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The study of transcriptional regulation is still difficult yet
fundamental in molecular biology research. Recent research
has shown that the double helix structure of nucleotides plays
an important role in improving the accuracy and interpret-
ability of transcription factor binding sites (TFBSs). Although
several computational methods have been designed to take
both DNA sequence and DNA shape features into consider-
ation simultaneously, how to design an efficient model is still
an intractable topic. In this paper, we proposed a hybrid convo-
lutional recurrent neural network (CNN/RNN) architecture,
CRPTS, to predict TFBSs by combining DNA sequence and
DNA shape features. The novelty of our proposedmethod relies
on three critical aspects: (1) the application of a shared hybrid
CNN and RNN has the ability to efficiently extract features
from large-scale genomic sequences obtained by high-
throughput technology; (2) the common patterns were found
from DNA sequences and their corresponding DNA shape fea-
tures; (3) our proposed CRPTS can capture local structural in-
formation of DNA sequences without completely relying on
DNA shape data. A series of comprehensive experiments on
66 in vitro datasets derived from universal protein binding mi-
croarrays (uPBMs) shows that our proposed method CRPTS
obviously outperforms the state-of-the-art methods.

INTRODUCTION
Protein-DNA interactions play an important role in the regulation of
gene transcription, splicing, translation, and degradation.1–3 The
binding of transcription factors (TFs) and DNA is the basic molecular
mechanism in gene regulation. TF binding sites (TFBSs) on DNA are
short sequences located in regulatory regions of genes, typically range
from a few to about 20 base pairs (bp), and binding regions of one TF
on different genes are usually conservative. When given an input
DNA sequence, classifying whether or not there is a binding site for
a particular TF is a core task of bioinformatics. The identification
of TFBSs, also known as motif discovery (MD) problems, is usually
defined as finding similar subsequences from a given set of DNA se-
quences. Unfortunately, only some of these binding sites have been
identified by expensive and time-consuming biological experiments.
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With the rapid development of high-throughput sequencing technol-
ogy, numerous in vitro experimental data were provided by protein
binding microarrays (PBMs), which is very important, as we stand
by the reliability data, and provides the possibility to improve the
computational method for TF binding specific expression and bind-
ing site discovery.4–8 Compared with biological experiment methods,
computational methods have become the main method for solving
burning biological questions9–11 due to their advantages of simplicity,
speed, and low cost.

Due to the intricate motif variations, indirect effects on binding spec-
ificity, and noisy data, it is difficult to infer motifs from high-
throughput data.12–15 Position weight matrix (PWM) is the most
earliest and common method to characterize the specificity of pro-
tein-DNA binding sequences due to its simplicity and comprehen-
sion,16 which allows an intuitive visualization as a sequence logo.17

However, it still has certain limitations, considering the dependence
between nucleotides, kmer-SVM and gapped k-mer, has been pro-
posed based on k-mer features successively.18,19 Gapped k-mer was
combined with deep neural networks to solve the limitations of kernel
skills in kmer-SVM. Besides, many studies have shown that sequence
specificity can be better captured using more complex models.20 Since
deep learning (DL) can automatically find predictive signatures
and process the input high-dimensional data,21,22 the technology
has reached rapid development and demonstrated extraordinary per-
formance in various tasks, including but not limited to speech recog-
nition,23 computer vision,24 natural language processing,25 and
functional genomics prediction.26,27 DL has achieved unprecedented
uthors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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performance for capturing motif patterns and elucidating complex
regulatory mechanisms based on large-scale chromatin immunopre-
cipitation sequencing (ChIP-seq) datasets.28,29 A variety of computa-
tional approaches have been developed for predicting TFBSs from the
rawDNA sequences based onDL. A couple of pioneering studies have
come up with the idea that a convolutional neural network (CNN)
can be applied to genomics relying on the basic building blocks of
CNN in computer vision.24 Deepbind is a hallmark of the first suc-
cessful application of a model sequence of CNNs to predict the spec-
ificity of protein binding.28 There are also a few hybrid DL models
used in DNA sequences, of which DanQ is a typical example to quan-
tify the function of DNA sequences.30 Furthermore, a variety of
computational approaches has been developed based on novel convo-
lutional architectures; for example, circular filters were proposed to
efficiently utilize data and easily interpret learned filters.31 A system-
atic evaluation of DL architectures for predicting DNA- and RNA-
binding specificity, named deepRAM, provided in-depth analysis
for the researcher.32

Although these DL methods have made great achievements, there are
still some drawbacks, ignoring that DNA is a complex three-dimen-
sional macromolecule. As a result of the advances in DNA structure
elucidation, four distinct DNA shape features, including minor
groove width (MGW), propeller twist (ProT), helix twist (HelT),
and roll, can be computationally derived from DNA sequences by
Monte Carlo (MC) simulation.33 To explain the intricacies of the
DNA structure, 13 features were expanded in subsequent research,
which includes six intra-bp parameters, six inter-bp parameters,
and one MGW.34 These data provide unprecedented opportunities
to predict TFBS and capture more features that affect TF binding.
Recent research shows that adding DNA shapes plays a significant
role in simulating and predicting TF-DNA binding affinities, which
adopted traditional machine learning methods.35 Yang et al.36 used
a simple neural network framework combined with DNA shape to
predict motifs from human ChIP-seq data. It is worth noting that a
sequence + shape framework (DLBSS), based on DL, was proposed,
which used a shared CNN to find common patterns from DNA se-
quences and their corresponding DNA shape features.37 However,
despite the DL models or the traditional methods perform well by
adding DNA shape to identify the TFBSs, the ability to come up
with effective methods to improve the performance of capturing
sequence-specific motif and predict specific TF binding to genomic
DNA remains a challenge.

With the consideration that although DLBSS applied the CNNmodel
based on the combination of DNA shape and DNA sequences, which
has achieved certain achievements, there are still some defects that
need to be improved, such as data bias, extracting local dependencies
between motifs, visualizing binding motifs of TFs, etc. Hence, we
introduce a shared hybrid DL architecture inspired by Zhang
et al.,37 a strategy of combining CNN and recurrent neural network
(RNN), adapting the DNA sequences and their corresponding local
DNA shape features in this paper. CNN was used to capture low-level
spatial information from given DNA sequences and DNA shape fea-
tures, and RNN was used to capture long-term dependencies between
sequences. The CRPTS framework is mainly composed of data input,
model training, and binding intensity output. The architecture dia-
gram of CRPTS is shown in Figure 1. Our comprehensive experi-
ments on 66 in vitro universal PBM (uPBM)14,35 datasets demonstrate
that CRPTS significantly outperforms some existing state-of-the-art
methods in the prediction of TF binding affinity. Last but not least,
CRPTS has the ability to discover some essential experimentally veri-
fied binding motifs, and the key point of our method provides verified
binding motifs to visualize and interpret our models. More details
regarding the datasets, the model architecture, and the evaluation
metrics used in our work can be found in the following sections.

RESULTS
In this section, we describe the evaluation performance of the
proposed model compared with the state-of-the-art approaches. We
carried out a series of experiments on 66 in vitro datasets, and the
experimental results show that CRPTS significantly performs better
than the competing methods.

Performance evaluation and comparison

To prevent overfitting and experimental accuracy, the performance of
the CRPTS was measured using 5-fold cross-validation for each of 66
in vitro datasets. In order to evaluate the proposed method, we
compared the performance of predicting TFBSs with recent state-
of-the-art methods. The quality of the model for predicting binding
affinity was evaluated by using the coefficient of determination (R2)
and Pearson correlation coefficient (PCC), which were applied in
Weirauch et al.14 We assumed that the closer the two evaluation in-
dexes are to 1, the better the method is. We used the two indicators
for each dataset, and we calculated the average of the 66 datasets about
two indicators to verify the comprehensive performance level of the
method. Two performance measures are defined as follows:

R2 = 1�
P

i

�
yi � Yi

�2P
i

�
yi � y

�2 (Equation 1)

PCCðy;YÞ =
X
i

yi � yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
yi � y

�2q $
Yi � Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Yi � Y

�2r ; (Equation 2)

where yi,Yi,y, and Y , respectively, represent the observed, predicted,
average observed, and average predicted binding affinity scores.
Accuracy comparison and analysis

In order to evaluate the performance of CRPTSmore synthetically, we
not only compare CRPTS with Deepbind, which only used the pri-
mary DNA sequences as the inputs based on the CNN model,28 but
also with three methods that combined DNA sequences and DNA
shapes, including two kernel-based methods (spectrum + shape
kernel, di-mismatch + shape kernel)35 and a DL method-based
DLBSS.37 We compared the performance of CRPTS with the
competing methods on 66 in vitro datasets regarding the metrics R2
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 155
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Figure 1. The general architecture of the CRPTS

(1) Data input. The input data includ DNA sequence data

and four shape features. (2) Encoding. DNA sequences

were converted into a matrix by one-hot encoding, and

DNA shape features were processed by a sliding window

to obtain the input matrix. (3) Model training. The matrix of

DNA shape features was first input into the convolutional

layer to match the numbers of channels; then two types of

data were input to the shared hybrid model to extract

features. (4) Output. The features were combined by two

fully connected layers after a batch normalization layer to

obtain the final affinity.

Molecular Therapy: Nucleic Acids
and PCC mentioned above. A detailed comparison of the two evalu-
ation criteria R2 and PCC for CRPTS and competing methods is
shown in Tables S1 and S2.

Furthermore, Figure 2 plots an overall performance comparison of
CRPTS and the competing methods on 66 in vitro datasets. As shown
in Figure 2, it is evident that CRPTS achieves a more remarkable and
stable performance than the competing methods in terms of PCC and
R2. A couple of observations are notable from these plots: CRPTS is
clearly better than the two kernel-based methods, which demon-
strates that the DL model combining DNA sequence and DNA shape
information has a significant effect on identifying TFBSs. As indicated
in Figure 3, CRPTS achieves a statistically significant improvement in
average R2 and PCC. CRPTS achieves about 6% and 4% higher than
DLBSS with respect to R2 and PCC, which shows that our proposed
hybrid DL model has a clear advantage over the one using only
156 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
CNN. It is worth noting that both maximum
and minimum values of CRPTS are better
than that of the competing method in 66
in vitro datasets. Generally speaking, the smaller
box of the proposed method CRPTS indicates
that the range of the two indicators is more
concentrated, which proves that the proposed
method has strong stability. The reasons for
the outstanding performance of CRPTS may
lie in that (1) CRPTS explicitly considers the
shape information of DNA sequences, and (2)
CRPTS uses long short-term memory (LSTM)
to further extract long-term dependencies be-
tween DNA shape features and DNA sequences.

The effect of DNA shape on the

identification of TFBSs

In order to examine whether adding DNA shape
information to the shared hybrid model can
improve the prediction accuracy of TF binding
affinities, we extended an experiment only using
independent DNA sequences as input based on
the shared hybrid model, named CRPT. Then
we analyzed the binding event prediction capa-
bility of CRPTS (using DNA sequence + DNA
shape features as data input) and CRPT (only using DNA sequence
as data input) to exhibit the superiority of our model. It can be seen
from Figure 4, the median of CRPTS is slightly higher than CRPT,
and the data distribution is consistent, which indicates that the stabil-
ity of the model is not affected by the data input. As shown in Figure 3,
DLBSS is far superior to Deepbind (the average values of R2 and PCC
has increased by 6% and 3%, respectively). The reason for the high
performance gain lies in the following: (1) Deepbind only consists
of one convolutional layer that is used to score all potential motifs,
but the local structural information of DNA sequences is not consid-
ered, and (2) DNA shape features are explicitly combined in the
DLBSS for considering the local structural information. Compared
to CRPT, the performance of CRPTS is slightly improved (the average
values of R2 and PCC has increased by 1.3% and 1%); the details are
shown in the Tables S1 and S2. The reason for low performance gain
lies in the following: CRPT consists of a convolutional layer and a



Figure 2. An overall performance comparison about

R2 and PCC of CRPTS and the competing methods

on 66 in vitro datasets

(A) An overall performance comparison about R2. (B) An

overall performance comparison about PCC.
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Figure 3. Boxplots for R2 and PCC value of CRPTS and the competing

methods

(A) Boxplots for R2. (B) Boxplots for PCC.

Figure 4. The effect of DNA shape on the R2 and PCC
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LSTM layer, where the convolutional layer is used to score all poten-
tial motifs, and the LSTM layer is used to learn the local structural in-
formation and long-term dependence in the sequences, rather than
completely relying on DNA shape data. Compared with Deepbind
and DLBSS, it is no surprise that CRPTS and CRPT can capture
most of the structural information from the raw sequence data
without completely relying on DNA shape data.
Identifying and visualizing binding motifs of TFs

Model visualization is crucial in computational biology. Several
methods have been proposed to explain the parameters of neural net-
158 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
works and gain insights into the learned characteristics. CNN not
only can efficiently process the DNA sequence but also can automat-
ically extract features, and the kernels are similar to PWMs,
describing the popular model TF of sequence-specific binding. In or-
der to further evaluate this model, we visualized the identified binding
motifs of TFs. For each kernel, the sequences of the position having
the highest activation value that is greater than zero are selected
and collected and are used to make a file in multiple expectation max-
imizations for motif elicitation (MEME) motif format. The similar-
ities between identifiedmotifs and true motifs are calculated by Gupta
et al.38 and is publicly available at the MEME Suite of motif analysis
tools.39,40 All kernels in the convolutional layer are initialized
randomly, and all motifs are automatically learned during model
training. The experimental results show that CRPTS achieves higher
accuracy on in vitro datasets compared to the competing methods. As
shown in Table 1, several motifs learned by CRPTS and the corre-
sponding motifs in the standard database are recorded.

DISCUSSION
Although there aremany computational methods to identify TFBSs, it
still remains a major challenge for the research community. Recent
research suggests that DNA shape features play an important role
in the recognition of DNA binding sites,41 to date, but a systematic
and comprehensive method is lacking. Therefore, a shared hybrid
CNN/RNN architecture CRPTS combining DNA sequences and
DNA shapes was proposed to identify TFBSs. To verify the perfor-
mance of CRPTS, a series of experiments on 66 in vitro uPBM
datasets were performed in this paper, and experimental results
demonstrated that the proposed method effectively improves the pre-
diction performance of TFBSs and outperformed some state-of-the-
art methods in terms of R2 and PCC. Moreover, the comparison



Table 1. Examples of TF motifs learned by the hybrid CRPTS models and compared with the motifs recorded in UniPROBE
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between the learned motifs and the standard motifs in the Universal
PBM Resource for Oligonucleotide Binding Evaluation (UniPROBE)
database shows a high degree of matching.

The main contributions of our proposed CRPTS lie in the following:
(1) a shared hybrid model combining DNA sequences and DNA
shape features was first used in the identification of TFBSs, CNN
was used to identify spatial information from given DNA sequences
and shape characteristics, and RNN mainly captured long-term de-
pendencies between sequence motifs; (2) the common patterns
were found from DNA sequences and their corresponding DNA
shape features, which were then concatenated to compute a predicted
affinity value; and (3) experiment results show that CRPTS can
extract local structural information rather than completely relying
on extra DNA shapes.

This design of the framework is flexible in accommodating any type of
high-throughput data, including but not limited to the data discussed
in this paper. There are several questions worthy pursuing following
our work, trying to combine 13 DNA structure features with DNA se-
quences to improve the performance of TFBSs. Nine additional DNA
shape features were derived from three different data sources,
including MC, molecular dynamics, and X-ray crystallography
(XRC) experiments.42 Similar to the four shapes, the pentamer char-
acteristic value of the additional shape was also obtained, and we will
make attempts to combine open chromatin ATAC data and ChIP-seq
data based on a shared hybrid model to provide some theoretical basis
for genomic research. It is worth noting that some experimental re-
sults have shown that the basic polar and hydrophobic lle amino acids
of principal properties play an important role inmodulating the inter-
action between TFs and methylated DNA,43,44 which provides a new
insight for combining the physicochemical properties of DNA and
DL to improve the interpretability of TFs. The ultimate goal of our
research will be used to discover disease targets and provide a basis
for accurate diagnosis and treatment of complex diseases.45–47

MATERIALS AND METHODS
Datasets and data preprocessing

66. uPBM data

The PBM as a rapid, high-throughput sequence technology not only
provides a biochemical representation of TF-DNA interactions
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 159
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Table 2. The detailed settings of channels matching module

Architectures Settings Output shape

Convolutional layer
kernel number = 4,
kernel size = 1,
stride = 1, padding = 0

(B, n, 4)

ReLU layer � (B, n, 4)
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in vitro but also provides biological insights into the in vivo functions
and regulatory roles of TFs. The PBM technology has enabled a
genome scale to characterize the sequence specificities of DNA-pro-
tein interactions in a high-throughput manner. In order to evaluate
the performance of the proposed CRPTS, we downloaded 66 uPBM
data from the Dialogue for Reverse Engineering Assessments and
Methods 5 (DREAM5),14 which comes from a variety of protein fam-
ilies. Each TF dataset consists of more than 40,000 arrays containing
all patterns of unaligned 35-mer probes and a complete set of PBM
probe intensities from two distinct microarray designs, named HK
and ME. In order to be suitable for a DL model, each input DNA
sequence was converted into a matrix n ∙ l by one-hot encoding,
where n corresponds to the four nucleotides A, T, C, and G, repre-
sented by binary vectors A = [1,0,0,0], C = [0,0,1,0], T = [0,1,0,0],
and G = [0,0,0,1], respectively, and l equals 35 in uPBM that we used.

DNA shape data

The three-dimensional structure of DNA plays an important role in
determining the DNA binding preferences of TFs48,49 and other
DNA-binding proteins.50,51 In previous work, the unique pentamers
of four DNA shape features include the following: MGW, roll, ProT,
and HelT, obtained from MC simulations by a sliding-window
approach together with a query table.33 The original DNA shape
data was provided in Table S3. A pentamer contributes one MGW
value, one ProT value, two roll values, and two HelT values, and we
take the average of the two roll and HelT values, one MGW value,
and ProT as the final effective value of the four DNA shapes. In order
to make the input type of the DNA sequence and corresponding DNA
shape feature consistent, we padded two zeros at both sides of the
sequence to make the length 1 + 4, and then the sliding window
was used to obtain the shape feature matrix n ∙ l, where n represents
the number of shapes, and l represents the length of the sequence. For
the sake of eliminating the bias that was caused by different ranges of
values for different shapes, we normalized each feature by zero-mean
normalization, respectively, as follows:

x0 =
x � m

s
; (Equation 3)

where x is the original feature value of pentamer, and x0 is the normal-
ized value. m and s are the mean and standard deviation of all sam-
ples, respectively.
Model construction and training

The network architecture of the proposed CRPTS

Overall, we proposed a novel shared hybrid CNN and RNN frame-
work to improve the accuracy of predicting TFBSs. The hybrid model
in CRPTS consists of channels matching module, feature extraction
module, and feature integration module.

Channels matchingmodule. This module is composed of a convolu-
tional layer and a ReLU (rectified linear unit) layer. Since DNA se-
quences and DNA shape are heterogeneous data, it is necessary to
apply a reasonable strategy to integrate them. In this paper, we
160 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
have used four shapes, but they were actually expanded to 13 reper-
toires recently.34 In order to integrate more shape information into
our model, we first applied the same strategy as DLBSS that used a
convolutional layer with kernel size 1 to process the DNA shape fea-
tures to match the number of channels of the hybrid network. More
specifically, our model requires binary as input, as described in Data-
sets and data preprocessing; a DNA sequence was converted into an
image-like matrix n ∙ l using one-hot encoding, where n corresponds
to the four nucleotides A, G, T, and C, and l represents the length of
DNA sequence. For each convolutional network layer, the outputs of
the layer were calculated by the following formula:

convðXÞik = f

 XM�1

m= 0

XN�1

n= 0

Wk
mnXi+m;n + bik

!
; (Equation 4)

where X is the input, i is the index of the output position, and k is the
index of kernels.W is the convolutional weight tensor and can be in-
terpreted as a four shape motif detector; b is the bias term. The convo-
lution outputs were transformed by the activation function f(∙),which
is an element-wise nonlinear function ReLU in our model. ReLU is an
activation function widely used in DL, which can alleviate gradient
vanishing problems during back-propagation training and has better
convergence performance. ReLU is defined as follows:

ReLUðxÞ =
(
x if xR0
0 if x < 0

: (Equation 5)

A more detailed design of channels matching module is shown in
Table 2.

Feature extraction module. This model is composed of a convolu-
tional layer, a ReLU layer, a max pooling layer, an LSTM layer, and
a dropout layer. The DNA shape information processed by CNN
and original DNA sequence data were input into the shared hybrid
neural network to extract features for predicting TFBSs. The advan-
tage of applying a shared model is that it not only greatly reduces
the parameters of the network but also can be trained in parallel. First,
the convolution layer followed by a ReLU layer with kernel 16
captured spatial information from given DNA sequences and DNA
shape features. One of the advantages of applying CNNs to analyze
omics data is multiple types of input data, features can be easily inte-
grated, and the effective features can be automatically discovered by
representation learning. Then, a max pooling layer was used to pick
out the maximum value based on the outputs from the convolutional



Table 3. The detailed settings of feature extraction module

Architectures Settings Output shape

Convolutional layer
kernel number = 16,
kernel size = 13,
stride = 1, padding = 6

(B, n, 16)

ReLU layer � (B, n, 16)

Max-pooling layer global (B, 16)

LSTM layer 32 (B, 32)

Dropout layer 0.2 (B, 32)

Table 4. The detailed settings of feature integration module

Architectures Settings Output shape

Concatenation layer � (B, 32)

Batchnormalization layer � (B, 32)

Fully connected layer unit number = 32 (B, 32)

ReLU layer � (B, 32)

Dropout layer ratio = sample from {0.2, 0.5, 0.7} (B, 32)

Fully connected layer unit number = 1 (B, 1)

www.moleculartherapy.org
layer, which reduces the dimension of the input to make the model
computationally efficient. The pooling operation is defined as:

poolingðXÞik = maxð�XiM;k;XðiM + 1Þ;k;.;XðiM +M�1Þ;k
�Þ:

(Equation 6)

The max pooling layer was followed by an LSTM layer to capture
long-term dependencies between the motifs and the orientations
and spatial distances between sequences. As we have learned,
RNN is an alternative to CNNs for processing sequential data, and
LSTM networks are first proposed to use special hidden units to
remember inputs for long periods. The key of LSTM is the cell state,
which is carefully regulated by structures called gates, including an
input gate, a forget gate, and an output gate. In the first step, the
“forget gate” decides what information is to be discarded or saved.
The next step is to decide how much new information should be
added to the cell state. The final step determines what value to
output.

ft = sigmoid
�
Wf $ ½ht�1; xt � + bf

�
(Equation 7)

it = sigmoidðWi $ ½ht�1; xt � + biÞ (Equation 8)

Ct = tanhðWG $ ½ht�1; xt � + bGÞ (Equation 9)

St = ft1St�1 + it1Ct (Equation 10)

Ot = sigmoidðWo $ ½ht�1; xt � + boÞ (Equation 11)

ht = Ot1tanhðStÞ; (Equation 12)

whereW represents the weight matrix; b represents the bias; ft, it, and
Ot represent the weight values of the forget, input, and output gates;
xt, Ct, and ht represent the input vector, the memory representation,
and the hidden layer state at time t, respectively; and 1 is element-
wise multiplication. A dropout52 layer with a probability of 0.2 was
added to avoid overfitting by ignoring half of the feature detectors
and to make the model have a stronger generalization ability. Next,
all of the dropout results of both DNA sequences and DNA shape in-
formation were combined into a feature vector, which is then input to
the output stage. A more detailed design of feature extraction module
is shown in Table 3.
Feature integration module. This module is composed of two fully
connected layers, a batch normalization layer, and a dropout layer.
In the output stage, batch normalization was applied before inputting
it into the fully connected layer, which not only avoids a gradient
problem during backpropagation but also simplifies the initialization
process of the parameters of the network.53 The outputs from the
batch normalization were then fed into a fully connected layer with
32 hidden neurons to integrate features. The output layer followed
by a dropout layer containing only one neuron was used to predict
the TF-DNA binding specificity. A more detailed design of feature
integration module is shown in Table 4.
The network architecture of the proposed CRPTS

For each dataset, we minimize the reasonable loss function of mean
squared error (MSE) to train the proposed hybrid model. The loss
function is defined as follows:

JðqÞ = 1
N

XN

i= 1

�
yi � y2i

�
+ lkq k 2; (Equation 13)

where yi and yi, respectively, indicate the ground and estimated signal
intensity a, and N is the number of sequences in each training dataset.
L2 regularization was used to avoid model overfitting, lmeans a reg-
ularization parameter, and k � k 2means L2 norm. We use AdaDelta
to optimize the loss function and set the mini-batch size as 300. The
dropout ratio, momentum, and Delta in AdaDelta in the neural
network were randomly selected from [0.2,0.5], [0.9,0.99,0.999],
and [1e–8,1e–6,1e–4], respectively. To prevent overfitting and ensure
experimental accuracy, we used five-fold cross-validation. The
optimal parameter set was retained during the training process and
applied to the entire training dataset, and the epochs of training
were set at 100. Moreover, an early stopping strategy was adopted
to reduce the running time. The source code is freely provided in
the GitHub repository (https://github.com/wangguoguoa/CRPTS).

Our implementation is written in Python, utilizing the Keras 2.0 li-
brary with the TensorFlow 1.2.054 backend.We used a Linux machine
with 32 gigabytes (GBs) of memory and an NVIDIA Titan X Pascal
graphics processing unit (GPU) for training.
Generating motifs learned by the proposed model

Various DL algorithms have brought about breakthroughs in solving
specific types of problems in genomic applications that extract
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 161
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important features from the raw data, but one of the main drawbacks
is their poor interpretability. In the neural network, a convolution
kernel is similar to the motif detector, taking both DNA sequences
and structure information into account, the activation position of
the kernel is located by scanning all of the sequences, and each kernel
is converted into a PWM. For each sequence in each dataset, we found
a position that had the maximum convolution value among all the
kernels, and a 13-bp (the size of the kernel) subsequence starting at
this position was extracted. As described in Model construction and
training, the number of convolution kernels is 16, and the size is 13
in our proposed CRPTS. Therefore, the frequencies of the four nucle-
otides at each position were then calculated, and the 16 PWMmatrix
representing the TF motif was derived.
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