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Abstract

The heterogeneity of cancer genomes in terms of acquired mutations complicates the identification of genes
whose modification may exert a driver role in tumorigenesis. In this study, we present a novel method that
integrates expression profiles, mutation effects, and systemic properties of mutated genes to identify novel cancer
drivers. We applied our method to ovarian cancer samples and were able to identify putative drivers in the
majority of carcinomas without mutations in known cancer genes, thus suggesting that it can be used as a
complementary approach to find rare driver mutations that cannot be detected using frequency-based
approaches.
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Background
In recent years, the completion of dozens of high-
throughput sequencing screenings of cancer genomes
led to the identification of >10,000 genes that bear at
least one non-synonymous mutation. The discovery of
such a wealth of mutations that progressively accumu-
late in the cancer genome was to some extent surprising
and substantiated the idea of tumours as evolutionary
systems where most acquired variations are ‘passenger’
because they do not have any direct role in promoting
cancer. These mutations are fixed in the cancer cell
population owing to the presence in the same cells of
‘driver’ mutations that instead confer growth advantages
[1]. The identification of the (few) driver mutations
among the (many) passenger variants is therefore key to
pinpoint genes and pathways that play an active role in
cancer development and may be used as therapeutic tar-
gets. Unfortunately, the distinction between driver and
passenger mutations is not straightforward, because of
the high heterogeneity of the mutational landscape
among and within cancer types [2]. One of the most
widely used approaches to identify novel cancer genes
(that is, genes that harbour driver mutations) measures
the gene mutation frequency, relying on the assumption

that genes that are important for the development of a
certain cancer type are recurrently mutated in several
tumours [2-17]. Frequency-based methods led to the
detection of unexpectedly high mutation frequency of
isocitrate dehydrogenases 1 and 2, eventually linking
these enzymes to the onset of leukaemia and glioma
[12,18]. They also contributed to better understand the
genetic heterogeneity of cancer, leading to the observa-
tion that only few genes are mutated in the vast major-
ity of tumour types, while most cancer genes are
mutated at high frequency in one or few cancer types
[19]. Also the analysis of pathways instead of genes con-
tributed to reduce the heterogeneity of cancer muta-
tional landscape, because often the de-regulation of
cancer-associated pathways can occur through the
mutations of different components [20]. Pathway analy-
sis for example identified significant enrichment of
mutations in BRCA1 and ATM pathways in breast can-
cer, and WNT and TGFb signalling pathways in colorec-
tal cancer [21]. Although these processes were already
known to be involved in tumorigenesis [20], only a sys-
tematic approach led to assign a likely driver role to
new pathway components. Following conceptually simi-
lar approaches, several groups have analysed the pro-
teins encoded by cancer genes in the context of the
human protein-protein interaction network and identi-
fied network modules that are significantly associated
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with mutations [22-24]. Network analysis showed that
cancer genes encode proteins that are highly connected
and central inside the network [25,26]. This has been
interpreted as a sign of fragility of cancer genes towards
perturbations, because modifications of proteins at the
crossroad of multiple biological processes are likely to
have harmful consequences [27]. In addition to encod-
ing highly connected and central proteins, cancer genes
share also other systems-level properties (that is, global
properties that do not strictly depend on the individual
gene function) that distinguish them from the rest of
human genes. For example, they tend to maintain only
one single copy in the genome, which suggests an
intrinsic sensitivity of cancer genes towards gene dosage
imbalance [26]. Moreover, cancer genes mostly appeared
at two time points in evolution: caretakers and tumour
suppressors are ancient genes that have orthologs also
in prokaryotes, while gatekeepers and oncogenes were
acquired with metazoans [28]. This suggests that tumor-
igenesis may arise from the impairment of either very
basic or regulatory processes [29]. The existence of
properties that distinguish cancer genes from the rest of
human genes may be used to discriminate between dri-
ver and passenger mutations because mutated genes
that have properties similar to known cancer genes are,
in principle, more likely to harbour driver mutations,
particularly when the mutations alter the protein func-
tion. In the last years, several methods to predict dama-
ging mutations have been developed taking into account
the site conservation throughout evolution and the pos-
sible effects on protein structure, as well as on splice-
sites and UTRs [30-34]. In this study we developed an
integrative method that uses tumour, gene and mutation
properties to eventually predict novel drivers. As a proof
of principle we applied our selection procedure to a
panel of >300 ovarian carcinoma patients and identified
genes with a putative driver role in >70% of tumours
with previously unknown genetic determinants.

Results
The mutational landscape is cancer-specific and
recurrently mutated genes are long
We collected 10,681 human genes with at least one non-
synonymous mutation from 39 high-throughput muta-
tional screenings conducted in 3,052 cancer samples and
20 cancer types [2,4-18,35-57]. We divided these mutated
genes into three groups: (1) 444 known cancer genes that
are part of the Cancer Gene Census, a literature-based
collection of genes that play experimentally-proven driver
roles in cancer development [58,59]; (2) 608 candidate
cancer genes that are likely to play a driver role (see
Additional file 2, Table S1 for the definition of candidates
in each study); and (3) 9,629 genes with no evidence of
active involvement in cancer (Table 1 and Additional

file 2, Table S1). As already reported [2,27], we confirmed
the heterogeneity of cancer mutational landscape and the
overall tendency of genes to be mutated only in few can-
cer types (Figure 1A) and samples (Figure 1B). In particu-
lar, 40% of genes with no evidence of involvement in
cancer are mutated in only one cancer type or sample,
and <10% recur in more than four cancer types or sam-
ples (Figure 1A, B). This indicates the likely enrichment
of these genes in passenger mutations. Similarly, the
observed tendency of candidates to mutate in several
samples (Figure 1B) likely reflects the frequency-based
methods that were used to identify them (Additional
file 2, Table S1).
Next, we checked whether gene length might influence
the recurrent mutations of the same gene in multiple
tumours, since longer genes are likely to host a higher
number of mutations. Indeed we found positive correla-
tion between the tendency of a gene to be recurrently
mutated and its length, particularly in the case of
mutated genes with no evidence of cancer involvement,
but surprisingly also for candidates (Figure 1C). In both
groups the vast majority of genes that are mutated in
>10 cancer types have a coding portion longer than
4,450 bp (top 5% of the longest human genes). As a
comparison, only five known cancer genes that are
mutated in >10 cancer types (NF1, EP300, BRCA2, MLL,
ARID1A) are longer than 4,450 bp. Although a positive
correlation between gene length and the number of
mutations was expected for genes harbouring passenger
mutations, the fact that it was observed also for candi-
dates, but not for known cancer genes, show that cur-
rent methods do not completely correct for this effect.
Our survey of cancer somatic mutations confirmed

that most of them are cancer- and sample-specific.
Furthermore, gene length influences the recurrence of
mutations and it should be taken into account when
selecting candidates only on the basis of gene mutation
frequency.

The majority of mutated genes are tissue-selective and
lowly expressed
Indirect pieces of evidence have recently shown that
gene expression may be useful for discriminating
between driver and passenger mutations. For example,
mutations of expressed genes in lung carcinomas are
overall negatively selected, while the mutation rate of
non-expressed genes is similar to the genome-wide aver-
age [43]. Based on this observation we reasoned that
mutations affecting coding sequences are more likely to
exert their function if the gene is expressed. To check
whether this is true we investigated the breadth of
expression (that is, the number of tissues where a gene
is expressed) of mutated genes in a panel of 109 healthy
human tissues. Overall we found that known cancer
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genes are expressed in a significantly higher number of
tissues than non-mutated human genes, while candi-
dates and other mutated genes show narrow expression
breadth (Figure 2A, Additional file 1, Figure S1, Wil-
coxon test). Moreover, known cancer genes are signifi-
cantly depleted in tissue selective genes (that is, genes
expressed in <25% of the total, Fisher’s exact test), while
candidates and other mutated genes are significantly
depleted in housekeeping genes (that is, genes expressed
in at least 98% of the total, Figure 2B, Fisher’s exact
test). These results confirm that known cancer genes are
housekeeping and broadly expressed.
We further investigated whether mutated genes are

expressed in the same tissues where they are mutated.
Unfortunately, such a direct comparison was possible only
for three studies that had both mutation and expression
data on the same samples, including the whole genomes
of acute myeloid leukaemia [44] and primary lung tumour
[43], and the mutational screenings of 722 protein-coding
genes in 207 sarcoma samples [36]. In all three studies we
found a clear distinction between known cancer genes,
which are expressed in higher fraction than the rest of
human genes, and other mutated genes, which instead are
expressed in lower fraction (Figure 2C, Additional file 2,

Table S2, chi squared test). To confirm that this is a gen-
eral trend in all 20 cancer types with available mutation
data, we checked for the expression of mutated genes in
the corresponding healthy counterparts (Additional file 2,
Table S3). We found that in the normal tissues corre-
sponding to 18 of the 20 cancer types, the fraction of
expressed known cancer genes is higher than the rest of
expressed human genes, and in 14 cases this difference is
statistically significant (Figure 2D and Additional file 2,
Table S4, chi squared test). The majority of both candi-
dates and other mutated genes are instead not expressed
in the tissues where they were found mutated (Figure 2D,
Additional file 1, Figure S2A, chi-squared test). The only
significant exception were candidate cancer genes in mye-
loma, which were expressed in higher fraction than the
rest of human genes, probably also because of an overall
low expression of human genes in blood and bone marrow
(Additional file 2, Table S4). Interestingly, even when
mutated genes are expressed, their expression levels are
lower than the median expression of non-mutated genes
in the same tissues, while known or candidate cancer
genes are expressed at levels comparable with the overall
tissue median (Figure 2E, Additional file 1, Figure S2B,
and Additional file 2, Table S5, chi-squared test).

Table 1 Dataset of known, candidates and mutated cancer genes

Cancer type Known cancer genes Candidate cancer genes Rest of mutated genes Tumour samples References

Bladder 24 9 380 97 [8]

Breast 165 280 1,520 196 [2,11,40,52]

Colorectal 42 124 654 11 [2]

Gastric 203 14 5,160 109 [16]

Glioblastoma 127 87 1,679 197 [5,12,39]

HNSCC 221 67 5,901 194 [15,35]

Kidney 71 15 655 517 [7,9,55]

Leukaemia 58 169 877 393 [18,41,44,46,50,51]

Liver 26 66 370 140 [45,53]

Lung 218 143 1,012 324 [4,11,43,49]

Lymphoma 46 47 574 133 [14,47]

Medulloblastoma 16 1 194 88 [13]

Melanoma 96 159 2,845 16 [17,48,54]

Myelodysplasia 22 4 206 29 [57]

Myeloma 69 6 1,260 37 [6]

Oligodendroglioma 12 0 149 34 [38]

Ovarian 60 80 109 58 [11]

Pancreas 77 194 1,070 205 [10,11,42,56]

Prostate 54 161 81 67 [11,37]

Sarcoma 11 10 0 207 [36]

Total 444 608 9,629 3,052 NA

Starting from 10,681 human genes with at least one cancer-specific non-synonymous mutation, three groups were identified: known cancer genes that are part
of the cancer gene census [58]; candidate genes that are likely to play a role in cancer because they are recurrently mutated; and the rest of mutated genes that
carry at least one non-synonymous mutation. The full description of mutated genes in each of the 39 sequencing screenings is reported in Additional file 2,
Table S1. HNSCC; head and neck squamous cell carcinoma.
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Altogether, these data showed that cancer genes with
driver mutations tend to be expressed in the tissue
where they are mutated, while genes likely harbouring
passenger mutations are generally not expressed.
Expression can be therefore used as a further filter to
distinguish passenger from driver mutations. Although
this might be expected, so far gene expression has not
been thoroughly exploited for identifying driver muta-
tions and only a small fraction of published re-sequen-
cing screenings of cancer genomes takes it into account
to directly discriminate between driver and passenger
mutations [43,60] or to assess the background mutation
rate [61].

Identification of novel drivers in ovarian carcinomas
To identify novel cancer genes from mutation data, we
developed an integrated pipeline that identifies putative
drivers on the basis of the similarity between their prop-
erties and those of known cancer genes (Figure 3A). The
starting point were cancer samples that underwent both
sequencing and expression profiling, since we found that

driver mutations occur in genes that are also expressed
in the cancer tissue. As a first filter, we removed tumours
with at least one known mutated and expressed cancer
gene, because these genes are the most likely, albeit not
the only, cancer drivers in these tumours. Since our main
purpose was to prioritize the selection, we reasoned that
it was more likely to find novel drivers in tumours with
no mutations in known cancer genes. Further filters were
then applied at the gene level. First, mutations were ana-
lysed for their putative effects on the encoded proteins,
in order to eliminate passenger mutations with no func-
tional consequences. Second, since a positive correlation
between gene length and gene mutation frequency exists
(Figure 1C), all genes in the top 5% of gene length
(>4,450 bp) and mutated in more than five different can-
cer types (Figure 1A) were removed. Finally, four sys-
tems-level properties were evaluated to prioritize genes
that resemble known cancer genes. We considered in
particular high connectivity and centrality of the protein
products in the human protein-protein interaction net-
work [25,26]; direct interaction with a known cancer

Figure 1 Mutation occurrence and correlation with gene length of known, candidate and rest of mutated genes. Occurrence of mutated
genes in 20 cancer types (A) and 3,052 samples (B). None of the 10,681 genes is mutated in all 20 cancer types or samples; TP53 is the only
gene to be mutated in 19 cancer types, while >40% of genes are mutated only in one cancer type. (C) Dependence of the recurrence of
mutations on the gene length. Plotted is the length distribution of the coding portion for all genes that were found mutated in one to 20
cancer types. The interpolation line and R2 were calculated using the LM function in R.
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protein [20]; gene evolutionary appearance and duplic-
ability. In the latter case, we prioritized genes that origi-
nated either early in evolution or with metazoans and
vertebrates [29].
We applied our pipeline to 318 ovarian carcinomas

with available sequencing and expression data that could

be obtained from the Cancer Genome Atlas and used
with no restrictions. Furthermore, all ovarian carcinomas
underwent whole exome sequencing and matched expres-
sion profiling [62], therefore they constituted the ideal
cases for our analysis. Before applying the pipeline for the
selection of new drivers, we confirmed that also for this

Figure 2 Expression of known, candidate and rest of mutated genes in cancer and normal tissues. (A) Breadth of expression of mutated
genes in healthy tissues. Since the data were not normally distributed (P value 10-42, Shapiro-Wilk test, Additional file 1, Figure S1), distributions
were compared using the Wilcoxon test. (B) Fraction of housekeeping and tissue-specific mutated genes. Housekeeping genes were defined as
genes expressed in 107/109 tissues (98%). Tissue specific genes were defined as genes expressed in 27/109 tissues (<25%). Fisher’s exact test
with one degree of freedom was used to determine statistical significance. (C) Volcano plot showing the log2ratios between the fractions of
expressed genes in each group of mutated genes and in non-mutated genes. For each log2ratio, the corresponding P value from the chi-
squared test with one degree of freedom is also shown. None of the three studies used for this analysis [36,43,44] identified candidate cancer
genes, thus only the expression of known cancer genes and other mutated genes could be checked. (D) Volcano plot showing the log2ratios
between the fractions of mutated genes (known cancer genes, candidates and other mutated genes) and non-mutated genes that are
expressed in the normal counterparts of the 20 tumour types. The P value from the chi-squared test, one degree of freedom for each log2ratio
is also shown. For assignment of normal tissues to tumour types see Additional file 2, Table S3. (E) Volcano plot showing the log2ratios of the
faction of highly expressed mutated genes compared with the rest of highly expressed human genes. Highly expressed genes were identified as
those genes with expression higher than the median expression for that tissue (see Methods).
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Figure 3 Identification of novel driver genes in ovarian carcinoma. (A) Pipeline to identify putative driver genes on the basis of patient and
gene properties. Starting from all tumour samples with mutation and expression data, the first filters removes samples with mutations in known
cancer genes and with mutated genes that are not expressed. Then, only short genes with damaging mutations are retained. Finally, genes with
properties that resemble those of known cancer genes are identified as putative drivers. (B) Volcano plot for the expression of mutated genes in
ovarian carcinomas. Of the 7,048 total mutated genes, only 4,723 had expression data. Of those, 223 were known cancer genes of the Cancer
Gene Census [58]; 36 were previously defined as candidate cancer genes in ovarian cancer [11,62]; all remaining 4,464 mutated genes had no
putative involvement in cancer. (C) Identification of novel drivers in ovarian carcinomas. Following our pipeline, we identified 56 genes that may
favour cancer development in 23 ovarian cancer patients.
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set of patients, similarly to other cancer types (Figure 2C),
known cancer genes tend to be expressed in the tumour
where they are mutated, while the rest of mutated genes
are poorly expressed (Figure 3B and Additional file 1,
Figure S3). The vast majority of the analysed ovarian carci-
nomas (286/318, 90% of the total) had at least one known
cancer gene (mostly TP53) that was mutated and expressed
and were therefore discarded from further analysis. After
applying all other filters, we identified 58 putative driver
mutations in 56 genes that were mutated and expressed in
23 of the 32 ovarian carcinomas with previously unknown
genetics determinants (72%, Figure 3C).
To test the performance of our method in detecting

known cancer drivers, we applied it to 130 of the 318
ovarian carcinomas that had mutations in 31 known
tumour suppressor genes (Additional file 1, Figure S4).
We correctly identified the mutated tumour suppressor
genes as the cancer drivers in almost all tumours (123
out of 130 Additional file 2, Table S6). Furthermore, in
the same samples we also identified additional putative
drivers that are known to co-operate in tumour develop-
ment. For example, in tumours where we found TP53
mutations, we also identified genes such as CDH1 and
CDKN2C that often co-mutate with TP53 and are known
to have synergic tumour-suppressor activity [63-66].
Therefore, in addition to pinpoint novel drivers, our
method could also be applied to search for second hits or
co-operating genes that help tumour development. In
this respect one interesting putative co-driver is NUMB,
a gene that encodes a negative regulator of NOTCH [67]
and prevents TP53 ubiquitination and degradation [68].
The functional impairment of this gene upon damaging
mutation might thus enhance tumour development
because of the activation of the NOTCH oncogene and
the degradation of TP53 tumour suppressor.

Novel drivers of ovarian cancer resemble tumour
suppressors and affect gene transcription, cell
proliferation and survival
We had several indications that the mutated genes that we
identified as putative drivers might indeed play an active
role in ovarian carcinogenesis.
First, in addition to being all predicted as damaging by at

least two out of three predictors (see Methods), 60% of the
58 mutations either modified protein functional domains
or removed >50% of the protein sequence (Additional
file 2, Table S7). Furthermore, the vast majority (77%) of
the genomic sites where the mutation occurred are highly
conserved among vertebrates (MultiZ score >0.95) [69]
(Additional file 2, Table S7). Both these observations
suggest a likely functional role of the mutations.
Second, we measured the effect of silencing the putative

driver genes via RNA interference (RNAi), which mimics
the effect of loss-of-function mutations and can therefore

be used to infer the effect of gene impairment in cancer
[70]. We derived large-scale gene silencing data from
short hairpin RNA (shRNA) screens of approximately
11,000 genes in 102 cancer cell lines [71]. To check
whether our assumption of an overall increased cell prolif-
eration upon impairment of genes harbouring driver
mutations was correct, we compared the gene silencing
effect of known cancer genes with that of the rest of non-
mutated human genes in all cell lines (see Methods). As
expected, we observed that the silencing of known cancer
genes, and in particular of tumour suppressors, favoured
cell growth significantly more than non-mutated genes
(Figure 4A, Additional file 1, Figure S5 and Additional file
2, Table S8, Wilcoxon test). We then analysed the silen-
cing effect of the putative driver genes identified with our
pipeline in the 25 ovarian cancer cell lines used in the
screen [71]. Out of the 56 predicted driver genes, 40 were
screened via RNAi and 35 of them led to increased cell
proliferation in at least one ovarian cancer cell line (Table
2). Furthermore, their silencing effect overall resembled
that of known tumour suppressors on the same ovarian
cell lines (Figure 4B and Additional file 2, Table S9, Wil-
coxon test). Thus, as expected, our selection procedure
mainly identified tumour suppressor genes, since we
retained putative damaging mutations that disrupt the
protein function (Additional file 2, Table S7). For at least
three of these genes (RBICCI, KDM5B, PRKCQ) we also
found direct literature support that confirmed the effect of
their impairment (Figure 4C). Interestingly, all three genes
are strong candidate drivers of ovarian cancer (see below).
Finally, we investigated the association of the 56 putative

driver genes with pathways known to be involved in ovarian
cancer onset. We found that 13 of the 23 tumours (57% of
the total) harboured mutations in 19 genes belonging to
pathways that control cell proliferation and survival, includ-
ing the RB and PI3K/RAS signalling pathways, which are
altered in 67% and 45% of ovarian cancers, respectively [62]
(Figure 4D). RNAi data were available for 14 out of these
19 genes and in all cases gene silencing led to increased
proliferation in at least one ovarian cancer cell line and the
block of eight genes (KDM5B, TIAM1, RAGEF2, PRKCQ,
VAV1, PTPRG, RBL2 and MCM4) favoured cell growth
in the majority of cell lines (Figure 4D). Although for
the remaining 10 tumours no such a direct link with ovar-
ian cancer could be drawn, six of them had alterations in
gene transcription and in other two cases a general associa-
tion with cancer could be made (Table 2). Therefore, over-
all >90% of tumours harboured genomic alterations in
pathways associated with cancer.

Discussion
The central tenet of our study was that cancer driver
mutations occur in genes with peculiar properties and,
therefore, such properties can be used to identify novel

D’Antonio and Ciccarelli Genome Biology 2013, 14:R52
http://genomebiology.com/2013/14/5/R52

Page 7 of 17



cancer genes. For example we showed that cancer genes
with an established driver role are usually expressed in the
tissue where they are mutated, thus suggesting that muta-
tions in genes that are not expressed are neutral or passen-
ger. In support to our results, the vast majority of cancer
somatic mutations have been shown to occur in genomic
regions associated with repressive chromatin marks [72].

This indicates that indeed most cancer mutations are neu-
tral and occur in transcription-silent regions of the genome.
In addition to expression profiles, we analysed the

evolutionary, genomics and network properties of genes
mutated in 32 ovarian cancer carcinomas with pre-
viously unknown genetics determinants. These tumours
constitute only a small fraction of ovarian carcinomas

Figure 4 Properties of putative drivers in ovarian cancer. (A) Gene silencing effects of 395 known cancer genes with available shRNA data in
102 cancer cell lines. The distributions of log2ratios of the shRNA concentrations in the final cell population and the initial DNA pool
(log2ratioshRNA, see Methods) were compared between known cancer genes, oncogenes, tumour suppressors and the non-mutated genes using
Wilcoxon test. Complete data are reported in Additional file 2, Table S8. (B) Gene silencing effects of the 40 putative drivers identified with our
pipeline, seven tumour suppressors and eight oncogenes with available shRNA data in 25 ovarian cancer cell lines. The list of known tumour
suppressors and oncogenes associated with ovarian cancer was derived from the Cancer Gene Census [58]. Complete data are reported in
Additional file 2, Table S9. (C) Confirming evidence of the effect of RNAi on three putative drivers. The block of RB1CC1 and KDM5B via RNAi
leads to RB1 repression, with a consequent loss of the ability of RB1 to promote cell differentiation [92] and senescence [93], respectively.
Interestingly, the Rb pathway is a known key player in ovarian cancer [62]. Similarly, anti-PRKCQ siRNAs inactivate CASP8. As a consequence, the
CASP8/BCL10/MALT1 complex cannot be formed, thus preventing the cells to enter apoptosis [94]. (D) Effect of putative drivers on cell
proliferation and survival. Reported are the links with pathways involved in gene proliferation of 19 out of 56 putative drivers mutated in 13 out
of 23 tumour samples. The sample ID where the gene is mutated is provided together with the number of ovarian cancer cell lines over the
total that displayed increased proliferation upon gene silencing, when available.
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Table 2 Putative novel drivers in ovarian cancer

Ovarian carcinoma sample Gene Ovarian cell lines with increased proliferation Pathway/Biological process Reference

TCGA-04-1525 SETDB1 NA PI3K/RAS [95]

SIPA1L1 NA Cytoskeleton organisation [96]

TCGA-09-2051 SPTLC1 1 MYC [97]

TCGA-10-0927 GTF3 10 RB [98]

SQRDL 1 Amino acid metabolism [99]

TCGA-13-0717 GRIT NA JNK/MAPK [100]

TCGA-13-0755 ANXA2 2 Vesicle transport [101]

FBLN1 1 Cell adhesion [97]

FEN1 4 DNA repair [102]

GSS 3 Glutathione metabolism [103]

KDM5B 14 RB [104]

MBNL1 3 Splicing regulation [105]

PKP4 NA WNT [106]

U2SURP NA WNT [97]

WDR61 NA Chromatin regulation [107]

TCGA-13-1408 F11R 0 Cell adhesion [108]

PELI1 NA PI3K/RAS [109]

PTPRG 23 WNT [110]

TAF12 18 Transcriptional activation [111]

TIAM1 25 JNK/MAPK [112]

TCGA-13-1506 BTBD2 NA NF-kB (transcription) [113]

TCGA-13-1510 RIOK3 7 Unknown NA

TCGA-23-1024 FAM59A NA JNK/MAPK [114]

PBX2 22 Transcriptional activation [115]

TCGA-24-1431 ANKZF1 NA Unknown NA

ATP1B1 0 Ion transport [116]

TCGA-24-1544 CCDC93 10 Unknown NA

HDAC6 1 Chromatin regulation [117]

TCGA-24-1546 SUGP1 7 Splicing regulation [99]

VAV1 14 JNK/MAPK [118]

TCGA-24-1567 HTATSF1 5 Splicing regulation [119]

INADL NA Cell-cell interactions [120]

KAL1 0 Cell adhesion [121]

RAGEF2 25 JNK/MAPK [122]

TCGA-25-1623 PSD3 NA Transcriptional activation [123]

TCGA-25-1627 KAT2B 9 WNT [124]

PIK3R4 1 PI3K/RAS [125]

TTF2 25 Transcriptional repression [126]

TCGA-25-1630 APEX1 9 DNA repair [127]

ATG3 NA Autophagy [128]

CAT 2 PI3K/RAS [129]

DCAF6 NA Transcriptional activation [130]

TCGA-25-1633 SASH3 0 Antigen receptor signalling [131]

TCGA-25-1634 GSN 5 TP53 [132]

MCM4 15 G1/S transition [133]

RBL2 25 RB [134]

TCGA-25-2391 RASA1 5 PI3K/RAS [135]
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(approximately 10% of the initial set) since the large
majority of affected individuals bear mutations in known
cancer genes, in particular in TP53. Although cancer is
usually the outcome of the alteration of several genes and
multiple drivers are required for cancer progression [73],
we reasoned that focusing on tumours with no mutation
in known cancer genes could increase the chances to find
novel drivers. Furthermore, this would also help identify-
ing a possible cause of cancer onset and development
also in tumours that harbour rare mutations. With our
approach we were indeed able to find 56 putative cancer
genes in >70% of previously uncharacterized tumours,
thus significantly reducing the fraction of patients with
unknown cancer determinants. In the vast majority of
cases, at least one of the putative drivers exerts a function
in pathways that are altered in ovarian cancer. This con-
firms that the high heterogeneity of the cancer muta-
tional landscape is reduced when considering biological
processes rather than single genes [19].
As a comparison with our method, we investigated

whether the 56 putative cancer genes had also been
detected in the original study on the same set of ovarian
carcinomas [62], which also identified possible cancer
genes using a variety of approaches, from gene mutation
frequency to pathway and network analysis [62]. Our list
of putative drivers showed very poor overlap with the
genes identified in the original study, mainly because the
latter were for the vast majority already known cancer
genes or had no expression data, and were therefore dis-
carded from our analysis. Interestingly, some overlap
existed between our list of 56 drivers and the network
modules that were significantly mutated in ovarian cancer
[24]. In particular, we identified five genes in common
between the two lists. The silencing via RNA interference
of three of these five genes (VAV1, TAF12 and GTF3)
resulted in increased proliferation in at least 10 ovarian

cancer cell lines. This strongly suggests a role of tumour
suppression of these genes, and this is worth further
experimental investigation.

Conclusions
Our analysis showed that the integration of several sources
of information allows the identification of rare cancer
genes. This may be of particular utility in tumours with no
known driver mutations or where frequency-based meth-
ods cannot be applied. However, we also showed that an
integrated analysis may be useful for the identification of
mutated genes that may cooperate in promoting tumour
development. The poor overlap with previous findings in
the same set of tumour samples demonstrates that our
approach is complementary to frequency-based methods.
The integration of several methods based upon different
theoretical assumptions may therefore result in a better
and more complete characterization of the mutational
landscape of cancer.

Methods
Gene sets used in the analysis
To derive a dataset of unique human genes (that is, genes
with a unique locus in the genome), 33,398 protein
sequences were retrieved from RefSeq v.51 [74] and
aligned to the human reference genome (hg19) using
BLAT [75]. In case of multiple isoforms aligning to the
same locus, only the longest was retained [26]. Only genes
located on autosomal chromosomes and chromosome ×
were considered for further analysis, for a total of 19,009
unique human genes. Gene length was calculated as the
coding portion of the longest isoform for each locus.
The dataset of 10,681 genes with at least one somatic

non-synonymous mutation in cancer was collected from
39 mutational screenings of cancer tissues [2,4-18,35-57]
(Table 1, Additional file 2, Table S1). Genes were grouped

Table 2 Putative novel drivers in ovarian cancer (Continued)

TCGA-25-2393 ANO1 0 Ion transport [131]

FUT1 1 Antigen synthesis [136]

MCM4 15 G1/S transition [137]

PRKCQ 22 PI3K/RAS [138]

RB1CC1 8 RB [121]

ZC3H14 NA Translation [139]

TCGA-36-1570 PSD3 NA Transcriptional activation [140]

TCGA-36-1574 NRCAM NA Cell adhesion [141]

NSMAF NA NF-kB (transcription) [142]

PASK 24 Translation [143]

TCGA-36-1577 PRKD1 1 Transcriptional activation [144]

Shown are 23 ovarian carcinomas hosting 58 putative driver mutations in 56 genes. Two genes (MCM4 and PSD3) were mutated in two tumours. For 40 genes
with available RNAi data [71], the number of ovarian cell lines where an increased in cell growth was observed upon gene silencing is shown. Thirteen
carcinomas (57% of the total) bear mutations in pathways previously associated with ovarian cancer, and six of them (26% of the total) had alterations in
transcription-related pathways. A detailed description of the effects of each mutation is shown in Additional file 2, Table S7.
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into three classes: (1) known cancer genes included all
genes whose mutations or amplifications are known to be
involved in tumorigenesis (Cancer Gene Census, frozen
on 15 November 2011, and Census of Amplified Genes in
Cancer) [58,59]; (2) candidate cancer genes that were
found recurrently mutated in different tumour samples
and, therefore, likely to harbour driver mutations (candi-
dates were extracted directly from the corresponding
experiments, Additional file 2, Table S1); (3) genes with
low frequency non-synonymous mutations. The rest of
human genes used for comparison were defined as all
human genes with either no mutations or only synon-
ymous mutations (Table 1).

Expression of mutated genes in normal and cancer
tissues
Expression data for 12,397 genes in 109 healthy tissues
were derived from two microarray experiments on 36
[76] and 73 [77] normal human tissues, respectively, for
a total of 109 unique tissues. The raw CEL files were
downloaded from the corresponding series (GSE2361
and GSE1133) stored in the Gene Expression Omnibus
(GEO) [78], normalised and analysed using the MAS5
algorithm included in the R affy package [79,80] (Addi-
tional file 2, Table S10). Given that more than one
probe could be associated with a single gene, a gene was
labelled as ‘expressed’ if at least half of the correspond-
ing probes had detection P values <0.05. Housekeeping
genes were defined as genes expressed in at least 98% of
the tissues (107/109), while tissue-specific genes were
expressed in <25% of the tissues (27/109).
To test whether the fraction of housekeeping mutated

genes (known, candidates and rest of genes with non-
synonymous mutations) was different from the fraction
of housekeeping genes among the rest of human genes,
Fisher’s exact test with one degree of freedom was used.
Fisher’s test was used because of the small number of
genes that were compared (only 10 candidate genes
were housekeeping). The same test was applied to assess
the differences in the fraction of tissue-specific genes
between mutated and non-mutated genes.
To check whether mutated genes tend to be expressed

in the corresponding healthy tissue, one or more of the
109 normal tissues with expression data were associated
with the 20 tumour types with mutation data (Additional
file 2, Table S3). For each of the three groups of mutated
genes (known, candidates and rest of genes with non-
synonymous mutations), the fraction of expressed genes
over the total (fexp_mutated) was calculated in the tissues
corresponding to each of the 20 tumour types. Similarly,
the fraction of expressed non-mutated human genes in
the same tissue (fexp_rest) was also measured and the two
proportions were compared using chi-squared test with
one degree of freedom to determine whether they were

statistically different. Results were visualised as volcano
plots that reported the log2ratios between the two frac-
tions of expressed genes and the corresponding P value
as measured with chi-squared test:

log 2ratio = log2
fexp mutated

fexp rest

To verify whether mutated genes were expressed at
higher or lower levels than the rest of human genes, the
median expression level was calculated in each of the 109
tissues. All genes with expression higher than the median
were considered as highly expressed, while all genes with
expression lower than the median were defined as lowly
expressed. In each tissue, the fraction of highly expressed
genes over the total in each of the three groups of
mutated genes (hexp_mutated) and the fraction of highly
expressed non-mutated genes (hexp_rest) were compared
using the chi-squared test with one degree of freedom.
Results were displayed as volcano plots that reported the
log2ratio between the fractions of highly expressed
mutated and non-mutated genes and the corresponding
P value assessed with chi-squared test:

log 2ratio = log2
hexp mutated

hexp rest

For three of the 39 mutational screenings [36,43,44],
both expression and mutation data were available for
each analysed tumour sample. The raw CEL files were
downloaded from GEO and the data were processed as
described for the normal tissues (Additional file 2, Table
S10). Since the study by Barretina et al. [36] reported the
mutational screen of 722 genes and only a small number
of mutations were detected in each sample, tumours
were clustered into four groups, on the basis of the
tumour subtype (Additional file 2, Table S4). A pipeline
similar to that described for the analysis of normal tissues
was applied to determine whether higher fraction of can-
cer genes were expressed in the cancer tissues where
they were also mutated. Briefly, the fractions of expressed
mutated and non-mutated genes in each tumour sample
were compared using chi-squared test with one degree of
freedom, in each sample. As for the other analyses, the
results were displayed as volcano plots where each log2-
ratios of the fractions of expressed genes between
mutated genes and non-mutated genes were displayed in
association with the corresponding P values of the chi-
squared test.

Analysis of ovarian carcinoma samples
Genes mutated in ovarian carcinomas were derived from
the Cancer Genome Atlas [81]. In addition to all validated
somatic mutations (data level 3), the raw CEL files of the
expression data corresponding to the same tumour sample
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were also retrieved (platform HG_U133A, data level 1,
Additional file 2, Table S10). Of the 323 tumours, five were
removed because they did not undergo whole exome
sequencing. The fraction of expressed and mutated genes
was calculated for each carcinoma as described above, and
compared with the corresponding fraction of expressed and
non-mutated human genes using the chi-squared test (one
degree of freedom). Starting from the list of all mutated
genes, several filters were applied to identify putative driver
mutations (Figure 3A). First, carcinomas with mutations in
at least one known cancer gene from the Cancer Gene
Census [58] and those with no expression data for any
mutated gene were discarded. Second, three different pre-
dictors (SIFT [30], Polyphen [31] and MutationTaster [32])
were applied to infer the effect of mutations. Only frame-
shift, nonsense and splice-site mutations, as well as mis-
sense mutations predicted as damaging by two out the
three predictors (SIFT score >0.95, Polyphen score >0.9, or
labelled as ‘disease causing’ by MutationTaster [82]) were
retained. Third, the gene length of the coding portion was
taken into account and all genes in the bottom 95% of gene
length were retained (coding length <4,450 bp). Genes
longer than 4,450 bp were retained only if mutated in less
than five different cancer types. This filter discarded genes
that mutate at high frequency because of their length.
Finally four systemic properties were investigated: protein
connectivity and centrality in the protein-protein interac-
tion network; interaction(s) with known cancer proteins;
evolutionary origin; and duplicability. To measure protein
connectivity and to determine the occurrence of direct
interactions with known cancer proteins, data on 98,492
experimentally proven protein-protein interactions between
13,531 human proteins were integrated from five databases
(HPRD [83], BioGRID [84], IntAct [85], MINT [86] and
DIP [87]), as previously described [88]. The IGRAPH mod-
ule for R [89,90] was used to measure degree, betweenness
and direct interactions with known cancer proteins. Central
hubs were defined as the 25% most connected (degree >14)
and most central (betweenness >9,198) proteins of the net-
work. Evolutionary origin and gene duplicability were
defined as previously described [29]. Briefly, gene origin
was traced as the most ancient node of the tree of life
where orthologs for a given human gene could be found. A
gene was defined as duplicated if at least one human para-
log was present in the corresponding cluster of orthologs,
otherwise it was considered as singleton. All scripts used to
run this pipeline are available as Additional file 3.

Effect of gene silencing on cell proliferation using RNA
interference
Short hairpin RNA (shRNA) data were derived from the
high throughput analysis on 10,941 genes (corresponding
to 52,209 probes) in 102 cancer cell lines (including 25
ovarian cancer cell lines) and analysed as described in the

original study [71], with slight modifications. Briefly, the
raw GCT file with the measurements of the shRNA abun-
dance in all cell lines (20110303_achilles2.gct) was down-
loaded and normalized to obtain the corresponding shRNA
score for each gene probe. The effect of the individual gene
silencing on cell proliferation was calculated in comparison
with the initial DNA pool, using an in-house modified ver-
sion of the R shRNAscores package from the Integrative
Genomics Portal at the BROAD Institute [91]. In order to
determine the silencing effect of each gene, the concentra-
tion of its corresponding shRNA in the final cell population
and the initial DNA pool was compared. To have a single
comparison for each gene probe i, the log2ratio was calcu-
lated between the means of all replicates in each cell line
and the means of replicates in the initial DNA pool:

log 2ratioshRNA.h.i = log2

⎡
⎢⎢⎢⎣

1
m

m∑
j=1

shRNA scoreh,i,j

1
n

n∑
k=1

shRNA scoreDNA,i,k

⎤
⎥⎥⎥⎦

Where m and n are the number of replicates in the con-
sidered cell line h and in the reference DNA pool, respec-
tively. Having a median of five probes associated with a
single gene, only the top-scoring shRNA value among all
probes was considered as the representative effect of that
gene on cell proliferation in order to minimise the false
positives [71]. The ratio was preferred to the difference
between cell lines and DNA pool (as in the original paper
[71]) in order to better appreciate the modifications in the
cell proliferation caused by gene silencing. To measure the
overall effect on gene proliferation of the silencing of
known cancer genes, the log2ratioshRNA distributions
between 395 genes (95 tumour suppressors and 300 onco-
genes) from the Cancer Gene Census with at least one
shRNA probe and the rest of 10,546 non-mutated genes in
all 102 cancer cell lines were compared (Figure 4A). Sha-
piro-Wilk test was applied to control for the shape of the
distributions. Since the distribution could not be considered
as normal (P value <10-50, Additional file 1, Figure S5), Wil-
coxon test was used to assess the differences between them.
For the analysis on ovarian cancer, only the 25 ovarian can-
cer cell lines and 15 known cancer genes (seven tumour
suppressors and eight oncogenes) that were associated with
ovarian cancer in the original annotation of the Cancer
Gene Census were considered (Figure 4B).

Additional material

Additional file 1: Supplemental figures. This file contains Figures S1-
S5.

Additional file 2: Supplemental tables. This file contains Tables S1-S10.

Additional file 3: Scripts to identify putative drivers. This file contains
a collection of scripts to run the pipeline for the identification of cancer drivers.
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