
antioxidants

Review

Solid Lipid Nanoparticles as Carriers of Natural
Phenolic Compounds

Alexandra Borges, Victor de Freitas, Nuno Mateus , Iva Fernandes * and Joana Oliveira *

LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal; up201503108@fc.up.pt (A.B.); vfreitas@fc.up.pt (V.d.F.);
nbmateus@fc.up.pt (N.M.)
* Correspondence: iva.fernandes@fc.up.pt (I.F.); jsoliveira@fc.up.pt (J.O.)

Received: 28 September 2020; Accepted: 12 October 2020; Published: 15 October 2020
����������
�������

Abstract: Phenolic compounds are one of the most widespread classes of compounds
in nature, with several beneficial biological effects being associated with their anti-oxidant
and anti-carcinogenic activities. Their application in the prevention or treatment of numerous chronic
diseases have been studied, but a major drawback is still the low bioavailability of these compounds,
as well as their instability towards pH, temperature, and light in some cases. Nanotechnology has
emerged as an alternative to overcome these limitations, and the use of lipidic encapsulation systems is
a promising technique to achieve an efficient drug delivery, protecting molecules from external factors
and improving their bioavailability. In this review, solid lipid nanoparticles and nanostructured lipid
carriers are highlighted as an important tool for the improvement of the bioavailability and stability of
natural phenolic compounds, including their preparation methods and functionalization approaches
and the discussion of several applications for putative use in cosmetic and pharmacologic products.

Keywords: solid lipid nanoparticles; nanostructured lipid carriers; phenolic compounds; bioactivity;
chemical stabilization

1. Introduction

Phenolic compounds are natural compounds synthesized by plants that play an important role in
cellular growth, coloration, and regulation of fruits’ maturation, being present in many vegetal foodstuffs,
flowers, and beverages [1,2]. From a structural point of view, these molecules are characterized by an
aromatic ring with one or more hydroxyl groups and can be classified by considering the number of
phenol rings and their substitution pattern. Consequently, phenolic compounds can be categorized as
non-flavonoids, which include phenolic acids, stilbenes and lignans, or flavonoids, which share a common
structure, the flavanic core, consisting of 15 carbon atoms arranged in three rings, A, B, and C (Figure 1),
and includes flavan-3-ols, flavonols, flavanones, anthocyanins, flavones, and isoflavones.
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1. Introduction 

Phenolic compounds are natural compounds synthesized by plants that play an important role 
in cellular growth, coloration, and regulation of fruits’ maturation, being present in many vegetal 
foodstuffs, flowers, and beverages [1,2]. From a structural point of view, these molecules are 
characterized by an aromatic ring with one or more hydroxyl groups and can be classified by 
considering the number of phenol rings and their substitution pattern. Consequently, phenolic 
compounds can be categorized as non-flavonoids, which include phenolic acids, stilbenes and 
lignans, or flavonoids, which share a common structure, the flavanic core, consisting of 15 carbon 
atoms arranged in three rings, A, B, and C (Figure 1), and includes flavan-3-ols, flavonols, flavanones, 
anthocyanins, flavones, and isoflavones. 
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Figure 1. Structure of the flavanic core. A and B aromatic rings and C pyranic ring. 

Figure 1. Structure of the flavanic core. A and B aromatic rings and C pyranic ring.

These compounds have been postulated as anti-oxidants, anti-mutagens, chelators of catalytic metals,
and free radical scavengers [3]. Moreover, the activity of these molecules against some diseases has been
described, with such effects not only being linked to the antioxidant properties, but also with a more
complex mechanism involving the cell signaling pathway [4]. The great abundance of phenolic compounds
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in the diet combined with their notorious role in the prevention of several health conditions turned
these compounds into a substantial target for nutritionists, food scientists, and even drug and cosmetic
developers (Table 1). This is particularly important as functional foods and nutraceuticals are rapidly being
integrated into the industrial mainstream and are being increasingly accepted by the consumers due to a
growing demand for natural and healthier products [5]. It is important to note that the beneficial properties
of phenolic compounds observed in in vitro experiments are not verified in the same extent in vivo, since
there are some drawbacks associated with these metabolites, for instance their bioavailability and their
instability to some external factors such as light, temperature, and oxygen. Thus, it is expectable that the
incorporation of phenolic compounds in food or cosmetic matrices can be a challenge due to the processing
techniques and storage that are likely to compromise molecules’ integrity. Moreover, the application in
foods of some phenolic compounds might affect directly flavor and color, or indirectly due to interactions
between these compounds and other food components. On the other hand, phenolic compounds might
also affect food nutritional value since they can interact (form a complex) with proteins and carbohydrates,
making them inaccessible for absorption [6,7]. Polyphenols are described as interacting with digestive
enzymes, inhibiting their activity and consequently reducing nutrient absorption [8].

The low values of bioactivity observed for polyphenols in the human body can be attributed either
to a lower intrinsic activity, a poor absorption at the intestine level, or a high metabolization process [2].
On the other hand, some evidence points out that effects observed for some phenolic compounds in vivo
are not derived from the ingested molecules but from their metabolites [9]. It is undoubtedly the case that
the effectiveness of phenolic compounds depends on preserving their stability, bioactivity, and possibly
enhancing their bioavailability, which can be achieved with encapsulation approaches.

The use of encapsulated phenolic compounds rather than free compounds has been explored over
time to overcome the mentioned issues and to ensure an adequate delivery of the molecule into the
bloodstream. Encapsulation consists of loading a compound into a capsule, which can be seen as a
sphere [10]. A major advantage of this process is that usually the external phase or coating can be changed
according to the main goal, thereby influencing parameters such as the release of the encapsulated
compound, size, or affinity of capsules for the final material. Over the years, there has been a growing
interest in nano-range materials (2–1000 nm) because these particles may be used as drug/active compound
carriers. Synthetic and natural polymeric nanoparticles have been explored, as well as other types of
nanocarriers such as fullerenes and carbon nanotubes. However, there are some relevant problems related
to the use of nanoparticles such as their cytotoxicity and/or the difficulty of scaling up the production
process [11].

In 1991, Muller developed a revolutionary way to overcome various limitations associated with
other encapsulation methods by introducing solid lipid nanoparticles (SLNs) [26]. SLNs have the
particularity of being constituted by lipids that remain solid at both the temperature of the human body
and at room temperature, being of great use when the main goal is to achieve a controlled drug release
while developing formulations, as will be further explored. Furthermore, their particle size usually
varies from 40 to 1000 nm, which provides a larger offer of nanoparticle possibilities according to special
needs [27]. SLNs present several advantages over other colloidal carriers such as higher drug stability,
incorporation of both hydrophilic and lipophilic drugs, absence of toxicity, easy large-scale production,
and the possibility of lyophilization [11]. More recently, a second generation of lipid nanoparticles
emerged—the nanostructured lipid carriers (NLCs), which are made of both solid and liquid lipids.
The composition of these nanoparticles, along with their characteristics, make SLNs and NLCs ideal for
the carrying/delivery of sensitive bioactive compounds, protecting them against chemical degradation
and also facilitating their application in varied administration routes. The successful loading of
phenolic compounds such as resveratrol and quercetin into SLNs or NLCs have been reported in
numerous experiments with promising results [28,29].

Bearing this in mind, this review focuses on comparison between SLN and NLC nanocarriers,
including the preparation methods and functionalization approaches, providing an insight on their
importance in the encapsulation of phenolic compounds.
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Table 1. Examples of phenolic compounds, food sources, applications, and beneficial effects.

Main Class Subclass Phenolic Compound Food Sources Beneficial Effects Possible Applications

Fl
av

on
oi

ds

Flavan-3-ol Epigallocatechin gallate Green tea Anti-oxidant effects [12] Protection against chemical
carcinogens [13]

Flavones Apigenin Oranges
Inhibition of

rat brain monoamine
oxidases (MAOs) [14]

Development of antidepressant
and antianxiety agents [15]

Flavonols Quercetin Onions
Anti-oxidant effects

and anti-inflammatory
effects [16]

Neuropathology prevention [17]

Anthocyanins Delphinidin-3-glucoside Grapes Anti-oxidant and
anti-carcinogenic effects [18]

Inhibition of breast cancer cell
proliferation [19]

Flavanones Hesperetin Citrus fruits Activity against apoptotic
neurodegeneration [20]

Development of therapeutic
agents for Alzheimer’s disease

[20]

Isoflavones Glycitein Soybean Estrogenic effects [21] Several health effects and
disease prevention [21]

Ph
en

ol
ic

A
ci

ds Hydroxybenzoic acids Gallic acid Green tea Anti-inflammatory
activity [22]

Development of novel and
organic anti-inflammatory

agents [22]

Hydroxycinnamic acids Caffeic acid Wheat, rice, and oats Anti-bacterial activity [23]
Development of alternatives to
overcome antibiotic resistance

[23]

St
ilb

en
es

Resveratrol Grapes Anti-oxidant effects [24] Skin anti-aging products

Li
gn

in
s

Lignin Plants (secondary cell walls)
Development of

nanoparticles for drug
delivery [25]

Cancer therapy
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2. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers

Encapsulation is a process that needs to be carefully studied. When it is aimed to encapsulate a
compound, it is important to consider the molecule structure, which is linked to its size and solubility;
the characteristics of the carrier such as materials that they are made of; the application, that is,
the administration route in case of clinical applications; and the material of the matrix in case of other
industrial applications.

As previously mentioned, different methods and materials have been explored in order
to encapsulate bioactive compounds, especially phenolic compounds, and this includes lipidic
nanocarriers such as liposomes and nanoemulsions. Liposomes are vesicles composed of natural
phospholipid bilayers, which allows the incorporation of lipophilic drugs in the lipid layers and
hydrophilic drugs in the aqueous core [30,31]. Due to the fact that some of the phospholipids
used in liposome preparation are the ones that comprise biological membranes, these carriers are
commonly used as drug delivery systems for dermal applications. However, there are some drawbacks
associated with the use of liposomes, including their instability, their high production cost, and the
drug degradation during storage that can compromise the choice of these lipidic capsules as bioactive
compound carriers [32]. Nanoemulsions consist of a system of two non-miscible liquids that form
droplets at the nanometric size, with these having been used for similar goals to liposomes [33].
Usually, these systems can be oil-in-water, water-in-oil, bi-continuous, liquid-in-liquid, or liquid-in-solid
nanoemulsions and the lipid phase is often made of fatty vegetable oils [34,35]. A small particle size
is associated with a greater absorption and a faster release of the encapsulated compounds, but the
instability of nanoemulsions that results in coalescence or flocculation phenomena is still a considerable
limitation [32]. Furthermore, although a fast release might be desirable sometimes, the fact that it
cannot be controlled in nanoemulsions also limits their application [36].

In contrast, and since compound mobility is usually lower in a solid state, the use of solid lipids
can be the answer to accomplish a controlled drug release [11]. SLNs are made of lipids, generally in a
ratio of 0.1% (w/w) to 30% (w/w), which are solid at both body and room temperatures. These lipids
are dispersed in an aqueous medium and usually stabilized by a surfactant that covers the solid
core, whose concentration should vary between 0.5% (w/w) and 5% (w/w) [27,37]. The lipids used
in SLN preparation are usually physiological lipids that include glycerides, sterols, partial glycides,
fatty acids, and waxes. All types of surfactants (neutral, ionic, and non-ionic) can be used to enhance
the stability of the nanoparticles, and the combination of more than one emulsifier can help prevent
particle agglomeration [11].

SLNs and NLCs have been applied in a wide variety of areas. Recent research from the last
2 years on SLN/NLC preparation include some important studies on the antiproliferative effect of
cationic SLNs loaded with epigallocatechingallate (EGCG) against different cell lines [38], SLNs for the
treatment of herpes simplex virus (HSV) infection [39], NLCs for antioxidant delivery [40], SLNs for
food applications [41], and the enhancement of the oral bioavailability of curcumin through the use
of SLNs [42]. Table 2 presents some examples of commercial lipids and surfactants used in SLN/NLC
preparation, as well as some different applications.

Some advantages over other lipidic carriers that characterize SLNs are (i) the possibility
of controlled drug release and drug targeting, (ii) their stability under sterilization conditions,
(iii) their biodegradability, (iv) the protection of labile compounds against chemical degradation,
(v) the incorporation of both hydrophilic and lipophilic drugs, and (vi) the possibility of the scaling-up
process [11,43]. However, SLNs have some associated limitations such as the relatively high water content
(between 70% and 99.9%), which can be a problem during incorporation into a final product, and low
loading efficiency due to the tendency that lipid crystals have to recrystallize over time [44,45]. During SLN
preparation, lipids crystallize in higher energy modifications, α or β’, but during storage, lipid particles
can transform to more organized, low energy, β modification. This higher degree of organization will
present less available space for drug loading, since compounds are often located in the imperfections of
the lipid matrix, or, in other cases, between the fatty acids’ chains and between lipid layers [37].
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Table 2. Examples of solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) applications, lipids, and surfactants used in their preparation.

Lipid Nanoparticle Incorporated Molecule Lipids Surfactants Application

SLN Vitamin E Precirol ATO 5 Tween 80 Skin applications [46]

SLN Quercetin Glyceryl monostearate (GMS) Tween 80 and polyethylene
glycol (PEG) 400 Food applications [47]

SLN Baicalen Tripalmitin, Gelucire 48/9, and
Gelucire 62/5 Poloxamer 188 Treatment of ischemic stroke [48]

SLN Apomorphine hydrochloride

Tripalmitin, hydrogenated
soybean phosphatidylcholine

(HSPC), glyceryl monostearate
(GMS), and polyethylene glycol

monostearate (PMS)

Pluronic F68
L-ascorbic acid

Treatment of Parkinson’s disease
[49]

SLN Tetandrine Compritol 888 ATO Myrj 52 Treatment of ocular diseases [50]

SLN Ofloxacin Palmitic acid Polyvinyl alcohol (PVA) Improvement of pharmacological
activity [51]

NLC Curcumin Precirol ATO 5 and Miglyol 812 Lutrol F68 and Tween 80 Intraperitoneal administration [52]

NLC Calcipotriol,
methotrexate

Precirol ATO 5, squalene
mixture, Myverol 18-04K Pluronic F68 Treatment of psoriasis [53]

NLC Paclitaxel Glyceryl monostearate (GMS),
soya lecithin, soybean oil

Hexadecyl trimethyl
ammonium bromide (CTAB) Cancer targeting [54]

NLC mTHPC (commercial
formulation Foscan) Soybean oil and Suppocire NB Lipoid S75, Myrj S40 Photodynamic therapy [55]

NLC Mediterranean essential oils Labrafil, Softisan 100 Kolliphor RH40,
Tween 80

Treatment of Candida skin infections
[56]
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More recently, a second generation of lipid nanoparticles that include NLCs were developed
to overcome some drawbacks of SLNs. NLCs are prepared using a blend of solid lipids and liquid
lipids in a ratio of 70:30 to 99.9:0.1. The use of liquid lipids creates a depression on the melting point
of the system and will be responsible for some enhanced properties such as minimization of drug
expulsion during storage and increased loading capacity [37]. Since NLCs have liquid lipids in their
constitution, the organization degree of the lipid matrix is lower, which creates more imperfections
where the molecules can place themselves, as is schematized in Figure 2 [37]. On the other hand, it is
important to emphasize that the localization of the drug in the SLN/NLC also depends on lipophilicity
and on the structure of the target molecule [57].
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SLNs have been differentiated among themselves as well as NLCs. For instance, in SLN type
I, the homogeneous matrix model, the drug is dispersed in the lipid core while in SLN type II, the
drug-enriched model, a drug-free lipid core is formed, and an exterior solid shell with both lipid
and drug is formed. Both types of SLNs can be prepared with the high-pressure homogenization
(HPH) method that will be further explored. On the other hand, SLN type III, the drug-enriched
core model, is obtained when the drug concentration is close to its saturation solubility in the lipid,
which will yield to its precipitation in the core and to the formation of a lipid coverage (Figure 3a).
It is noteworthy that small changes in some relevant variables influence SLN and NLC structure and
therefore their applicability. For instance, SLN type I can show controlled release properties, whereas
SLN type III is adequate in achieving a prolonged drug release, while SLN type II is not suitable for
this purpose [58,59].

In addition, NLC type I, the imperfect crystal model, is obtained through the mixture of
sufficient amounts of liquid lipids and solid lipids, creating a matrix with a great number of voids
and imperfections where the drug can place itself. NLC type II, the amorphous model, is obtained when
using special lipids that do not recrystallize after homogenization and cooling, creating an amorphous
lipid matrix that minimizes drug expulsion. NLC type III, the multiple model, is composed of small oil
nanoparticles that are inside the solid lipid matrix due to a phase separation, and it is obtained when
mixing solid lipids with higher amounts of oils in a ratio where the solubility of the oil in the solid lipid
is exceeded (Figure 3b). These multiple models of NLCs are adequate to obtain a controlled drug release
and enhance the loading capacity of drugs that are usually more soluble in liquid lipids [37,58,60,61].
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As the interest in phenolic compounds and their beneficial health properties increases,
more studies aim to explore new ways and methods to deliver these molecules to target cells
or tissues. Several encapsulation methods have been described as successful carriers of such
molecules for oral delivery, topical applications, and other applications in the food industry.
As explained before, encapsulation of phenolic compounds represents many advantages over
the application of free phenolic compounds by protecting molecules from external factors and
enhancing their bioavailability or specificity. Moreover, the incorporation of these metabolites
in nanocarriers provides an increased surface area and, therefore, an easier pass of the system
through cell membranes [10]. The applied methods of encapsulation of phenolic compounds include
spray drying, coacervation, liposomes, inclusion, co-crystallization, yeast encapsulation, emulsion,
and nanoparticles [62–64]. Among all procedures, lipid nanoparticles have gained growing attention
and have been playing a major role in phenolic compound encapsulation since a great number of these
compounds are hydrophobic, with lipids being commonly found in nature and having low toxicity,
and the resulting nanocarriers having a similar constitution with biological membranes. SLNs and
NLCs have been demonstrated as suitable candidates for the encapsulation of phenolics due to the
properties already referred [65]. The solid lipid matrix has shown to protect the chemical labile
compounds from degradation, in which phenolic compounds are included [10,66].

An important issue to consider while encapsulating phenolic compounds in lipid carriers is the
solubility of the molecule in lipidic matrices. Quercetin has showed good solubility in oil phases
but formulation studies have demonstrated that this phenolic compound distributes itself at the
oil/tensioactive interface, thus exhibiting an amphiphilic behavior [32,67]. On the other hand, it is
also possible to encapsulate hydrophilic phenolic compounds, as will be explored further ahead.
Phenolic compounds can also be responsible for modifications in size, shape, and surface of the
nanoparticles, therefore potentially influencing their stability [10,68].

Since the aim of lipid nanoparticles is the further incorporation in cosmetic or pharmaceutical
products, there are some aspects that must be considered such as the regulatory status and toxicity of its
components. The introduction of a product in the market requires the use of constituents with accepted
status by the regulatory authority of generally recognized as safe (GRAS) and, in general, a wide range of
lipids meet this criteria and can be used to prepare lipid nanoparticles [57]. A broad range of surfactants
and polymeric stabilizers are also widely used with no associated problems. However, the acceptance
of materials containing nanoparticles always demands special attention, and toxicity studies are
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always necessary since in the nano-range, physicochemical properties such as adhesiveness or melting
points are different. Thus, it is important that studies involving the development or preparation
of SLNs/NLCs always include cell viability assays, which are commonly performed using the MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. An important factor to consider,
as cell studies are performed in buffers or cell cultures, is that SLNs/NLCs are formulated in aqueous
dispersion, and a higher concentration of electrolytes might cause precipitation [69,70]. No relevant
association between the kind of lipid and observed toxicity was found since it usually also depends on
the cell line and in nanoparticle structural characteristics. On the other hand, it is proposed that single
alkyl chain-containing surfactants are more toxic than double-chained surfactants [71]. No significant
difference between NLC and SLN toxicity was verified and the numerous studies reported in the
literature on this topic show that SLNs/NLCs are well tolerated nanocarriers [69].

3. Preparation Methods and Functionalization Approaches

3.1. Preparation Methods

Several methods have been described for the preparation of SLNs/NLCs. Generally, all methods
are efficient and are chosen according to the compound to be encapsulated and the final application
or administration route. In this section, we highlight some well-known methods applied for the
preparation of SLNs and the encapsulation of phenolic compounds that include (i) high-pressure
homogenization, (ii) solvent emulsification/evaporation, (iii) micro-emulsification, (iv) solvent diffusion
and solvent injection, (v) ultrasonication, and (vi) double-emulsion. Some physical–chemical parameters
of phenolic compound-encapsulated SLNs/NLCs obtained by these methods are summarized in Table 3
and Scheme 1.
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Table 3. Physical-chemical properties of phenolic compounds encapsulated in SLNs using different methods. n.d, non determined

Phenolic Compound Preparation Method Size (nm) Polidispersity Index (PdI) Zeta Potential (mV)

Encapsulation Efficiency
(EE) or Loading
Capacity (LC)

(%)

Epigallocatechin gallate Hot homogenization 107–122 0.102–0.149 −56.7 to −52.9 EE
50–70

Curcumin Solvent emulsification/
evaporation 130–180 0.240–0.260 −31 to −24 mV EE

82

Ferulic acid Micro-emulsification 96.16 ± 2.96 0.196 ± 0.038

Water:
−36.40 ± 1.38

NaCl 0.9%:
−1.97 ± 0.25

PBS:
−11.7 ± 2.24

LC
20

Resveratrol Solvent diffusion–solvent evaporation 134 ± 7.6 0.182 ± 0.017 −34.3 ± 2.5 EE
88.9 ± 3.1

Quercetin Ultrasonication 416.9 ± 11.4 to 341.2 ± 1.0 n.d. −50.4 ± 0.0 to 29.4 ± 0.4 EE
15.2 ± 1.1 to 46.2 ± 2.2

Polyphenol-enriched
Hibiscus sabdariffa Double emulsion 66.5 ± 0.3 to

294 ± 2 0.17 ± 0.02 to 0.29 ± 0.01 −29.1 ± 0.6 to −21.0 ± 1.0 mV EE
52.9 ± 0.9 and 93 ± 3
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3.1.1. High Pressure Homogenization (HPH)

HPH is one of the most used methods in SLN/NLC preparation for the encapsulation of phenolic
compounds. Shtay et al. prepared SLNs loaded with EGCG using a hot high-pressure homogenization
method with slight modifications [72]. For this, the authors used cocoa butter, mono- and diglycerides
(MDG), and sodium stearoyl-2-lactylate (SSL). An EGCG-rich extract was dissolved in water and this
solution was poured into the organic phase containing the cocoa butter and MDG, previously melted
at 60 ◦C, and mixed using a high-speed mixer. The resulting mixture was re-emulsified after the
addition of the remaining water amount containing SSL at the same temperature (60 ◦C). The final
solution was then homogenized using a high-pressure homogenizer and then cooled. In vitro release
studies were carried out using simulated gastric fluid (SGF, pH 1.2) and intestinal fluid (SIF, pH 6.8)
and a more prolonged release was observed in both conditions, which will possibly lead to an
improved bioavailability of EGCG [72]. Similarly, Trombino et al. prepared SLNs loaded with
trans-ferulic acid using a high pressure homogenization method [73]. In this study, ferulic acid was
used both as a structural constituent of SLNs and as an encapsulated bioactive compound, as this
technique was reported to help in the protection of encapsulated compounds in ferulic acid-based
drug carriers [66,74,75]. Stearyl ferulate or stearic acid were melted in the presence of ferulic acid,
and a hot solution of sodium taurocholate, butanol, and Tween 20 was added to the melted lipids.
The formed microemulsion was dispersed in water (at 2 ◦C) under high-speed homogenization and
the SLN dispersions were washed through an ultrafiltration system. Lipid peroxidation was studied in
incubations containing rat microsomes and results showed that both ferulic acid SLNs and ferulic acid
SLNs formulated with stearyl ferulate counteracted lipid peroxidation induced by different oxidants,
which allows for the possible application of the prepared dispersions in parenteral or oral routes
for antioxidant applications [73]. Huang et al. prepared quercetin and linseed oil-co-loaded NLCs
using a combination of the high-pressure homogenization technique and a melting emulsification [76].
Briefly, the lipid and surfactant were mixed and heated up to 70 ◦C and then quercetin and linseed oil
were added to the mixture and stirred at the same temperature. Pre-heated distilled water was injected
into the mixture and the resultant pre-emulsion was homogenized using a high-pressure homogenizer.
The authors analyzed the characteristics of the resulting nanoparticles and also performed in vitro drug
release studies and an accelerated oxidation experiment to understand the susceptibility of linseed oil
to oxidation when encapsulated into NLCs, with the results showing the potential of quercetin NLCs
as carriers for food applications [76].

Hot and cold high-pressure homogenization methods are both simple and cheap [60,77–80].
In general, they are largely used due to their simplicity, delivering good results in various types of
drugs. However, the energy consumption and the inability to use these methods at an industrial
scale are two major drawbacks. Such disadvantages are not present in other methods such as solvent
emulsification/evaporation and micro-emulsification.

3.1.2. Solvent Emulsification/Evaporation

Santonocito et al. prepared functionalized curcumin-loaded SLNs by solvent emulsification/

evaporation technique for the systemic administration of curcumin [81]. Curcumin, Compritol 888
ATO and injectable soy lecithin were solubilized and melted in ethanol at 70 ◦C. The melted lipid phase was
dispersed in the hot surfactant solution (Lutrol F68) under stirring and then this solution was cooled in an
ice bath and the organic solvent was removed by vacuum [81]. Small particles sizes can be obtained using
this methodology due to the good solubilization of the lipid in the organic solvent, with the absence of any
thermal stress or heat being a great advantage towards HPH. A major fact that also deserves attention is
that this method is easy to scale up and is a continuous process. Overall, this is one of the simplest methods
used to obtain SLNs and does not require a deeper optimization. However, in some cases, biomolecules
could get damaged during the process and the use of organic solvents are some drawbacks associated to
this technique [11,82]. Such limitations are not found in the micro-emulsion technique.
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3.1.3. Micro-Emulsion

The micro-emulsion method was used for the preparation of ferulic acid-loaded SLNs [83].
Picone et al. prepared ferulic acid-loaded SLNs by micro-emulsification technique for the delivery
of this hydroxycinnamic acid [83]. The lipid phase, constituted by Compritol 888 ATO, was heated
above its melting point and an aqueous phase of the surfactant, Epikuron 200, and an aqueous
phase of taurocholate sodium salt were added after the dissolution of ferulic acid in the melted
lipid. SLNs were obtained after dispersing the previous o/w microemulsion in cold water under
mechanical stirring [83]. Similarly, Nayak et al. prepared NLCs loaded with curcuminoids by a
nanoemulsion technique [84]. The aqueous phase, consisting of Poloxamer 188 and Tween 80, and the
organic phase, consisting of a mixture of solid and liquid lipids, curcuminoids, and soybean PC
(phosphatidylcholine), were separately heated up to 75 ◦C. The lipid phase was dispersed in the
aqueous phase and mixed by high shear homogenization and the nanoemulsion was further obtained
by ultrasonication following by a dispersion in cold water containing polyvinyl alcohol (PVA) at 2 ◦C
under high-speed homogenization. Physicochemical characteristics were evaluated as well as the
in vitro release profile and the in vivo antimalarial activity. The results suggest that the developed
formulations can be administrated parenterally, hich can help to obtain higher concentrations of
bioactive compounds in the liver, spleen, and blood, which are the sites where parasites are usually
localized [84].

This method might be the most appropriate when the aim is to encapsulate phenolics that are
more sensitive to mechanical stress, however, the resulted preparation is usually very sensitive to
change [60]. Other methods known for their reduced shear stress and low energy input are the solvent
diffusion and solvent injection methods.

3.1.4. Solvent Diffusion and Solvent Injection

Pandita et al. prepared resveratrol-loaded SLNs using the solvent diffusion method [85]. Stearic acid
and Phospholipon 90 G were dissolved in ethyl acetate and this solution was injected through a
syringe to an aqueous solution containing poloxamer 188 as a surfactant. The results showed that
encapsulation protected resveratrol from photodegradation and in vitro drug release studies revealed
a sustained drug release from the resveratrol SLNs; moreover, pharmacokinetic studies performed in
male Wistar rats showed an 8.035-fold improvement in the oral bioavailability of resveratrol after oral
administration of resveratrol SLNs when compared to its pure suspension. Altogether, this study shows
that problems related to low bioavailability of resveratrol after oral administration can be overcome by
the encapsulation of the molecule into SLNs [85]. The main advantages of these methods include the
small particle size obtained and the avoidance of heat during the procedure. However, the possibility
of having residual solvent in the final product is a drawback [60,86,87]. Such problems are not found
in methodologies where the lipid is melted rather than dissolved in an organic solvent.

3.1.5. Ultrasonication

Han et al. prepared quercetin-loaded SLNs by a homogenization/ultrasonication method [28],
wherein the lipid phase, containing the lipid and drug or bioactive compound, and the aqueous phase
(surfactant) are separately heated at approximately 5 ◦C above the lipid melting point. The aqueous
phase is then added to the lipid phase and this mixture is homogenized extensively using a
probe-sonicator [88]. This is a fast and simple procedure that requires a small number of reagents
and equipment. The major drawback can be associated with poor lipid dissolution and consequently
bigger particle sizes, especially with more hydrophilic molecules. Such a limitation can be overcome
by the use of methods developed especially for the encapsulation of these molecules such as the
double-emulsion method.
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3.1.6. Double-Emulsion

Since the lipid matrix of SLNs/NLCs is hydrophobic, some highly hydrophilic drugs are expected
to be weakly encapsulated. The double-emulsion method, usually applied in the preparation of
polymeric nanoparticles, seems to be a promising way of solving this inconvenience [89]. In this
method, the hydrophilic compounds are first dissolved in water while lipids are dissolved in an
organic solvent [90]. The water phase is dispersed in the organic solvents and a primary emulsion
is formed (w/o). Then, this emulsion is dispersed in an external water phase (surfactant) to form a
double emulsion water-oil-water (w/o/w). The organic solvent is evaporated in the end. Ravanfar et al.,
using a double emulsion technique, prepared SLNs loaded with anthocyanins to improve the chromatic
stability towards pH change and high temperatures and, as was expected, the encapsulation of
anthocyanins was a challenge since these molecules have a tendency to partition into aqueous phase
during preparation [91]. The lipid phase, containing palmitic acid, Span 85, and egg lecithin was heated
at 60 ◦C and ethanol or isobutanol were added as co-surfactants. The w/o microemulsion was obtained
by titrating the lipid phase with a solution containing anthocyanins from red cabbage in distilled water
under stirring, with the final solution being dispersed in an aqueous solution of Pluronic F127 under
high shear homogenization [91].

Although there are many advantages associated with these lipid nanocarriers, there are a few
limitations, especially those related to preparation and storage, that must be considered when optimizing
a process. These problems are usually related with drug expulsion during storage, increases in particle
size, the gelation phenomenon, the occurrence of supercooled melts, the particle shape change since
lipids tend to crystallize in the platelet form, or the already mentioned lipid modifications and the
coexistence of other colloidal species [11,92].

The applied method during nanoparticle preparation can have a significative relationship with
the stability of nanoparticles during storage. Sometimes, the high-pressure homogenization method
can induce drug degradation due to high shear stress. This was observed in the encapsulation of DNA
and albumin using this procedure [93]. There are also surface-related phenomena and lipid-surfactant
interactions that may dictate the possibility of lipid crystallization. Among various factors, the existence
of lipid modifications and the gelation phenomenon are of special importance.

Lipid modifications have higher mobility in thermodynamically unstable configurations;
therefore, these configurations have a greater capability of drug incorporation. However, during storage,
in favor of thermodynamically stable configurations, rearrangement of crystal lattice is likely to occur
in what might result in drug expulsion [11]. Nevertheless, an in vitro study on skin showed,
the evaporation of water leads to lipid modifications in SLN dispersions that result in drug expulsion
and increased penetration into the skin, which was a beneficial aspect in this situation [94].

The gelation phenomenon is related to the transformation of the SLN dispersion into a viscous gel
and it is mostly associated with intense contact with other surfaces and shear forces, being accelerated
with increasing storage temperature and increasing light exposure [95]. This process is irreversible
and some authors have shown that crystallization phenomena, high lipid concentrations, high ionic
strength, and the performance of the surfactant film (that might change with temperature, especially in
polyethylene glycol (PEG) surfactants) are factors that might be at the origin of gelation. The zeta
potential is usually a good indicator of the probability of occurrence of the gelation phenomena since
values close to −15 mV could be a sign of the future formation of a viscous gel [70,96].

Moreover, drug release is one of the key topics to be explored when studying lipid nanocarriers,
and NMR techniques are particularly useful to study the molecular rearrangement of the drug and
the lipid [11]. Drug release can be fast, sustained, or controlled in several ways according to the final
application. This parameter is intrinsically related with loading capacity since it will mainly depend on
the localization of the compound in the nanoparticle. For instance, if the drug has affinity for the lipid
and also localizes itself in the core of the nanocarrier, then it is expectably a prolonged drug release
whereas when the drug has a complex and wide structure and localizes itself at the surface of the
nanoparticle it is expectably a fast drug release. Prolonged drug release can be useful when developing
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products such as cosmetics, whereas a burst effect on the release of the compound is desirable when
the main goal is to have an immediate effect, for example, in pain relief medicines.

The extent of burst release is also influenced by other factors and methods. For example,
nanocarriers are frequently modified, namely, at the surface, to have a selective and targeting behavior,
consequently presenting different release profiles since in some cases the release of the drug is activated
by the presence of a specific molecule or a specific pH value [97]. More commonly, the burst release
effect is controlled by regulating the drug solubility in the aqueous phase of the SLN/NLC preparation,
which depends on the chosen temperature and surfactant concentration. When higher temperatures
and concentrations are applied, the burst effect increases. The use of surfactants unable to solubilize
the drug normally decreases the burst effect and is, therefore, more adequate in terms of achieving a
prolonged release [26,98].

To assess drug release profiles in vitro, the methods generally used include dialysis and the
static or dynamic Franz diffusion that can be designed in order to mimic the administration route,
for example, adjusting pH and temperature [43]. In the dialysis method, SLN/NLC dispersions are
poured into a dialysis bag that is placed in a dissolution media (that can be a buffer at a controlled
temperature) under stirring. A fixed quantity of samples is withdrawn at fixed time intervals and
the concentration of drug in the samples is assessed using spectrophotometric or chromatographic
methods [88].

3.2. Functionalization Approaches

A common requirement for the appropriate action of nanoparticles is a controlled interaction
with biomacromolecules [99]. Drug targeting is a challenging task when developing carriers for
drug transport/delivery. Generally, the human body identifies hydrophobic molecules as foreign
and for that reason hydrophobic nanoparticles are readily taken up by macrophages [100]. For this
reason, when the goal is the retaining of nanoparticles in blood circulation, additional measures
have to be taken in order to prevent nanoparticles phagocytosis. Surface modification can be used
not only to protect nanoparticles from macrophages, but also to enhance cellular internalization;
provide selective recognition and binding; improve binding capacity, essential to efficient intracellular
delivery; increase blood circulation time; and, consequently, improve drug efficacy and allow for
the reduction of the administered drug dose [101–104]. The functionalization of nanoparticles can
be achieved using different strategies, namely, the coating of the nanoparticle with ligands such
as surfactants, small molecules, polymers, and biomolecules (Figure 4) [103]. While planning the
functionalization of nanoparticles, it is important to consider different factors such as (i) particle
size, (ii) surface charge, (iii) hydrophobicity, (iv) target cells, and (v) administration route among
other relevant parameters. As an example, it is known that positively charged nanoparticles are
preferentially taken up by cells and by this, coating of nanoparticles with molecules with positive
charge has become a commonly used strategy to enhance cellular uptake [101,105–107]. As referenced
to before, hydrophobicity is especially important when using an intravenous administration route due
to opsonization of nanoparticles by macrophages. In this case, it is typical to functionalize nanoparticles
with hydrophilic polymers and surfactants (e.g., polysorbate 80, poloxamers, PEGs) in order to enhance
nanoparticle bloodstream circulation [100,101,108–111]. Surface functionalization can be done with
active targeting in mind, including the functionalization of the nanoparticle with specific ligands to
directly bind to or interact with specific cell sites or a passive targeting that is related to the ability of
nanoparticles to reach the target cells on the basis of their physicochemical characteristics [101,112].
This last type of targeting is related to the enhancement of the retention effect that is based on the fact
that some cells have the ability to better concentrate or retain nanoparticles in comparison to other
cells or tissues [112].
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(adapted from [101]).

One of the most important forms of passive targeting is based on the conjugation of polyethylene
glycol (PEG) chains to the surface of nanoparticles, known as PEGylation [113]. PEGylation is extensively
used to protect nanoparticles from opsonization and to inhibit connections with serum components since
PEG chains decrease protein adsorption on the nanoparticle surface [101]. Moreover, PEG chains are
cleaved by matrix metalloproteinases, which allows for their efficient application in tumor cells where
the concentration of these proteinases is increased in surrounding areas [114]. Several studies have even
taken advantage on the functionalization with PEG chains and have combined it with other targeting
molecules such as carboxylic acids or amines present in different targeting ligands [81,101,108,115,116].

Active targeting is more selective because it relies on the binding of specific molecules to specific
ligands of the target cells or tissues through highly specific interactions [101,117]. Active targeting
includes surface functionalization with antibodies, saccharide ligands, and other biomolecules and
is particularly important in cancer therapy studies since it confers specificity to the nanoparticle
to only target cancer cells. A widely explored functionalization type is antibody functionalization.
The modification of nanoparticle surface with antibodies can be performed directly or through linker
ligands such as PEG [101,118,119].

The use of other biological molecules such as proteins for functionalization have also been explored.
Lipoproteins enter the blood-brain barrier endothelium through endocytosis via low-density lipoprotein
(LDL) receptors and are transcytosed to the brain [120]. Neves et al. prepared resveratrol-loaded SLNs
with cetyl palmitate as lipid phase and polysorbate 80 as surfactant and functionalized them with
apolipoprotein E (Apo-E) in order to mimic lipoproteins [121]. The functionalization was performed
by addition of avidin onto the surface of SLNs, allowing the non-covalent interaction between
avidin and biotinylated Apo-E. The results showed a significant increase of resveratrol permeability
in the blood-brain barrier (BBB) when encapsulated in functionalized SLNs, suggesting that these
nanosystems can be used for the efficient brain delivery of resveratrol [121].

4. Applications of SLNs/NLCs Loaded with Phenolic Compounds

Due to their characteristics, phenolic compounds are applied in varied areas. Various studies aim
to enhance their efficacy through the use of SLNs/NLCs as carrier systems to prepare cosmetic and
pharmaceutical products or functional foods [7,73,122].

4.1. Cancer Applications

Curcumin is a lipophilic phenolic compound whose anti-cancer effects have been widely explored
in recent times [123]. This phenolic molecule reduces cell proliferation and metastasis and accelerates
apoptosis, and for this reason, has been indicated as a good candidate for treatment and prevention of
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breast cancer [123–126]. Similar to other phenolic compounds, curcumin presents some associated
limitations in oral administration since it is poorly aqueous, soluble, and easily degrades itself.
Baek et al. took advantage of SLN technology to produce a delivery system that improves the stability
of curcumin [123]. Different SLNs loaded with curcumin were prepared using glyceryl monostearate
(GMS), soya lecithin, stearylamine, and poloxamer 188 as surfactant. Moreover, the surface of the
nanoparticles was modified with N-carboxymethyl chitosan (NCC) in order to enhance biocompatibility
and absorption of the nanoparticles. Studies performed in the MCF-7 cell line (breast cancer cell line)
revealed that encapsulation of curcumin improved their cellular uptake. Furthermore, in vivo
experiments involving rats showed that oral bioavailability of curcumin was improved and the
burst release of the compound in gastric medium was prevented when using surface-modified SLNs.
The curcumin uptake at the intestinal lymphatic node was also enhanced. Altogether, these results
present curcumin-loaded SLNs (and surface modification with chitosan) as a promising way to increase
oral bioavailability and antitumor effects of this phenolic compound, opening doors for the possible
development of pharmaceutic formulations for the treatment of breast cancer.

EGCG, commonly found in green tea, has presented, equally to other phenolic compounds,
several beneficial health effects, namely, anti-carcinogenic properties [127–129]. Silva et al. evaluated
the anti-proliferative effect of EGCG-loaded SLNs against several cell lines. SLNs were prepared with
glycerol, Softisan 100, Lipoid S75, dimethyldioctadecylammonium bromide (DDAB), and poloxamer
188 as surfactant [38]. The results showed that EGCG exhibited anti-proliferative effects against
different cell lines in the following order of potency: MCF-7 > SV-80 > HepG2 > Y-79 > Caco-2.
These results were obtained after 24 h of exposure and clearly show that the anti-proliferative effect of
the phenolic compound is time-, concentration-, and cell-line-dependent [38].

Resveratrol has also been studied for its possible application as an anti-cancer agent since it is
known to target many components of intracellular signaling pathways [130]. However, the beneficial
effects of this molecule are compromised by its low water solubility and photo instability [131].
Teskač et al. prepared SLNs with Compritol 888 ATO, Phospholipon 80H, and Lutrol loaded with
resveratrol to investigate the cell uptake, transport, and internalization of this phenolic compound
in keratinocytes (NCTC2544 cell line) [132]. The results showed that the delivery of resveratrol by
SLNs contributed to the effectiveness of the molecule on decreasing cell proliferation, anticipating its
possible formulation for skin cancer treatment.

It is also common to encapsulate more than one phenolic compound in order to achieve an
enhanced final effect. Kumar et al. prepared functionalized resveratrol and ferulic acid-loaded SLNs
with the aim of developing cell-targeted drug delivery systems. The co-encapsulation of both phenolic
molecules has the goal of combining the beneficial properties of resveratrol, known for its beneficial
effects such as cardioprotection and cancer prevention, and ferulic acid, known to inhibiting colon
cancer cells [133,134]. It is important to note that the characteristics of the nanoparticles are usually not
altered by the co-encapsulation of two phenolics [135]. The authors investigated the physicochemical
properties of the nanoparticles, drug release, and the anti-cancer effects studied in colon cancer cells
(HT-29) and results indicated that the prepared SLNs were cancer- cell-specific and induced cell death
in HT-29 cell lines [136].

4.2. Oral Bioavailability

As previously mentioned, phenolic compounds are present in a wide variety of vegetables and
fruits and are, therefore, a fundamental part our diet. However, their biological effects are compromised
by their instability and/or low bioavailability. Thus, many studies are aiming to encapsulate phenolic
compounds to enhance their bioavailability after food consumption, which can be of great use in the
development of functional foods. Granja et al. developed NLCs loaded with EGCG and functionalized
with folic acid, with the aim of improving their oral absorption. NLCs were prepared with Precirol
ATO 5 and Mygliol 812 with Tween 60 as a surfactant and were functionalized with folic acid [137].
The results showed a controlled release of EGCG in simulated gastrointestinal conditions and a high
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stability up to 8 weeks (4 ◦C, protected from light). Such data shows the suitability of SLNs for the
preparation of formulation containing EGCG for the development of products for the food industry.

4.3. Skin Applications

Cosmetics is an area where lipid nanoparticles stand out and find different putative applications.
The similarity between the lipid matrix of these particles and the skin lipids, the capacity of improving
skin hydration resulting in enhanced skin elasticity, and the possibility of increasing the stability of
natural compounds, explain why solid lipid nanoparticles are such promising nanocarriers for topical
applications. Likewise, phenolic compound attributes make them good candidates for skin treatments
or other applications.

More recently, lipid nanoparticles have been used as carriers of phenolic compounds for
developing sunscreen formulations. These formulations have less noxious effects than those that
usually contain synthetic agents [122]. Bose et al. prepared different quercetin-loaded SLNs that
showed that higher amounts of quercetin were found to be localized within the skin compared
to a control formulation containing particles in the micrometer range during an in vitro skin
permeation study [138]. Quercetin had already been pointed as an inhibitor of Ultraviolet light
B (UVB)-induced oxidative skin damage, which increases their potential application in sunscreen
protector formulations [139]. In another study, Plianbanchang et al. described the efficacy of a facial
cream containing curcuminoid-loaded SLNs in healthy volunteers that showed decrease in skin wrinkle
formation and improved skin hydration when compared with free curcuminoids [140].

In another study performed by Friedrich et al., the authors prepared NLCs loaded with both
curcumin and resveratrol to study their behavior upon application onto excised human skin and their
interaction with human primary skin cells. Skin cells treated with NLCs for 24 h showed great potential
of these carriers for further investigations on the subcellular level. Skin penetration studies showed
an increased delivery of resveratrol (upon co-delivery) into deeper skin layers when compared to
encapsulation of only resveratrol itself. These results portray the prepared lipid nanocarriers as good
curcumin/resveratrol delivery systems for skin applications [141].

4.4. Neurological Diseases

Antioxidant compounds have a key role in protecting cells from oxidative injuries that are at the
origin of several diseases such as Alzheimer’s disease. Alzheimer’s disease is a neurodegenerative
disorder where there is deposition of amyloid β-peptide (Aβ) and the intraneuronal accumulation
of neurofibrillary tangles, which is all associated with the loss of neurons [142]. The long-term
administration of ferulic acid in mice has been shown to protect them against learning and memory
deficits that are Aβ-induced [143]. Bondi et al. prepared SLNs and NLCs loaded with ferulic
acid and investigated the ability of the nanoparticles to penetrate human neuroblastoma cells
(LAN 5 cell line) [144]. Different formulations of SLNs and NLCs were prepared using Compritol 888
ATO, Compritol HD5 ATO, Miglyol 812, and Pluronic F68 as surfactant. The final data showed that
ferulic acid-loaded SLNs had higher protective activity than free ferulic acid against oxidative stress
induced in neurons, supporting the potential use of these nanocarriers to deliver ferulic acid for the
treatment of Alzheimer’s disease.

5. Conclusions and Current Challenges

Phenolic compounds have gained growing attention due to their chemical properties and health
benefits. The diversity of these molecules allied to the fact they have natural origin provides the
opportunity to apply them in a wide variety of areas, namely, in the development of nutraceuticals,
cosmetics, and functional foods. However, some drawbacks associated with low bioavailability and
instability are blocking its application in such fields. Numerous efforts have been performed to overcome
these limitations. The most common strategies include molecule covalent modification or encapsulation.
Encapsulation of phenolic compounds is already widely explored but it is clear that there is some lack
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of information about the application of encapsulated polyphenols in the market. This is probably due to
the uncertainty of some results, which further studies and exploration, or more commonly to the difficult
scaling up of the processes. This review demonstrates the suitableness of lipid nanocarriers, namely,
SLNs and NLCs, for the encapsulation and delivery of phenolic compounds for different applications.
These lipid nanocarriers meet several desired criteria for nanosystems since they present exceptionally
low toxicity, have a notorious resemblance with biological systems, and have preparation methods
that are easy to scale up. However, further studies on the interaction of phenolics with lipids from
SLNs/NLCs, as well as on the interaction of these molecules with surfactants and on the mechanisms of
transport and cellular uptake, are necessary to achieve optimum conditions. Another important topic
that needs to be explored is the fact that although the structural characteristics of lipid nanoparticles
allow them to be appropriate drug carriers for lipophilic compounds, it is common to have some
additional problems when it comes to the encapsulation of hydrophilic compounds. There are some
essential physicochemical concepts to attend to while encapsulating hydrophilic compounds such as
the solubility of the molecule, the partitioning, and the mass transport phenomena [145]. For instance,
hydrophilic phenolics have many hydroxyl groups that may interact with the polar head of some lipid
molecules and create complexes that can result in aggregation and/or increases in particle size [10,68].
The solubility of the bioactive compound or drug must be always analysed not only in the different
phases of the delivery system but also in the surrounding application matrix. In the particular case of
hydrophilic molecules, the equilibrium of water solubility of the compound determines the maximum
amount that can be dissolved in aqueous solution; usually, the ionized form of the molecule has a
higher water solubility than the neutral form [145]. Regarding mass transport phenomena, it is also
crucial to consider that the movement of molecules from one region to another of the colloidal system
will impact its loading and its release [146]. As demonstrated above, some studies have already been
reported to successfully encapsulate hydrophilic polyphenols such as EGCG in SLNs/NLCs [137,147].
Other studies have also managed to encapsulate anthocyanins, which are hydrophilic pigments,
in nanoemulsions or nanoliposomes, with a study of Ravanfar et al. (2016) involving the preparation
of SLNs loaded with anthocyanins for the preservation of these molecules against factors such as pH
and temperature [91,148,149]. Encapsulation of anthocyanins in lipid nanocarriers is a poorly explored
theme that is gaining attention since these natural molecules comprise a great feature of beneficial
health effects and present vibrant and attractive colours. However, anthocyanins are also characterized
for their instability towards pH changes and other external factors, and their varied structures makes
the encapsulation of these phenolics a particular challenge. Thus, incorporation of anthocyanins in
lipid nanocarriers is a key topic that is open to deeper exploration.

Funding: This work was financed by FEDER (Fundo Europeu de Desenvolvimento Regional) funds
through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI),
and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia—in the framework of the
POCI-01-0145-FEDER-029013—PTDC/QUI-OUT/29013/2017.

Acknowledgments: This work was supported by the Associated Laboratory for Sustainable Chemistry,
Clean Processes and Technologies Laboratório Associado para Química Verde through the national funds
from UIDB/50006/2020. J.O. would like to thank the FCT for her IF contract (IF/00225/2015) and I.F. for her research
contract (SFRH/BPD/86173/2012).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Billot, J. Evolution des composes phénoliques au cours de la maturation de la Poire Passe-Crassane.
Physiol. Vég. 1983, 21. [CrossRef]

2. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability.
Am. J. Clin. Nutr. 2004, 79, 727–747. [CrossRef] [PubMed]

3. Cordova, A.C.; Sumpio, B.E. Polyphenols are medicine: Is it time to prescribe red wine for our patients?
Int. J. Angiol. 2009, 18, 111–117. [CrossRef] [PubMed]

http://dx.doi.org/10.20870/oeno-one.1972.6.2.2058
http://dx.doi.org/10.1093/ajcn/79.5.727
http://www.ncbi.nlm.nih.gov/pubmed/15113710
http://dx.doi.org/10.1055/s-0031-1278336
http://www.ncbi.nlm.nih.gov/pubmed/22477510


Antioxidants 2020, 9, 998 18 of 24

4. Lamy, S.; Beaulieu, É.; Labbé, D.P.; Bédard, V.; Moghrabi, A.; Barrette, S.; Gingras, D.;
Béliveau, R. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor
(PDGF/PDGFR) signaling. Carcinogenesis 2008, 29, 1033–1041. [CrossRef] [PubMed]

5. Shipp, J.; Abdel-Aal, E.-S. Food Applications and physiological effects of anthocyanins as functional
food ingredients. Open Food Sci. J. 2010, 4, 7–22. [CrossRef]

6. Lesschaeve, I.; Noble, A.C. Polyphenols: Factors influencing their sensory properties and their effects on
food and beverage preferences. Am. J. Clin. Nutr. 2005, 81, 330S–335S. [CrossRef]

7. Nunes, S.; Madureira, R.; Campos, D.A.; Sarmento, B.; Gomes, A.M.; Pintado, M.; Reis, F.;
Madureira, A.R.; Pintado, M.M. Solid lipid nanoparticles as oral delivery systems of phenolic compounds:
Overcoming pharmacokinetic limitations for nutraceutical applications. Crit. Rev. Food Sci. Nutr. 2017,
57, 1863–1873. [CrossRef]

8. McDougall, G.J.; Stewart, D. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors
2005, 23, 189–195. [CrossRef]

9. Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; De Freitas, V. Wine flavonoids in health and
disease prevention. Molecules 2017, 22, 292. [CrossRef]

10. Faridi Esfanjani, A.; Assadpour, E.; Jafari, S.M. Improving the bioavailability of phenolic compounds by
loading them within lipid-based nanocarriers. Trends Food Sci. Technol. 2018, 76, 56–66. [CrossRef]

11. Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications.
Adv. Drug Deliv. Rev. 2012, 64, 83–101. [CrossRef]

12. Higdon, J.V.; Frei, B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions.
Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [CrossRef]

13. Crespy, V.; Williamson, G. A review of the health effects of green tea catechins in in vivo animal models.
J. Nutr. 2004, 134, 3431S–3440S. [CrossRef] [PubMed]

14. Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.T.; Coutts, R.T. Identification of kaempferol
as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo Biloba leaves.
J. Pharm. Pharmacol. 2000, 52, 451–459. [CrossRef]
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