 0.1% Tween-20 PBS 
(0.1% Tween-PBS) containing 5% nonfat dry milk and incubated in pri- 

mary antibody for 1 h at room temperature. After four 5-min washes with 
blocking solution, membranes were incubated with goat anti-rabbit anti- 
body conjugated to horseradish peroxidase (Jackson ImmunoResearch 
Labs., Inc.) for 1 h. Membranes were then washed and developed using 
chemiluminescence reagents (ECL; Amersham Corp., Arlington Heights, 
IL) and exposed to XAR-5 film (Kodak). 

DNA Nick End Labeling (TUNEL Method) 
To detect DNA fragmentation in situ, we modified the previously de- 
scribed TUNEL method (Tilly and Hsueh, 1993; Surh and Sprent, 1994) 
as follows. Cells were fixed and washed with PBS-NP-40 and TdT buffer 
(0.5 M cacodylate, 25 mM Tris, pH 6.8, 150 mM NaC1, 5 mM CoC12, 0.5 
mM DTT, and 0.05% BSA), and then incubated for 1 h at 37°C with 2-5 
p.M digoxigenin-conjugated dUTP (Boehringer Mannheim Biochemicals, 
Indianapolis, IN) and 5-10 U TdT (terminal transferase; Promega Biotec, 
Madison,WI) in 50 p.l TdT buffer per coverslip. After washing and block- 
ing, cells were incubated with 0.5 ~,g/ml anti-digoxigenin mouse mono- 
clonal antibody (Boehringer Mannheim Biochemicals), washed, and then 
incubated with an FITC-labeled anti-mouse antibody (Jackson Immu- 
noResearch Labs., Inc.). 

Immunoprecipitations and Calcineurin 
Phosphatase Assays 
Transfected cells on coverslips were lysed in 200 i~l of buffer A (50 mM 
Tris-HC1, pH 7.5, i mM EDTA, 0.5% Tween-20, 0.5 mg/ml BSA, 1 mM 
DTT, I mM PMSF, 1 p~g/ml leupeptin and 1 I~g/ml pepstatin), transferred 
to a microfuge tube, and centrifuged at 10,000 g for 5 min at 4°C. The su- 
pernatant was transferred to a new tube and 5 ~1 of the anti-HA epitope 
(12CA5) monoclonal antibody (BAbCO) and 30 p.1 of protein G-Sepha- 
rose (1:1 slurry; Sigma Chem. Co.) were added. Tubes were rotated at 4°C 
for I h. The Sepharose beads were pelleted by centrifugation and washed 
three times in buffer A. Phosphatase activity associated with the immuno- 
precipitates was determined by following [32p]phosphate released from 
the RII peptide essentially as described (Milan et al., 1994). 

Calcineurin activity from whole cell lysates of transfected and mock- 
transfected cells was determined by a modification of the assay developed 
by Fruman and colleagues (Fruman et al., 1992). Cells were scraped from 
coverslips in 200 ~l of PBS, pelleted at 10,000 g for 15 s, resuspended in 50 
I~l hypotonic lysis buffer (50 mM Tris-HC1, pH 7.4, 1 mM EDTA, 1 mM 
CaCl2, 1 mM PMSF, 1 p~g/ml pepstatin, 1 p.g/ml leupeptin, 1 mM DTr),  
and subjected to three rounds of freeze-thaw. After removing cell debris 
by centrifugation, 50 ixl of phosphatase buffer (100 mM Tris-HCl, pH 7.4, 
1 mM MnC12, 0.1 mM CaC12, 0.5 mg/ml BSA, 100 nM calmodulin, and 0.5 
mM DTT) was added to the supernatant. 500 nM okadaic acid was added 
to the reactions to suppress endogenous protein phosphatases PP1 and 
PP2A (Fruman et al., 1992). The SEp-labeled Rll peptide was incubated in 
the extracts for 30 min at 30°C. To determine the specific contribution of 
ACnA to the phosphatase activity of the lysates, 1 mM EGTA was added 
prior to the start of the reaction to suppress endogenous calcineurin activ- 
ity. The effects of immunophilin--drug complexes on calcineurin activity of 
these lysates was determined using 0.5 ~M cyclosporin A (CsA) and 1 p.M 
human cyclophilin B (Price et al., 1991). Reactions were stopped by add- 
ing 500 p,l of stop buffer (10% TCA, 0.1 M sodium phosphate) and 10 p.l 
of 10 mg/ml BSA to each tube. These tubes were incubated on ice for 10 
min, centrifuged at 10,000 g for 10 min, and the released [sZP]phosphate 
was determined as described (Milan et al., 1994). 

Results 

Calcineurin Induces Calcium-dependent Cell Death 
in the Absence of Growth Factors 

To assess the effect of exogenous calcineurin expression 
on mammalian cells, we transfected BHK cells with vec- 
tors expressing an HA-epitope-tagged catalytic subunit of 
calcineurin (~-isotype of CnA) and its regulatory subunit, 
CnB (Guerini and Klee, 1989; Guerini et al., 1989; Milan 
et al., 1994; Fig. 1 A). Co-transfection of the two cal- 
cineurin subunits appears to be essential for efficient cal- 
cineurin expression in mammalian cellsl as immunoblot- 
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Figure 1. Expression of human CnA and CnB in mammalian 
cells. (A) Domain structure of human calcineurin A (CnA), 
ACnA, and calcineurin B (CnB). The eDNA encoding human 
CnA (13-isotype) was modified by an insertion of an HA-epitope 
coding sequence at its NH2 terminus. HA, Catalytic, CnB, CaM, 
and AI represent the hemagglutinin-epitope, catalytic domain, 
calcineurin B-binding domain, calmodulin-binding domain, and 
auto-inhibitory domain, respectively. The human CnB cDNA en- 
codes four Ca2+-binding domains (black boxes) and was ex- 
pressed in its wild type form. (B) Total cell lysates prepared from 
BHK cells transiently transfected with control vector alone (lane 
1), CnA alone (1 Ixg CnA, 1 I~g control vector, lane 2), both CnA 
and CnB (1 ~g each, lane 3) were fractionated by polyacrylamide 
gel electrophoresis, transferred to Immobilon membranes, and 
probed with the anti-HA-epitope antibody to detect CnA. The 
molecular weight markers indicate the mobility of bovine serum 
albumin (68 kD) and ovalbumin (45 kD). (C) Immunofluores- 
cence localization and expression efficiency of calcineurin sub- 
units in BHK cells. BHK cells were co-transfected with the 
epitope-tagged CnA cDNA and either a control vector or one ex- 
pressing CnB. The subcellular localization and transfection effi- 
ciency of CnA were determined by using an anti-HA-epitope 
polyclonal antibody and is shown in the left micrograph. Nuclei 
were stained with Hoechst dye 33258 and are shown in the right 
panel. Cells expressing CnA alone are shown in the upper panel, 
and those co-expressing CnA and CnB are shown in the lower 
panel. 

ting with anti-HA antibodies revealed considerably higher 
levels of CnA in cells co-expressing CnA and CnB, com- 
pared to those expressing CnA alone (Fig. 1 B). It is likely 
that the assembly of CnB onto its binding site on CnA acts 
to protect CnA from proteolytic degradation in the cell 
(Milan et al., 1994). Indirect immunofluorescence using 

the anti-HA monoclonal antibody detected HA-tagged 
CnA in the cytoplasm of transfected cells, and showed that 
co-expressing CnB along with CnA yields more cells with 
detectable levels of CnA (Fig. 1 C). The indirect immuno- 
fluorescence also revealed that the vast majority of BHK 
cells grown in normal media appears to tolerate the co- 
expression of HA-CnA and -CnB. However, approxi- 
mately 3% of transfected cells displayed hypercondensed 
nuclei and cytoskeletal changes reminiscent of cells under- 
going apoptosis (Kerr et al., 1994). Since calcineurin activ- 
ity is highly dependent on a transient rise in intracellular 
calcium (Klee et al., 1988), we asked whether stimulating 
calcineurin activity by exposing cells to calcium iono- 
phores would provoke increased rates of apoptosis in cal- 
cineurin-transfected cells. Cells co-expressing HA-CnA 
and -CnB for 16 h were treated with the calcium iono- 
phore ionomycin, and scored for the apoptotic phenotype. 
Despite a 4-h incubation with ionomycin (0.25 }xM), cal- 
cineurin-transfected cells showed only a modest increase 
in the rate of apoptosis (Fig. 2 A). We then considered the 
possibility that, as with c-myc over-expression (Evan et al., 
1992), growth factor pathways inhibit apoptosis in cal- 
cineurin-transfected cells. We therefore stimulated cal- 
cineurin-transfected cells with calcium ionophores after 
4 h of serum deprivation. Significantly, more than 60% of 
the transfected cells entered apoptosis within 4 h (Fig. 2 
A). The process of apoptosis in these cells was very rapid: 
cytoplasmic retraction was apparent within 15 min of cal- 
cium ionophore treatment, and nuclear condensation was 
obvious at 30 min (Fig. 2 B). By 4 h, cells were rounded 
and had nuclei with multiple bodies of hypercondensed 
chromatin. 

To further characterize the apparent apoptotic events, 
calcineurin-transfected cells were treated with calcium 
ionophores with and without serum deprivation, and ge- 
nomic DNA subsequently probed for the presence of 
strand breaks using the terminal deoxynucleotidyl trans- 
ferase (TdT)-mediated UTP nick end-labeling (TUNEL) 
method (Fig. 3; Tilly and Hsueh, 1993). Calcium-activated 
cells grown in high serum showed no incorporation of la- 
beled nucleotides (Fig. 3). In contrast, apoptotic nuclei of 
calcium activated, serum-deprived cells showed strong in- 
corporation of labeled nucleotides indicative of multiple 
nicks in nuclear DNA (Fig. 3). These results demonstrate 
that transfected calcineurin induces apoptosis in a cal- 
cium-dependent manner and that this process of cell death 
is blocked by growth factors. 

We also note that non-transfected BHK cells, or those 
transfected with the regulatory subunit CnB alone, un- 
dergo apoptosis when serum deprived for 4 h and subse- 
quently treated with ionomycin. However, the percentage 
of apoptotic cells is only 7.5% compared to 65% in CnA/ 
CnB-transfected cells (not shown). 

Calcineurin Acts on Existing Substrates 
to Promote Apoptosis 

To determine whether calcineurin-induced apoptosis in 
BHK cells requires new protein synthesis, we treated cells 
co-expressing CnA and CnB with the protein synthesis in- 
hibitor cycloheximide (36 }xM) immediately prior to serum 
deprivation. 1 h after calcium ionophore treatment in the 
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Figure 2. Induction of apopto- 
sis in BHK cells transfected 
with CnA and CnB.(A) Effect 
of serum deprivation and iono- 
mycin on induction of apopto- 
sis in CnA- and CnB-trans- 
fected ceils. BHK cells were 
transfected with CnA (1 I~g) 
and CnB (1 t~g) cDNAs and 
cultured overnight in normal 
media containing 10% FCS. 
The next day, cells were serum 
deprived by incubation in low 
serum medium (0.1% FCS) for 
4 h, and then incubated in low 
serum medium with ionomycin 
(0.25 ~M, open circles) or 
without ionomycin (closed cir- 
cles). Identical coverslips of 
transfected cells were incu- 
bated in media containing 10% 
FCS containing ionomycin 
(closed rectangles) or without 
ionomycin (open rectangles). 
Transfected cells were scored 
for the apoptotic phenotype 
including changes in cell shape 
and hypercondensed chroma- 
tin as judged by Hoechst 33258 
staining. A minimum of 1,000 
transfected cells was scored for 
each time point. (B) Apoptotic 
events in cells coexpressing 
CnA/CnB. BHK cells trans- 
fected with CnA and CnB 
were serum-deprived for 4 h, 
and then exposed to ionomy- 
cin (0.25 IxM) in the same me- 
dia. The morphological changes 
of cell shape and nuclei were 
observed by using both the 
anti-HA epitope antibody to 
detect CnA/CnB-transfected 
cells and Hoechst 33258 dye at 
the indicated time: 0 rain, 15 
min, 30 min, and 4 h of iono- 
mycin treatment. 

presence or absence of cycloheximide, cells were scored 
for changes in cytoplasmic and nuclear structure charac- 
teristic of apoptosis. Cycloheximide showed no effect on 
the progression of serum-deprived, calcineurin-transfected 
cells toward apoptosis upon calcium ionophore treatment, 
an indication that calcineurin stimulates cell death by act- 
ing on existing substrates in the cell (Fig. 4 A, lane 3). Di- 
rect measurement  of the inhibition of protein synthesis by 
36 ixM cycloheximide revealed an 83% decrease in the in- 
corporation of [35S]methionine into polypeptides (not 
shown). Significantly, cycloheximide treatment in the ab- 
sence of ionomycin did not promote cell death in either 
the serum deprived cells or those grown in 10% FCS (Fig. 

4 A, lanes 1 and 4). In contrast, cycloheximide appears to 
neutralize the ability of high serum to block calcineurin- 
induced cell death (Fig. 4 A, lane 6). In this case it is likely 
that cycloheximide is preventing the synthesis of  factors 
required by the cell for survival. 

Calcineurin-induced Apoptosis Is Suppressed 
by Bcl-2 Expression 

The oncoprotein Bcl-2, and its homolog in C. elegans en- 
coded by ced9, appear to play a major role in suppressing 
cell death provoked by a wide variety of stimuli (Sentman 
et al., 1991; Barr and Tomei, 1994; Reed,  1994). To deter- 
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Figure 3. TUNEL staining of 
CnA/CnB-transfected cells. 
BHK cells co-expressing CnA 
and CnB cDNAs for 16 h 
were incubated in either 10% 
FCS (top) or 0.1% FCS (bot- 
tom) for 4 h, incubated in 
ionomycin (0.251xM) in ei- 
ther 10% FCS or low serum 
for 1 h, and subsequently 
processed for immunodetec- 
tion of CnA and fragmented 
DNA using the TUNEL 
method. Left panels reveal 
staining for CnA (red) and 
DNA (blue) in cells exposed 
to ionomycin in high and low 
serum, respectively. Right 
panels show fields corre- 
sponding to left panels in 
which DNA was labeled at 
internal breaks using digoxi- 
genin-modified nucleotides 
and terminal deoxynucle- 
otide transferase, followed 
by FITC-labeled anti-digoxi- 
genin antibodies (green). 

Figure 4. Effect of cycloheximide and Bcl-2 on BHK cells co- 
transfected with CnA and CnB. (A) Effect of the protein synthe- 
sis inhibitor cycloheximide on calcineurin-induced apoptosis in 
BHK cells. Cells were co-transfected with cDNAs encoding CnA 
and CnB, and subsequently incubated for 4 h in either normal 
media or low-serum media in the presence (lanes 1, 3, 4, and 6) or 
absence (lanes 2 and 5) of cycloheximide (36 ixM) prior to stimu- 
lation with ionomycin (0.25 IxM) for 1 h. I and CHX represent 
ionomycin and cycloheximide, respectively. Error bars indicate 
standard deviation of three experiments in which 800 transfected 
cells in each experiment were scored. (B) Bcl-2 expression pre- 
vents apoptosis in calcineurin-transfected cells. BHK cells were 
transfected with cDNAs encoding CnA and CnB, CnA, CnB, and 
Bcl-2, or Bcl-2 alone and subsequently serum-deprived for 4 h 
and stimulated with ionomycin for 1 h. The percentage of apop- 
totic cells was determined by scoring 800 cells from four experi- 
ments. Error bars represent the standard deviation for these de- 
terminations. Each column represents as follows: Vector (2.0 txg 
of pCMV control vector); Bcl-2 (0.6 Ixg of pCMV control vector 
+ 1.4 Ixg of pCMV-bcl-2); A + B (0.3 ~g each of pCMV-CnA 
and -CnB + 1.4 ~g of pCMV control vector); A + B + Bcl-2 (0.3 
Ixg each of pCMV-CnA and -CnB + 1.4 ~g of pCMV-bcl-2). 

mine whether Bcl-2 can regulate calcineurin-induced apo- 
ptosis, we assayed the interaction of  Bcl-2 and calcineurin 
in BHK fibroblasts. Cells expressing CnA, CnB, and Bcl-2 
were found to be markedly resistant to apoptosis induced 
by growth factor withdrawal and ionomycin treatment in 
comparison to cells not transfected with the Bcl-2 expres- 
sion vector (Fig. 4 B). These data suggest that the actions 
of Bcl-2 are dominant  over those of calcineurin in cell 
death, although they fail to address whether Bcl-2 is acting 
upstream or downstream of calcineurin. Regardless, cal- 
cineurin appears to function in a pathway of  cell death reg- 
ulated by Bcl-2. 

Calcium-independent Calcineurin Mutant Promotes 
Apoptosis in the Absence of  Calcium Signaling 

Although calcineurin-transfected cells undergo rapid and 
efficient apoptosis upon exposure to calcium ionophores, 
it was formally possible that the calcium influx was activat- 
ing endogenous enzymes which in turn trigger cell death. 
To circumvent the requirement for calcium ionophores in 
this process, we transfected cells with a COOH-terminal  
deletion mutant  (ACnA) of  calcineurin which is constitu- 
tively active even in the absence of elevated calcium (Fig. 
5 A; Hubbard  and Klee, 1989; Clipstone and Crabtree, 
1992; O 'Keefe  et al., 1992). As with cells expressing full- 
length CnA and CnB, cells expressing ACnA and CnB ap- 
pear normal 16 h after transfection (Fig. 5 B, upper panel). 
In contrast to cells expressing the full-length CnA and 
CnB, those transfected with ACnA and CnB initiated apop- 
tosis without exposure to calcium ionophores (Fig. 5 B, 
lower panel). Further, these cells reacted positively for 
fragmented D N A  using the T U N E L  method (Fig. 5 B, 
right panels). The time course for cell death after the start 
of serum deprivation of ACnA/CnB-transfected cells was 
remarkably rapid and approached 50% by 4 h (Fig. 5 C). 
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Figure 5. ACnA expression re- 
suits in apoptosis in the absence 
of ionomycin. (A) Schematic 
representation of full-length 
(CnA) and the truncated, consti- 
tutively active calcineurin A 
(ACnA). (B) Cells co-trans- 
fected with ACnA and CnB 
were fixed before and after 4 h 
of serum-deprivation and pro- 
cessed for immunofluorescence 
using the anti-HA monoclonal 
antibody to detect ACnA and 
Hoechst dye to label DNA 
(right) and for fragmented DNA 
using the TUNEL method 
(right). (C) BHK cells were co- 
transfected with CnA and CnB 
(open circles) or ACnA and CnB 
(closed circles), and subse- 
quently transferred to low serum 
media. After 4 h of serum depri- 
vation, cells were incubated with 
ionomycin (0.25 ixM). At the 
time points indicated, ceils were 
fixed, processed for immuno- 
fluorescence using the anti-HA 
monoclonal antibody and Hoechst 
dye 33258, and analyzed for apop- 
totic figures. 1,000 cells from 
each of three experiments were 
scored for apoptotic nuclei. The 
vertical bars represent standard 
deviations. 

The absolute  percentage  of apoptot ic  cells was not  obvi- 
ously enhanced by the addi t ion of ionomycin at four hours 
(Fig. 5 C). These da ta  indicate that  calcineurin can directly 
st imulate apoptot ic  pathways without  the coopera t ion  of  
o ther  calcium-act ivated proteins.  

Correlation between Calcineurin Catalytic Activity 
and Apoptosis 

To probe  the relat ionship be tween  C n A  phosphatase  ac- 
tivity and cell death,  we scored cells t ransfected with in- 

creasing amounts  of ACnA/CnB for both apoptosis  and 
calcineurin enzymatic  activity. Ant i -calc ineurin  ant ibodies  
were used in immunoblots  to assay calcineurin accumula- 
t ion in the t ransfected cells (Parsons et al., 1994). As  seen 
in Fig. 6 A,  ACnA (50 kD)  migrates below endogenous  
calcineurin (60 kD)  and its level of expression correlates 
with the amount  of ACnA plasmid used in the transfec- 
tion. To de te rmine  if the increased accumulat ion of ACnA 
is reflected in enhanced calcineurin activity, HA- tagged  
ACnA was immunoprec ip i ta ted  with the ant i -HA anti- 
body and assayed for activity in vitro. We  found a near ly  
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Figure 6. Correlation between calcineurin activity and apoptosis. 
(A) Dose-dependent expression of ACnA. BHK cells were trans- 
fected with the indicated amounts of ACnA/CnB expression vec- 
tors (1:1 ratio, adjusted to 2 I~g using control vector) and lysed 
16 h later. Cell lysates were separated by electrophoresis and 
transferred to nylon membrane. Endogenous calcineurin A 
(CnA) and transfected ACnA were detected by an anti-cal- 
cineurin antibody (gift of R. Kincaid, National Institutes of 
Health, Bethesda, MD). (B) BHK cells transfected with different 
amounts of ACnA/CnB were assayed for calcineurin phosphatase 
activity and scored for apoptosis. To determine calcineurin activ- 
ity, cells were lysed 16 h after transfection and the HA-tagged 
ACnA immunoprecipitated with the 12CA5 monoclonal anti- 
body. Immunoprecipitates were assayed for phosphatase activity 
against the -~2P-labeled RII peptide, as described (Milan et al., 
1994). Apoptosis was scored on identical coverslips after 4 h of 
serum deprivation. Open circles and closed circles represent the 
percentage of apoptotic cells and phosphatase activity of the ex- 
pressed calcineurin, respectively. (C) To compare the phos- 
phatase activity of transfected ACnA with that of endogenous 
calcineurin, whole cell lysates were prepared from cells trans- 
fected with different amounts of ACnA/CnB and control vector 
alone (total 2 txg). Calcineurin-specific phosphatase activity was 
determined in the presence of 500 nM okadaic acid to suppress 
PP1 and PP2A (Fruman et al., 1992). Lysates from cells trans- 
fected with vector alone displayed calcium-dependent and -inde- 
pendent phosphatase activity, both of which were suppressed by 
500 nM CsA and 1 IxM cyclophilin B. Lysates made from ACnA/  
CnB-transfected cells, assayed in the absence of calcium, dis- 
played phosphatase activity proportional to the amount of 
ACnA/CnB transfected. The decrease in phosphatase activity at 1 

linear relationship between the amount of calcineurin 
plasmids transfected and the phosphatase activity of the 
immunoprecipitated calcineurin (Fig. 6 B). Moreover, these 
experiments revealed a strong correlation between cal- 
cineurin activity and apoptosis in transfected cells (Fig. 6 B). 

We next asked how this transfected calcineurin activity 
compared to that of endogenous calcineurin. Cells trans- 
fected with a control vector were lysed in extraction buffer 
and assayed for calcineurin activity in the presence of oka- 
daic acid (500 nM), which inhibits protein phosphatase 1 
and 2A (Fruman et al., 1992). In parallel, we performed 
phosphatase assays on lysates from cells transfected with 
increasing amounts of ACnA/CnB, and found a corre- 
sponding increase in phosphatase activity (Fig. 6 C), as ex- 
pected from the immunoprecipitation experiments. At the 
lowest amount of ACnA/CnB transfected, the lysates 
yielded a twofold higher calcineurin activity than that 
found in cells transfected with the control vector alone 
(Fig. 6 C). At this level of calcineurin activity, 23% of cells 
undergo apoptosis after 4 h of serum deprivation, versus 
3% for control vector-transfected cells. In transfections 
involving 0.75 txg ACnA/CnB, lysates show approximately 
eight times the endogenous level of calcineurin catalytic 
activity, and ~40% of total cells undergo apoptosis. Over- 
all, these results indicate a strong relationship between cap 
cineurin-dependent phosphatase activity and cell death. 

Discussion 

Calcium signaling has been implicated in a wide variety of 
apoptotic stimuli and yet the critical effectors of calcium 
remain obscure. We provide evidence that the activation 
of calcineurin, a calcium/calmodulin-dependent phospha- 
tase, rapidly provokes apoptosis and is therefore a likely 
mediator of calcium signaling leading to cell death. We 
show that calcineurin-induced cell death is abrogated by 
growth factor stimulation and by Bcl-2 expression. Fur- 
ther, calcineurin was shown to function at a posttransla- 
tional level to activate apoptosis. These data support the 
prospect that calcineurin is acting in a calcium-dependent 
manner to modify existing substrates important in the 
commitment to cell death. 

Role of Calcineurin in Calcium-activated Cell Death 

Despite advances in defining proteins which regulate apo- 
ptosis, including Bcl-2, Bax, ICE/Ced-3, and Ced-4, it is 
unclear how these factors are influenced by signal trans- 
duction pathways that promote cell death. Calcium signal- 
ing is associated with glucocorticoid- and activation-induced 
cell death in immature T cells, growth factor withdrawal in 
certain cell lines, and hyperactivation of N-methyl-D-aspar- 
tate receptors of neurons (Burr and Tomei, 1994; Martin 
et al., 1994; Reed, 1994). In neurons of the central nervous 
system, calcium mobilization following glutamate stimula- 
tion of N-methyl-D-aspartate receptors is strongly impli- 
cated in cell death, although the identity of the calcium- 

pxg ACnA/CnB (each 1 p~g of ACnA and CriB) is likely due to the 
induction of apoptosis observed even in the presence of 10% FCS 
(not shown). 
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sensitive mediators of apoptosis remains unclear (Choi, 
1992). The calcium-sensitivity of nitric oxide synthetase 
makes this enzyme an obvious candidate for effecting cell 
death in neurons (Choi, 1992). However, calcineurin is 
present at very high concentrations (1-2 p,M) in the cen- 
tral nervous system (Krinks et al., 1984), and therefore 
may be a material factor in calcium-activated cell death in 
neurons. 

We provide several lines of evidence that calcineurin ac- 
tivity resulting from elevated intracellular calcium concen- 
tration, rather than additional calcium-activated events, is 
sufficient to induce cell death. For one, over-expression of 
the catalytic and regulatory subunits of calcineurin in fi- 
broblasts renders these cells highly vulnerable to a rapid 
form of cell death. As with c-myc over-expression, these 
cells execute cell death processes only in the absence of 
growth factor stimulation. Second, cells expressing ACnA, 
which displays calcium-independent phosphatase activity, 
undergo apoptosis in the absence of calcium signaling. 
Further, the extent of apoptosis in a population of cells ap- 
pears to correlate well with the phosphatase activity gen- 
erated by the expressed ACnA. That calcineurin is a direct 
activator of cell death is supported by the observation that 
calcineurin promotes cell death in the absence of de novo 
protein synthesis. Similarly, neither c-myc nor p53 re- 
quires new protein synthesis to trigger apoptotic pathways 
(Evan et al., 1992; Caelles et al., 1994; Wagner et al., 1994). 
It is possible, then, that both c-rnyc, as a complex with 
Max, and p53, function in cell death by repressing genes 
required for survival. Alternatively, these transcriptional 
activators may be involved in protein-protein interactions 
independent of transcriptional regulation to affect cell 
death decisions (Amati et al., 1993; Caelles et al., 1994; 
Wagner et al., 1994). Calcineurin may participate in cell 
death pathways by indirectly altering transcriptional regu- 
lation through, for instance, c-myc or p53. Alternatively, 
calcineurin may function by affecting regulators of cell 
death such as Bcl-2 or Ced-3 (Yuan et al., 1993). 

Regulation of Calcineurin-induced Cell Death 
by Bcl-2 and Growth Factors 

The ability of Bcl-2/Ced9 to prevent apoptosis due to a di- 
verse array of stimuli, including ones involving calcium sig- 
naling, suggests that it regulates a fundamental step in the 
commitment to cell death (Sentman et al., 1991; Barr and 
Tomei, 1994; Hengartner and Horvitz, 1994; Reed, 1994). 
We find that Bcl-2 efficiently suppresses apoptosis in cells 
transfected with wild type CnA and CnB, an indication 
that Bcl-2 blocks steps affected by calcineurin's phos- 
phatase activity. Bcl-2 has been implicated in the regula- 
tion of both oxygen radical formation and calcium fluxes 
from intracellular stores, and conceivably either function 
could affect calcineurin-induced cell death (Hockenbery 
et al., 1993; Lam et al., 1994). 

Our results also demonstrate that growth factors in se- 
rum interfere with calcineurin-induced cell death. IGF-1 
has been has been shown to block c-myc-induced apopto- 
sis in fibroblasts (Evan et al., 1992; Harrington et al., 
1994). Significantly, IGF-1 prevents cell death even in the 
absence of new protein synthesis, an indication that IGF-1 
operates through pathways that directly impact apoptotic 
decisions (Harrington et al., 1994). Cell death via c-myc is 

known to depend on wild-type p53, as c-myc over-expres- 
sion in p53 n"u cell lines leads to proliferation rather than 
cell death (Hermeking and Eick, 1994). The ability of c-rnyc 
expressing p53 nutt cells to avoid cell death is thought to un- 
derlie tumor progression in many human cancers (Burr 
and Tomei, 1994). We are currently testing the possibility 
that calcineurin, c-myc, and p53 interact in a common reg- 
ulatory scheme to influence decisions on cell death. 

Calcineurin Function in Apoptosis is Fundamentally 
Different from That in T Cell Activation 

A role for calcineurin in cell death has been deduced from 
earlier studies of T cell activation. T cell hybridomas, and 
in some cases, immature T cells, undergo cell death in a 
calcium-dependent manner thought to require calcineurin 
(Smith et al., 1989; Fruman et al., 1992). But several fea- 
tures of cell death in T cell hybridomas suggest that it oc- 
curs via pathways distinct from those employed in the cal- 
cineurin-dependent apoptosis described here in fibroblasts. 
For one, T cell hybridomas stimulated by anti-CD3 anti- 
bodies appear to undergo the early phases of T cell activa- 
tion including calcium mobilization, Nuclear Factor in 
Activated T Cells (NFAT) activation, and cytokine tran- 
scription within 30 min, and yet cell death is not evident 
for another six to eight hours (Shi et al., 1989; Smith et al., 
1989; Ucker et al., 1989; Fruman et al., 1994). It is now 
known that much of this lag is due to the requirement of 
new protein synthesis for T cell hybridoma death (Ucker 
et al., 1989; Crispe, 1994). In contrast, the failure of cyclo- 
heximide to impede ceil death in fibroblasts overexpress- 
ing calcineurin suggests that calcineurin acts to modify 
substrates essential for apoptosis which already exist in the 
cell. This finding supports previous work which argued 
that important components of the cell death process are 
constitutively expressed in the cell (Raft et al., 1993). More- 
over, the immunosuppressants CsA and FK506, which 
block apoptosis in T cell hybridomas, fail to block the 
more direct cell death in BHK fibroblasts described here 
(Shibasaki, F., and F. McKeon, manuscript in prepara- 
tion). This apparent dichotomy underscores the possibility 
of two distinct, calcineurin-dependent pathways leading to 
cell death. In T cell hybridomas, CsA blocks the early 
phase of T cell activation which is necessary to promote 
the subsequent, Fas-dependent process of cell death (Singer 
and Abbas, 1994). On the other hand, the more direct, cal- 
cineurin-dependent pathways described here may involve 
substrates favored by calcineurin-CsA-cyclophilin com- 
plexes (Liu et al., 1991). 

In summary, we have shown that calcineurin can medi- 
ate calcium-activated cell death in mammalian cells in a 
manner regulated by the Bcl-2 oncoprotein and growth 
factors. The calcineurin expression system described here 
provides an important model for the analysis of signal 
transduction pathways that directly influence the decision 
towards cell death or growth. Finally, these results suggest 
that calcineurin may act in the calcium-activated cell death 
of neurons and cells of the immune system. 

We thank Ben Stanger, Annie Yang, Roydon Price, David Milan, Dieter 
Wolf, and Jun Liu for helpful discussions and critical reading of this manu- 
script. We are grateful to Randall Kincaid for providing antiserum against 
calcineurin, and Stanley Korsmeyer for the Bcl-2 expression vector, 

We gratefully acknowledge fellowship support for F. Shibasaki from 

The Journal of Cell Biology, Volume 131, 1995 742 



the H u m a n  Front ier  Science Program (LT-138/93). This work was sup- 

por ted by a grant from the Amer ican  Cancer Society (IM-665) to F. 

McKeon.  

Received for publicat ion 15 June 1995 and in revised form 20 July 1995. 

References 

Amati, B., T. D. Littlewood, G. I. Evan, and H. Land. 1993. The c-Myc protein 
induced cell cycle progression and apoptosis through dimerization with Max. 
EMBO Z 12:5083-5087. 

Bakhshi, A., J. P. Jensen, P. Goldman, J. J. Wright, O. W. Mcbride, A. L. Ep- 
stein, and S. J. Korsmeyer. 1985. Cloning the chromosomal breakpoint of 
t(14;18) human lymphomas: clustering around JH on chromosome 14 and 
near a transcriptional unit on 18. Cell. 41:899-906. 

Barr, P. J., and L. D. Tomei. 1994. Apoptosis and its role in human disease. Bio/ 
Technology. 12:487-493. 

Caelles, C., A. Helmherg, and M. Karin. 1994. p53-dependent apoptosis in the 
absence of transcriptional activation of p53-target genes. Nature (Lond.). 
370:220-223. 

Choi, D. W. 1992. Excitotoxic cell death. ,L Neurobiol. 23:1261-1276. 
Cleary, M. L., and J. Sklar. 1985. Nucleotide sequence of a t(14;18) chromo- 

somal breakpoint in follicular lymphoma and demonstration of a break- 
point-cluster region near a transcriptionally active locus on chromosome 18. 
Proc. Natl. Acad. Sci. USA. 82:7439-7443. 

Clipstone, N. A., and G. R. Crabtree. 1992. Identification of calcineurin as key 
signaling enzyme in T-lymphocyte activation. Nature (Lond.). 357:695-697. 

Crispe, I. N. 1994. Fatal interactions: Fas-induced apoptosis of mature T cells. 
Immunity. 1:347-349. 

Debbas, M., and E. White. 1993. Wild-type p53 mediates apoptosis by E1A, 
which is inhibited by E1B. Genes & Dev. 7:546-554. 

Ellis, R. E., J. Y. Yuan, and H. R. Horvitz. 1991. Mechanism and functions of 
cell death. Annu. Rev. Cell Biol. 7:663-698. 

Evan, G. I., A. H. Wyllie, C. S. Gilbert, T. D. Littlewood, H. Land, M. Brooks, 
C. M. Waters, L. Z. Penn, and D. C. Hancock. 1992. Induction of apoptosis 
in fibroblast by c-Myc protein. Cell. 68:119-128. 

Fruman, D. A., S. J. Buracoff, and B. E. Bierer. 1994. Immunophilins in protein 
folding and immunosuppression. FASEB Z 8:391-400. 

Fruman, D. A., C. B. Klee, B. E. Bierer, and S. J. Burakoff. 1992. Calcineurin 
phosphatase activity in T lymphocytes is inhibited by FK506 and cyclosporin 
A. Proc. NatL Acad. Sci. USA. 89:3686-3690. 

Fruman, D, A., P. E. Mather, S. J. Burakoff, and B. E. Bierer. 1992. Correlation 
of calcineurin phosphatase activity and program cell death in T cell hybrido- 
mas. Eur. J. lmmunoL 22:2513-2517. 

Guerini, D., and C. B. Klee. 1989. Cloning of human calcineurin A: Evidence 
for two isozymes and identification of polyproline structural domain. Proc. 
Natl. Acad. Sci. USA. 86:9183-9187. 

Guerini, D., M. H, Krinks, J. M. Sikela, W. E. Hahm, and C. B. Klee. 1989. Iso- 
lation and sequence of a cDNA clone for human calcineurin B, the Ca 2÷- 
binding subunit of the Ca2+/calmodulin-stimulated protein phosphatase. 
DNA. 8:675-682. 

Harrington, E. A., A. Fanidi, and G. I. Evan. 1994. Oncogenes and cell death. 
Curr. Opin. Genet. Dev. 4:120-129. 

Harrington, E. H,, M. R. Bennett, A. Fanidi, and G. I. Evan. 1994. c-Myc- 
induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 
13:3286-3295. 

Heald, R., M. McLoughlin, and F. McKeon. 1993. Human Weel  maintains mi- 
totic timing by protecting the nucleus from cytoplasmically activated cdc2 ki- 
nase. Cell. 74:463-474. 

Hengartner, M. O., and H. R. Horvitz. 1994. Activation of C. elegans cell death 
protein Ced-9 by an amino-acid substitution in a domain conserved in Bcl-2. 
Nature (Lond.). 369:318-320. 

Hermeking, H., and D. Eick. 1994. Mediation of c-rnyc-Induced apoptosis by 
p53. Science (Wash. DC). 265:2091-2093. 

Hockenbery, D., G. Nufiez, C. Milliman, R. D. Schreiber, and S. J. Korsmeyer. 
1990. Bcl-2 is an inner mitochondrial membrane protein that blocks pro- 
grammed cell death. Nature (Lond.), 348:334-336. 

Hockenbery, D. M., Z. N. Oltvai, X.-M. Yin. C. L. Milliman, and S. J. Kors- 
meyer. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. 
Cell. 75:241-251. 

Hubbard ,  M. J., and C. B. Klee. 1989. Functional domain structure of cal- 
cineurin A: mapping by limited proteolysis. Biochemistry, 28:1868-1874. 

Kerr, J. F., C. M. Winterford, and B. V. Harmon. 1994. Apoptosis. Its signifi- 
cance in cancer and cancer therapy. Cancer. 73:2013-2026. 

Klee, C. B., G. F. Draetta, and M. J. Hubbard. 1988. Calcineurin. Adv. Enzy- 
tool. Relat. Areas MoL Biol. 61:149-200. 

Krinks, M. H., J. Haiech, A. Rhoads, and C. B. Klee. 1984. Reversible and irre- 
versible activation of cyclic nucleotide phosphodiesterase: separation of the 
regulatory and catalytic domains by limited proteolysis. Adv. Cyclic Nucle- 
otide Protein Phosphorylation Res. 16:31-47. 

Lam, M., G. Dubyak, L. Chen, G. Nufiez, R. L. Miesfeld, and C. W. Distelhorst. 
1994. Evidence that Bcl-2 represses apoptosis by regulating endoplasmic 
reticulum-associated Ca 2+ fluxes. Proc. Natl. Acad. Sci. USA. 91:6569-6573. 

Liu, J., J. Farmer, W. Lane, J. Friedman, I. Weissman, and S. Schreiber. 1991. 
Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP- 
FK506 complexes. Cell. 66:807415. 

Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a labora- 
tory manual. In Molecular Cloning. Cold Spring Harbor Laboratory, Cold 
Spring Harbor, NY. 545 pp. 

Martin, S. J., D. R. Green, and T. G. Cotter. 1994, Dicing with death: dissecting 
the components of the apoptosis machinery. Trends Biochem. Sci. 19:26-30. 

Milan, D., J. Griffith, M. Su, E. R. Price, and F. McKeon. 1994. The latch region 
of calcineurin B is involved in both immunosuppresssant-immunophilin 
complex docking and phosphatase activation. Cell. 79:437--447. 

O'Keefe, S. J., J. Tamura, R. L.Kincaid, M. J. Tocci, and E. A. O'Neill. 1992. 
FK-506- and CsA-sensitive activation of the interleukin-2 promoter by cal- 
cineurin. Nature (Lond.). 357:692-694. 

Parsons, J. N., G. J. Wiederrecht, S. Salowe, J. J. Burbaum, L. L. Rokosz, R. L. 
Kinkaid, and S. J. O'Keefe. 1994. Regulation of calcineurin phosphatase ac- 
tivity and interaction with the FK-506-FK-506 binding protein complex. J. 
Biol. Chem. 269:19610-19616. 

Price, E. R., L. D. Zydowsky, M. J. Jin, C. H. Baker, F. D. McKeon, and C. T. 
Walsh. 1991. Human cyclophilin B: a second cyclophilin gene encodes a pep- 
tidyl-prolyl isomerase with a signal sequence. Proc. Natl. Acad. Sci. USA. 88: 
1903-1907. 

Raft, M. C., B. A. Barres, J. F. Burne, H. S. Coles, Y. Ishizaki, and M. D. Jacob- 
son. 1993. Programmed cell death and the control of cell survival: lessons 
from the nervous system. Science (Wash, DC). 262:695-700. 

Reed, J. C. 1994. Bcl-2 and regulation of programmed cell death. J. Cell BioL 
124:1-6. 

Sentman, C. L., J. R. Shutter, D. Hockenbery, O. Kanagawa, and S. J. Kors- 
meyer. 1991. Bcl-2 inhibits multiple forms of apoptosis but not negative se- 
lection in thymocytes. Cell. 67:879-888. 

Shi, Y., B. M. Sahai, and D. R. Green. 1989. Cyclosporin A inhibits activation- 
induced cell death in T-cell hybridomas and thymocytes. Nature (Lond.). 
339:625-626. 

Singer, G. G., and A. K. Abbas. 1994. The Fas antigen is involved in peripheral 
but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. 
Immunity. 1:365-371. 

Smith, C. A., G. T. Williams, R. E. Kingston, J. Jenkinson, and J. J. T. Owen. 
1989. Antibodies to CD3/T-cell receptor complex induce death by apoptosis 
in immature T cells in thymic culture. Nature (Lond.). 337:181-184. 

Strasser, A., A. W. Harris, and S. Cory. 1991. Bcl-2 transgene inhibits T cell 
death and perturbs thymic self-censorship. Cell. 67:889-899. 

Surh, C. D., and J. Sprent. 1994. T-cell apoptosis detected in situ during positive 
and negative selection in the thymus. Nature (Lond.). 372:100-103. 

Tilly, J. L., and A. J. Hsueh. 1993. Microscale autoradiographic method for the 
qualitative and quantitative analysis of apoptotic D N A  fragmentation. J. 
Cell Physiol. 154:519-526. 

Tsujimoto, Y., L. R. Finger, J. Yunis, P. C. Nowell, and C. M. Croce. 1984. 
Cloning of the chromosome breakpoint of neoplastic B cells with the t(14; 
18) chromosome translocation. Science (Wash. DC). 226:1097-1099. 

Ucker, D. S., J. D. Ashwell, and G. Nichas. 1989. Activation-driven T cell 
death: requirements for de novo transactivation and translation and associa- 
tion with genome fragmentation. J. lmmunol. 143:3461-3469. 

Wagner, A. J., J. M. Kokontis, and N. Hay. 1994. Myc-mediated apoptosis re- 
quired wild-type p53 in manner independent of cell cycle arrest on the ability 
of p53 to induce p21 ~afv'-ipl. Genes & Dev. 8:2817-2830. 

Yuan, J., and H. R. Horvitz. 1990. The Caenorhabditis elegans genes ced-3 and 
ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 138: 
33-41. 

Yuan, J., S. Shahan, S. Ledoux, H. M. Ellis, and H. R. Horvitz. 1993. The C. ele- 
gans cell death gene ced-3 encodes a protein similar to mammalian interleu- 
kin-ll3-converting enzyme. Cell. 75:641-652. 

Shibasaki and McKeon Calcineurin in Apoptosis 743 


