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Abstract: Metabolomic analysis provides a wealth of information that can be predictive of distinctive
phenotypes of pathogenic processes and has been applied to better understand disease development.
Rheumatoid arthritis (RA) is an autoimmune disease with the establishment of chronic synovial
inflammation that affects joints and peripheral tissues such as skeletal muscle and bone. There is a
lack of useful disease biomarkers to track disease activity, drug response and follow-up in RA. In
this review, we describe potential metabolic biomarkers that might be helpful in the study of RA
pathogenesis, drug response and risk of comorbidities. TMAO (choline and trimethylamine oxide)
and TCA (tricarboxylic acid) cycle products have been suggested to modulate metabolic profiles
during the early stages of RA and are present systemically, which is a relevant characteristic for
biomarkers. Moreover, the analysis of lipids such as cholesterol, FFAs and PUFAs may provide impor-
tant information before disease onset to predict disease activity and treatment response. Regarding
therapeutics, TNF inhibitors may increase the levels of tryptophan, valine, lysine, creatinine and
alanine, whereas JAK/STAT inhibitors may modulate exclusively fatty acids. These observations
indicate that different disease modifying antirheumatic drugs have specific metabolic profiles and
can reveal differences between responders and non-responders. In terms of comorbidities, physical
impairment represented by higher fatigue scores and muscle wasting has been associated with an
increase in urea cycle, FFAs, tocopherols and BCAAs. In conclusion, synovial fluid, blood and urine
samples from RA patients seem to provide critical information about the metabolic profile related to
drug response, disease activity and comorbidities.

Keywords: rheumatoid arthritis; metabolomics; biomarkers; muscle wasting

1. Introduction

Rheumatoid arthritis (RA) is the most common chronic, inflammatory autoimmune
disease, which affects approximately 1% of the world’s population [1]. RA is characterized
by joint inflammation with pain and swelling, which can lead to irreversible cartilage and
bone damage. The etiology is still unknown, but environmental and genetic factors are
involved with the disease’s susceptibility and severity [2]. The pathophysiology of RA
results from the activation of self-reactive T and B cells, which lead to synovitis, cellular
infiltration and a disorganized process of bone destruction and remodeling. The joint space
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is lined by a synovial membrane that suffers a tumor-like enlargement, called pannus, with
local destructive effects [1,3,4].

In addition to joint involvement, RA patients often present metabolic disorders, such
as insulin resistance and dyslipidemia contributing to an increased risk of cardiovascular
problems and mortality [5]. Among complications presented by RA patients changes in
body composition, such as loss of lean mass, especially skeletal muscle mass, and/or
increase in fat mass, reduced muscle strength and poor physical function contributes to
low patient survival and disability [6–8]. These changes are commonly reported in RA
patients; however, methods for assessing muscle loss in clinical practice are limited, can be
expensive and are not widely available [7,9].

Metabolic changes presented by RA patients can be linked to pathogenic mechanisms
and may represent a possible way to understand environmental and genetic factors related
to inflammatory diseases [10]. Since metabolism is important to the regulation of immune
cells development, immunometabolism studies bring new insights about pathogenicity
mechanisms, drug response, management of comorbidities and disease follow-up [5,11–13].
Metabolic products of several biological routes in the human body consist of diverse struc-
tures such as ionic chemical compounds, hydrophilic inorganic species, carbohydrates,
volatile alcohols, ketones, organic acids, amino acids, lipids and complex natural prod-
ucts [14]. Thus, this review summarizes the current evidence about potential metabolic
biomarkers in RA and their association with several clinical aspects of the disease.

2. Metabolomics

Metabolomic was introduced by Roger Williams in the late 1940s with the concept that
individuals may have a “metabolic profile” reflecting the composition of metabolites of their
biological fluids, consisting of a great variety of chemical structures with distinct functional
properties [15]. The advent of metabolomics has been fueled by major improvements in
instrument technology such as mass range of mass spectrometry (MS), associated gas,
liquid chromatography, and laser-induced fluorescence (LIF). As a result, metabolomic
patterns began to be associated with illnesses such as schizophrenia, inflammatory bowel
disease (IBD) and cardiovascular diseases (CVD) [13]. Unlike transcriptome and proteomics,
the molecular identification of metabolites cannot be deduced from genomic information.
Global profiles of the genome, transcripts and proteins are based on the chemical analysis
of target sequences composed of 4 different nucleotides (genome and transcriptome) or
22 amino acids (proteome), which are chemically similar facilitating the high throughput
analytical approach [16]. The methodologies employed in metabolomics depend upon a
training data set in which the outcome (i.e., disease or health) is known and used to build a
predictive model; after training, the model may be used on a test set to classify unknown
samples and measure the model’s predictive accuracy. The optimal selection of metabolites
depends on the objectives of the study and is usually a compromise between sensitivity
and selectivity of the technique chosen [17].

2.1. Techniques Used in Metabolomics

There are several types of metabolomics experiments including both targeted and un-
targeted analyses available for researchers according to the experiment’s purpose. Targeted
analyses focus on identifying and quantifying a limited number of metabolites with good
repeatability and stability [7]. On the other hand, the untargeted metabolomics approach
focuses on the simultaneous detection of unknown specimens for a wide range of the de-
tection of metabolite features with diverse chemical/physical properties. The main idea of
untargeted approach is to quantify a large list of small molecules and to map the networks
involved. While both targeted and untargeted approaches have their pros and cons, the
challenge for the researcher is to maximize the detection and accurate identification of
metabolites with a decent detection dynamic range and quantification capability [18].
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The detection and separation of analytes are crucial for a successful metabolomic
analysis. The separation analysis often used consists in liquid chromatography (LC), gas
chromatography (GC) and capillary electrophoresis (CE), while for detection, MS, and
nuclear magnetic resonance (NMR) methods are used for metabolomics experiments.

NMR methods are characterized by its nondestructive aspect and higher selectively,
which means that the samples can be recovered and remeasured [19]. NMR consists in
detecting characteristic radio frequency absorption bands (resonances) that occur as a
result of placing molecules or molecular mixtures in very strong magnetic fields. The
strong magnetic fields reorient the nuclear spins in each atom and make them susceptible
to radio frequency excitation/absorption at very specific frequencies or chemical shifts.
Each molecule has a unique pattern of NMR chemical shifts due to the unique chemical
structure and distinct arrangement of hydrogen atoms around the molecule. These hy-
drogen chemical shift fingerprints allow compounds to be identified and quantified by
NMR without the need for chromatographic separation or molecular ionization [16]. Dif-
ferently, MS technology (including LC-MS (Liquid chromatography–mass spectrometry),
GC-MS (Gas chromatography–mass spectrometry), CE-MS (Capillary electrophoresis–mass
spectrometry) and IMS-MS (Ion mobility spectrometry–mass spectrometry)) is 10–100×
more sensitive than NMR and a good combination of selectivity and sensitivity [20]. For all
MS-based techniques, the target molecule suffers ionization for its detection and posterior
identification [21]. The process gives neutral molecules either a positive or a negative
charge (depending on the character of the molecule), and it is possible to measure the
mass-to-charge (m/z) ratio of the ionized molecules, or their ionized molecular fragments;
by comparing this information with other referential MS spectra of known compounds, it
is possible to determine the identity of a given compound. However, the ionization process
vaporizes the sample, so MS is an inherently destructive technique [20].

Nevertheless, modern NMR and MS instruments are capable of separating, detecting
and characterizing hundreds to thousands of chemicals in complex chemical mixtures, such
as biofluids or tissue extracts [20]. In most metabolomic studies, the instruments (NMR or
MS) produce spectra or chromatograms consisting of thousands of peaks, which correspond
to one or more unique compounds (in MS) or part of a single compound (in NMR). Because
most unique compounds have overlapping peaks, large databases containing referential
MS or NMR spectra of pure compounds must be used to determine which peaks in these
spectra matches to certain chemical compounds [20–22].

In addition to the complex methodology available and integrative datasets for
metabolomics, the metabolic profile of biological specimens is affected by numerous exter-
nal factors such as diet, age, ethnicity, drugs, lifestyle or gut microbiota populations, and
these factors need to be either controlled or deconvoluted to obtain information specific to
health and disease [23].

2.2. Metabolic Profile in Health and Disease

Most intracellular metabolites produced are involved in the regulation of several bio-
chemical reactions, which together constitute the cellular metabolic signaling network that
is important in the cell regulation of growth, differentiation and death [23]. Metabolome
analysis is capable of qualitatively and quantitatively detecting the profile of all low-
molecular-mass metabolites (molecular mass less than 1000 Daltons–Da) present in cells
and/or secretions that participate in metabolic reactions and intermediate compounds.
Metabolic pathways can interact and overlap in a manner where ~3000–5000 metabolites
may be detected from a single sample. There are endogenous metabolites such as lipids,
small peptides, amino acids, organic acids, vitamins, carbohydrates, thiols and nucleic
acids; or from an exogenous source as drugs, environmental contaminants, food additives,
toxins and other xenobiotics [23,24]. Since metabolites are products of cell systems, many
conditions are associated with a decrease/increase in particular metabolites, in a way that
metabolic routes and their products are widely investigated to establish a link between
the disease and metabolic profiles [24–31]. Choline and trimethylamine oxides (TMAOs),
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products of gut metabolism, have been implicated in studies due to their relation with CVD
and metabolic modulation (Table 1) [32–40]. Furthermore, increases in branched-chain
amino acids (BCAA’s) are observed the inflammatory state and are capable of promoting
the increase in pro-inflammatory cytokines such as IL-6 and TNF-α [41–43]. On the other
hand, the lack of key metabolites may present a serious repercussion on health, such as low
levels of glutamine, which is known as “the fuel of metabolism” and has been implicated as
a major source of energy in cells of the immune system [44–47]. Disturbances in glutamine
metabolism are related to tumor growth, cardiovascular problems and metabolic syn-
drome [27,45]. A list of the main metabolites involved in health/disease status is described
in Table 1.

Table 1. Metabolites most investigated to establish a linking between disease and the metabolic profile.

Metabolite Source Mechanism of Action Identified Condition References

TMAO
Gut microbial metabolism from

dietary choline and
phosphatidylcholine (lecithin)

Increase glucose tolerance, inhibits
hepatic insulin signaling and promotes

adipose tissue inflammation

Increase in chronic kidney
disease, type-2 diabetes
mellitus, atherosclerosis

[32–36]

BCAA’s Diet consumption of meat,
dairy and vegetables

Induced NADPH inflammation and
Akt/mTOR signaling, as well as

promoting pro-inflammatory cytokines
(IL-6, TNF) and blood of peripheral

mononuclear cells by diet

Increase in: maple syrup
urine disease,

heart, kidney and spleen
hypertrophy

type 2 diabetes

[41–43]

Glutamine Mainly synthesized by the GS
and hydrolyzed by GLS.

Promotes enterocyte proliferation,
regulates tight junction proteins,

suppresses pro-inflammatory signaling
pathways and protects cells against

apoptosis and cellular stresses during
normal and pathologic conditions

Trauma, sepsis, inflammatory
bowel diseases and

cardiovascular diseases
[44–47]

Succinate TCA

Stabilizes transcription factor HIF-1a in
tumors and in activated macrophages.

Stimulates dendritic cells via its
receptor succinate receptor1.

Peritonitis, cancer,
diabetic and metabolic
disease rodent models

[24,25,30,31]

Itaconate TCA
Targets on ATF3-IκBζ pathway in a

Nrf2-independent manner to mediate
the inflammatory response.

Reperfusion injury,
inflammatory disease and

bacterial infections
[26–29]

Oxylipins Oxygenation
PUFAs: AA and LA Activate PPARs or through GPCRs

Hyperlipidemia, hypertension,
thrombosis, hemostasis

and diabetes
[48–50]

SCFA Products of dietary fiber
metabolism by the gut microbiome

Activate FFA2 and FFA3 receptors
and GPR109A through the

inhibition of HDACs.

Salmonella infection, Eczema
and Alzheimer’s disease [51–53]

BA

BAs are synthesized in the
liver and released into the
gastrointestinal tract to aid

in lipid digestion

Suppressed the production of
LPS-induced inflammatory
cytokines in macrophages

Insulin resistance [54]

IDO Tryptophan products Toxic to T cells and induce
cell death by apoptosis

Alzheimer’s disease,
multiple sclerosis,

Huntington’s disease
and Human

Lymphocyte Antigen-G

[40,55–57]

FFA

Derived from
alpha-linolenic acid-omega-3-and

linoleic acid-omega-6 or
synthesized in the body.

Binding to cell-surface receptors
of the GPCR family and regulated

energy homeostasis indirectly
via hormonal signaling

Type-2 Diabetes
Colorectal cancer
Systemic Lupus
Erythematosus

[58,59]

Abbreviations: TMAO: choline and trimethylamine oxide; BCAA’S: branched-chain amino acids; TCA: tricar-
boxylic acid cycle; GLS: glutaminase; HIF-1a: hypoxia-inducible factor-1a; PUFAs: polyunsaturated fatty acids;
AA: arachidonic acids; LA: linoleic acids; FFA: activate free fatty acid receptors; GPR109A: G-protein-coupled
receptor 109A; HDACs: histone deacetylases; BA: bile acids; IDO: indoleamine 2,3-dioxygenase.

Recent studies have shown that microbial metabolites are emerging effectors me-
diating the role of microbiota on host immune responses and its interactions [60]. Gut
microbial metabolites contain a variety of molecules ranging from short-chain fatty acids
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(SCFAs) and vitamins to secondary bile acids and neurotransmitters, which act locally in
the intestine and remotely exert their diverse effects on other organs [61]. SCFAs have been
verified to participate in the regulation of innate immunity and antigen-specific adaptive
immunity [39,51–53]; they can promote the generation of peripheral regulatory T-cells and
suppress macrophage activation in an inflammatory response [62–64]. Therefore, many
immune-related inflammatory disorders, such as IBDs, diabetes mellitus, RA and systemic
lupus erythematosus (SLE), have been associated with altered gut microbiota [63,65,66].
In SLE, bile acids, including deoxycholic acid, GCA, isohyodeoxycholic acid and arachi-
donic acid, were significantly correlated with the SLEDAI score [54,67]. Increased levels
of primary bile acids, including cholic acid (CA), glycocholic acid (GCA), taurocholic acid
(TCA) and glycochenodeoxycholic acid (GCDCA), were also observed in feces from SLE
patients, and they showed power to predict the SLEDAI score [28,50,58,59]. RA, which
systematically affects the joints, has also been associated with microbiota-derived metabo-
lites, which may be potential targets for the treatment of RA due to modulatory effects
(Figure 1) [68–70].
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Figure 1. Potential role and mechanisms of action of gut microbiota metabolites in disease develop-
ment. Abbreviations: SLE: systemic lupus erythematosus; CKD: chronic kidney disease; MS: multiple
sclerosis; TCA: tricarboxylic acid; CRC: colorectal cancer; MSUD: maple syrup urine disease; IBD:
inflammatory bowel disease; CVD: cardiovascular diseases.

3. Metabolic Profile in RA

Metabolomics has been applied for a better understanding of the metabolic profile
in RA patients, which suffers from a lack of diagnostic and prognostic markers [71]. RA
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pathogenesis includes synovial hyperplasia and pannus formation, which consists of an
accumulation of macrophages and fibroblast-like synoviocytes (FLS) in the joint, which
results in enhanced invasiveness and the destruction of cartilage and bone [72]. The aggres-
sive phenotype of FLS can also be characterized by reduced contact inhibition, resistance
to apoptosis, increased migration and increased ability to invade periarticular tissues [73].
These activated cells produce several mediators that induce angiogenesis, cell growth
and the activation of immune cells contributing to the inflammatory environment and
the production of local matrix metalloproteases (MMPs) that degrade the extracellular
matrix and contribute to cartilage destruction [74]. Lately, several studies have shown that
FLS activation and subsequent joint damage are associated with an altered metabolism
represented by changes in four major classes of macromolecules: carbohydrates, proteins,
lipids and nucleic acids (Figure 2). Due to the disrupted metabolism, several studies start
to use synovial fluids from RA patients as a therapeutically target; 130 proteins were
found to be uniquely present in synovial fluid and not observed in circulation (serum or
plasma), which can be associated with metabolic changes and the joint environment [75].
Carlson et al. (2021) reported 30 metabolites such as putative RA biomarkers including
various phospholipids, diol and its derivatives; arsonoacetate, oleananoic acid acetate;
docosahexaenoic acid methyl ester; and linolenic acid and eicosatrienoic acid derivatives.
Correspondingly, Wang et al. (2021) suggested disturbed pyrimidine metabolism, purine
metabolism, fatty acid biosynthesis and unsaturated fatty acid biosynthesis, as well as
increased naringenin levels, which are characteristics of the metabolism of RA [76].
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Figure 2. Metabolites commonly found in RA samples involved in the disease pathogenesis. Ab-
breviations: PPP: pentose phosphate pathway; TCA: tricarboxylic acid cycle; PP: pirimidine and
purine; AAs: aminoacids; ROS: reactive species of oxygen; NO: nitric oxide; FAO: fatty acid oxida-
tion; FAS: fatty acid synthesis; NEFA: nonesterified Fatty Acids; EPA: eicosapentaenoic acid; DHA:
docosahexaenoic acid.
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As the final response to disease pathogenesis, metabolites may complement and
indicate how RA patients respond to the environment, nutrition, disease progression, in-
fections, exposure to xenobiotic agents, pharmacological treatment and other influences.
Metabolomic studies of body fluids described that immune-mediated inflammatory
diseases such as RA are associated with metabolic disruption, particularly for an in-
crease in bioenergetic and biosynthetic demands to sustain chronic inflammation in the
damaged tissue [77].

Comparing serum, urine and synovial fluids of healthy individuals and RA patients,
the metabolic products of TCA, Free Fatty Acids (FFA), polyunsaturated fatty acids
(PUFA), Prostaglandins, Thromboxanes and Leukotrienes, SCFA and Bile Acids (BA) are
commonly increased in RA (Table 2) [40,48–50,54–57]. Moroever, the combined concen-
tration parameter calculated as [aspartic acid] + [threonine] + [tryptophan] − [histidine]
− [phenylalanine] presented a strong association with pain joint count, swollen joint
count and DAS [78,79].

3.1. Lipidomic Profile in AR

Lipidomics is a large-scale study of pathways of cellular lipids in biological systems
and is a subset of metabolome studies. During the last decade, lipids have attracted
considerable attention as their role in the development, and the follow-up of diseases
became increasingly recognized, particularly because lipid species such as prostaglandins
(PG) and lipid mediators play crucial roles in the tight regulation of inflammation by acting
as signaling molecules in the production of cytokines and chemokines [80]. Recent studies
have investigated lipid mediators generated by cyclooxygenases or lipoxygenases during
the preclinical stage of RA as well as the role of PG, including PGE2, and leukotrienes, such
as LTB4, in the onset and development of arthritic diseases [1,81–83]. Therefore, changes
in lipid mediators can be observed before disease manifestation [82,83]. For example,
5-hydroxyeicosatetraenoic acid (5-HETE) is elevated in the preclinical phase, while ω-3
fatty acid levels decreased in pre-RA subjects and short-chain carnitine levels decreased in
serum samples obtained prior to RA onset [84,85].

In RA, synovial fluid-altered lysophosphatidylcholine/phosphatidylcholine ratios, as
well as higher amounts of cholesterol, cholesterol esters and changes in the phospholipid
composition, have been reported (Figure 3) [86–90].

Seventy different lipid components from distinct lipid classes in synovial fluid have
been identified and lipoxin A4 and resolvin D5 and 5S,12S-diHETE are major markers
of lipoxygenase pathway interactions in the samples of RA patients [91]. Some lipids
perturbations may be seen in the in the serum of active RA and be distinct from sera of
sustained remission patients; moreover, a global lipidomic analysis showed that subclasses
of lysophosphatidylcholine, phosphatidylcholine, ether-linked phosphatidylethanolamine
and sphingomyelin were correlated with RA activity and reflected treatment responses to
anti-rheumatic drugs when monitored serially and could be potential biomarker to predict
the evolution of preclinical to clinical disease stages [92].

Thus, lipidome analysis in RA could facilitate the assessment of disease activity and
treatment outcomes allowing a more accurate analysis when combined with key metabolites
of patient body fluids.
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3.2. Metabolites in the Synovial Fluid

The joint is one of the major sites of inflammation in RA; it is lined with a thin, soft-
tissue membrane called the synovial membrane that ensures the structural integrity of
a normally organized synovial lining and the resident cells secretes hyaluronic acid and
lubricin, two important constituents of synovial fluid that are responsible for lubricating
the joint [93–95]. There are two types of resident cells in the synovial membrane: (1) FLS:
mesenchymal-derived cells, which assemble fibroblasts that are known by UDP-glucose
6-dehydrogenase expression and CD55, a complement decay-accelerating factor [96]; and
(2) synovial tissue macrophages (STM): a mixed population of local prenatal cells and those
differentiated from circulating monocytes [97]. STM and FLS from the synovium are capable
of changing their behavior toward the production of enzymes, which are responsible for
cartilage and bone destruction in RA [95]. During the development of the disease, FLS
and STM have metabolic changes; they shift from aerobic oxidative phosphorylation to a
glycolytic state as the inflammation progresses, in which less adenosine triphosphate (ATP)
is produced per cycle, but at a faster rate, to be able to meet energy requirements needed by
highly active cells. Metabolites related to the glycolytic pathway, such as succinate, lactate
and itaconate, have been detected in several studies in animal models, as well as in human
metabolomics studies [98–104] (Table 2).
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Table 2. Metabolites associated with RA pathogenesis.

Sample Sample Size (n) Method Applied Outcome Reference

Synovial Fluid 48 GC/TOF MS

Positive correlation with DAS-28ES: radipate,
fucose, glycocyamine, indole-3-lactate, isothreonate,

phenylalanine and tryptophan asparagine
Negative correlation with DAS-28ESR: citrate,

cyano-/-alanine, oxoproline and ơ-alanine

[81]

Synovial Fluid 38 GC/TOF MS

Succinate, octadecanol, asparagine, terephthalate,
salicylaldehyde, glutamine, citrulline, tyrosine,
uracil, lysine, ribitol, tryptophan, xylose, ribose,

isopalmitic acid, glycerol, myristic acid, palmitoleic
acid, hydroxylamine and ethanolamine were
validated as putative biomarkers for RA and

discriminated from non-RA diseases

[84]

Synovial Fluid 3 LC-MS

Upregulated in RA: ibuprofen metabolism,
glucocorticoid and mineralocorticoid metabolism,

alpha-linolenic acid metabolism and
steroid hormone biosynthesis.

Downregulated in RA: purine and
pyrimidine metabolism, arginine and proline

metabolism; citrulline-nitric oxide cycle
and glutathione metabolism.

[48,73]

Synovial Fluid 20 LC-MS

Activation of pyrimidine metabolism and
purine metabolism, suppression of

fatty acid biosynthesis and unsaturated
fatty acid biosynthesis in RA

[105]

Blood 25 GC-MS

Decrease in histidine and threonic acid, methionine,
asparagine, cholesterol in RA patients;

Increase in glyceric acid, D-ribofuranose and
hypoxanthine in RA patients

[82]

Plasma 47 1H NMR
spectroscopy

Cholesterol, lactate, acetylated glycoprotein, and
lipid signatures were found to be possible

biomarkers for disease severity
[85]

Plasma 64 UPLC-MS/MS

Acylcarnitine metabolites are increase in
lower disease activity. Glucuronate and

hypoxanthin were found to be significantly
increased in higher disease activity

[95]

Plasma 20 GC-MS L-cysteine, citric acid and L-glutamine [92]

Serum 53 indirect calorimetry Increases in metabolic rate in RA patients smokers
compared to non-smokers patients [83]

Serum 27
GC/TOF MS

and
UPLC−QTOF MS

Increases in homoserine, 4,8-dimethylnonanoyl
carnitine, glyceraldehyde, lactic acid,

dihydroxyfumaric acid and aspartic acid are
shared between 4 types of arthritis

[87]

Serum 58 Spectrophotometer

RA patients presented methyl-histidine
and hydroxyisocaproic acid, while

hexose-phosphate and fructose-6-phosphate
distinguished high ADA from low ADA

[94]

Serum 124 LC-MS/MS

Serum levels of NEFA (palmitic, stearic, palmitoleic,
oleic, linoleic, γ-linoleic, AA, linolenic, EPA and

docosahexaenoic–DHA). The NEFA profile in RA
patients is associated with clinical characteristics of

aggressive disease and enhanced Th1 response.

[88]
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Table 2. Cont.

Sample Sample Size (n) Method Applied Outcome Reference

Serum 33 GC-MS

Disturbances of leucine, phenylalanine,
pyroglutamate, serine, isoleucine, methionine,

threonine, proline and valine), fatty acids
(palmitelaidate, oleate, trans-9-octadecenoate,
cis-5,8,11-eicosatrienoate, docosahexaenoate,

2-ketoisocaproate and 3-methyl-2-oxovalerate) and
carbohydrates (mannose, ribose, scyllo-inositol,

glycerol and 1,5-anhydrosorbitol)

[89]

Serum 20 1H-NMR

Valine, isoleucine, lactate, alanine, creatinine,
GPC APC and histidine relative levels were lower

in RA, whereas 3-hydroxyisobutyrate, acetate,
NAC, acetoacetate and acetone relative levels were

higher compared with healthy controls.

[90]

Serum 30 LC-MS

4-methoxyphenylacetic acid, glutamic acid,
L-leucine, L-phenylalanine, L-tryptophan,

L-proline, glyceraldehyde and fumaric acid
are possible biomarkers for RA

[91]

Serum and urine Serum (n = 126)
and urine (n = 83) NMR

Increased glycolysis, perturbation in the citrate
cycle, oxidative stress, protein catabolism and

increased urea cycle activity are present in newly
presenting RA patients with elevated CRP.

[93]

Urine 1400 1H-NMR Lower levels of citrate were found in
urine samples on RA patients [86]

Abbreviations: UPLC−QTOF MS: liquid chromatography quadrupole-time-of-flight mass spectrometry; GC/TOF
MS: gas chromatography/time-of-flight mass spectrometry; BCAA: branched-chain amino acids; 1H NMR: UPLC-
Q-TOF-MS: ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry;
1H-NMR: one-dimensional (1-D) 1H spectra nuclear magnetic resonance; NEFA: nonesterified Fatty Acids; EPA:
eicosapentaenoic acid; AA: arachdonic Acid; DHA: docosahexaenoic acid.

Yang et al. (2015) described the synovial fluid in RA patients with a decrease in
isoleucine, valine, methionine, threonine, alanine and histidine levels, which could be a
disturbance in glycolysis, TCA cycle, amino acids and lipid metabolism [100]. In addition,
a couple of studies described the metabolome profile of FLS with profound metabolic
differences in a late stage of RA when compared with osteoarthritis (OA) [106]. In FLS, an
increased expression of nicotinamide phosphoribosyltransferase (NAMPT), which main-
tains adenine dinucleotide and nicotinamide (NAD) levels under stress conditions, was
found in RA patients and mice with collagen-induced arthritis [107–109].

Another report showed that platelet-derived growth factor (PDGF) increases glucose
metabolism and glucose transporter 1 expression in synoviocytes, and by inhibiting glucose
metabolism, there is a decrease in inflammatory cytokine secretion, proliferation and migra-
tion of FLS [110]. Choline, responsible for catalyzing the phosphatidylcholine biosynthesis,
is highly expressed in RA synovium and is induced by stimulation with TNF or PDGF [111].
The inhibition of choline kinase represses the aggressive behavior of rheumatoid FLS and
attenuates disease in mice with serum transfer arthritis [112].

Lactate is the end product of glycolysis, a metabolic pathway that is upregulated in FLS
and activated macrophages. The high concentrations of lactic acid are found in the blood
and synovial fluids of inflamed joints in patients with RA. Studies have shown that lactate
promotes the aggressive phenotype of FLS, the pro-inflammatory properties of macrophages
stimulate IL-17 secretion by CD4+ T cells and at the same time decreases CD4+ T migration,
which is related to the maintenance of a chronic inflammatory infiltrate [113]. The TCA cycle is
widely studied in RA pathogenesis, including products such as succinate that activate NLRP3
inflammasome-inducing IL-1β secretion by synovial fibroblasts in a mouse model of RA and
Itaconate, a TCA metabolite present high levels in an animal model of RA [114,115].
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Despite the advances in synovial metabolic profile, the joint requires invasive techniques,
which is uncomfortable for patients. Thus, blood and urine from patients with RA are often
used in research to associate clinical parameters with the systemic effects of the disease.

3.3. Metabolites in Blood, Plasma and Serum of RA Patients

Lipids, amino acids and carbohydrates are the most abundant metabolites in plasma
and blood. Blood samples are recognized as a good resource to obtain information about
the disease status in RA patients [102]. Madsen et al., 2011 found a strong association
with compounds such as glyceric acid, D-ribofuranose and hypoxanthine and a positive
association with higher rates of nucleotide synthesis in the serum of RA patients; however,
these data remain speculative [116]. Surowicec et al. (2016) demonstrated that meaningful
disturbances in metabolic pathways might be involved in pre-symptomatic individuals’
years before the onset of RA [115]. Later, similar studies identified decreased levels of
amino acids and glucose; increased levels of fatty acids and cholesterol, which were pri-
marily associated with glycolytic pathway, fatty acid and amino acid metabolism; and
other related pathways including TCA and urea cycles (Table 2) [103,117,118]. In this sense,
it was found that serum metabolites are differentially expressed in rheumatic diseases
from healthy controls constituting a unique metabolic signature of each type of arthri-
tis, which may be used as biomarkers for diagnosis and patient stratification [119,120].
Among the metabolites identified, homoserine, 4,8-dimethylnonanoyl carnitine, glycer-
aldehyde, lactic acid, dihydroxyfumaric acid and aspartic acid were possible candidates as
biomarkers shared by four types of arthritis (rheumatoid arthritis, osteoarthritis, ankylos-
ing arthritis and gout) compared with healthy controls [120] (Table 2). In RA, adenosine
deaminase (ADA) has been reported as a potential biomarker since patients presented
different patterns of metabolic enzymes according to ADA concentration [121]. Thus, 4-
methoxyphenylacetic acid, glutamate, L-leucine, L-phenylalanine, L-tryptophan, L-proline,
glyceraldehyde and fumaric acid are also considered good candidates for biomarkers in
serum samples (Table 2) [101,118,122].

In addition to the potential of a metabolic fingerprint in RA, metabolites in plasma
have been linked to disease status, since acylcarnitine metabolites increase in lower disease
activity and glucuronate, and hypoxanthine increased in higher disease activity [95]. As
blood samples are beginning to be a powerful tool for metabolome analysis in RA patients,
a study also provided a candidate biomarker panel with three metabolites in plasma
samples, which may be a more filtrate technique in a metabolic profile for complement
with transcriptome analysis (Table 2) [119].

3.4. Metabolites in Urine Samples of RA Patients

Since many metabolites are generated in trade-gastrointestinal processes during nor-
mal metabolism, urine and fecal samples are rich in metabolites from many signaling
pathways in the human body. Urine, in particular, is an interesting sample source since its
collection is very simple; it has a direct relationship with blood composition, which strongly
supports the hypothesis that different molecular species are present in both biological fluids
such as metabolites, nucleic acids or proteins and for which their variations are associated
with pathological features [123]. Thus, blood and urine samples of RA patients presented
similar disturbances in glycolysis, citrate cycle, oxidative stress, protein catabolism and
urea cycle activity [104].

Twenty-eight significant associations have been reported between urine metabolite
levels and disease diagnosis and three significant metabolite associations were reported with
disease activity [124]. A cross-sectional study in urine samples showed that some metabolites
from the TCA cycle such as citrate and fumarate were elevated in women, while carnitine,
acetylcarnitine, acetone and creatinine were higher in men [125]. Moreover, lower levels of
citrate in urine have been associated with inflammatory diseases such as RA [120,124].

In addition to a distinct urine metabolic profile that has been associated with RA
pathogenesis, there are a few studies using urine samples, so it may be a potential target
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for a biomarker search. However, therapeutic drugs might also modify the circulating
metabolomic profile and play a role in RA pathogenesis.

3.5. Metabolites as Predictors of Disease Activity

As discussed above, there are several metabolic pathways disrupted in inflamma-
tory diseases; however, there is a lack of information about metabolism products as
predictor or disease activity before/after different therapies [72]. The metabolic potential
to predict outcomes was emphasized in a study that demonstrated that some endogenous
metabolites may discriminate patients with regard to different disease activity [22] or
even predict the response to a particular treatment [103]. Other studies attempted to use
metabolomic technologies on patient-derived biospecimens for classifying patients with
RA according to their disease activity categories [122,126,127]. Sasaki et al. (2019) iden-
tified metabolites in plasma and urine, respectively, that were differentially abundant
between active RA (DAS28-ESR ≥ 3.2) and inactive RA (DAS28-ESR < 3.2) [128]. In addi-
tion, metabolites found in plasma were identified as circulating pro-/anti-inflammatory
metabolic signatures that reflect disease activity and inflammatory status [128,129].
Ahn et al. (2020) reported 12 metabolites that may reflect disease activity and monitor
joint damage [130]. These findings suggest that a wider application of metabolomic
profiling—coupled with advanced analytics [61]—can lead to the discovery of novel and
predictive biomarkers that complement current standard laboratory tests for assessing
disease activity and therapeutics [107,131].

4. Therapeutics of RA and Metabolic Profile

The metabolic profile of RA patients changes considerably as the course of treatment is
replaced, making the search for a biomarker even more complex [132]. The understanding
of metabolic changes in RA may help to clarify disease pathogenesis, a very difficult
task once therapeutics can be potentially driven by abnormal values or increasing anti-
inflammatory metabolites. TNF is a potent pro-inflammatory cytokine that plays a key role
in cellular metabolism, including glucose and lipid metabolism (Figure 3) [133]; therefore,
changes in the metabolic profile are expected after the administration of its inhibitors [134].

The first study that evaluated changes in the metabolic profile in RA after treatment
with TNFi (etanercept and infliximab) described increases in hippuric acid, citrate and
lactic acid related to infliximab use, while increases in choline, phenylacetic acid, urea,
creatine and methylamine were observed after treatment with etanercept [135]. TNF antag-
onist therapy also presented a link between urine metabolites and disease activity from
responders and non-responders [136]; moreover, it was found a metabolite signature from
carbohydrate derivatives, which may distinguish responsiveness from non-responsive pa-
tients using TNF inhibitors (Table 3) [134,137,138]. Rituximab administration, an anti-CD20
antibody, also seems to differentiate drug response by downregulated key lipids and amino
acids in serum samples [134].

The different responsiveness according to the therapeutic is very often related to a
change in the metabolite pattern. The metabolites of early RA patients were associated
with sustained, drug-free remission (DAS28 < 2.6) after tocilizumab (TCZ)-or methotrex-
ate (MTX) therapies [127]. A study using TCZ found that increased concentrations of
3-hydroxybutyrate and phenylalanine can improve the ability to predict TCZ respon-
ders [140]. In addition, TCZ treatment may modulate the arachidonic acid metabolism
affecting the IL-6 signaling of this pathway [125]. Tryptophan, which is a substrate for
the enzyme indoleamine-2,3-dioxygenase (IDO2), has been shown to be necessary for
the activation of CD4+ T cells and autoantibodies production and may play a role in the
development of mice models of arthritis [98]. Monitoring threonine and tryptophan serum
levels allowed distinguishing RA patients depending on the therapy that was being used;
for example, a decrease in tryptophan levels may be reversed by the addition of methotrex-
ate (MTX) [139]. Artacho et al. (2020) reported associations of the gut microbiome and
their genes with future clinical responses, including orthologs related to purine and MTX
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metabolism [144]. Thus, it has also been reported that RA patients treated with MTX pre-
sented changes in the plasma metabolic profile after the start of the treatment by bringing
taurine, aspartate, alanine, lactic acid, adenosine and guanine back to normal levels [145].

Table 3. Association of metabolites and the therapeutics of rheumatoid arthritis.

Source Treatment Use Method Applied Metabolites Reference

Urine TNFi GC/TOF MS

Histamine, glutamine, phenylacetic acid,
xanthine, xanthurenic acid and creatinine

were upregulated in urine samples from patients
who had a good response to TNF therapy, while
ethanolamine, hydroxyphenylpyruvic acid and

phosphocreatine were downregulated.

[136]

Serum
DMARDS: MTX
or leflunomide;

bDMARDS: TNFi
HPLC-MS/MS

Threonine: Distinction of RA patients
treated with MTX/leflunomide vs.

infliximab/adalimumab/etanercept/tocilizumab
and infliximab/adalimumab/etanercept/

tocilizumab-prednisolone/NSAID
Tryptophan: differentiated RA patients treated

with methotrexate/leflunomide- vs.
infliximab/adalimumab/etanercept/tocilizumab.

[139]

Serum Etanercept 1H NMR
Increase in isoleucine, leucine, valine, alanine, glutamine,

tyrosine and glucose levels and a decrease in
3-hydroxybutyrate levels N Etanercept good responders

[135]

Blood Infliximab, abatacept
or etanercept.

RP-UHPLC
ESI-QTOF-MS

Two different metabolic profiles splitting good responders
from non-responders: Carbohydrate derivatives

(D-glucose, D-fructose, sucrose and maltose)
[137]

Plasma Tocilizumab H-NMR
Concentrations of 3-hydroxybutyrate and

phenylalanine improved the ability to
specifically predict TCZ responders

[140]

Serum Rituximab NMR-MS

Phosphatidylethanolamines, phosphatidyserines
and phosphatidylglycerols were downregulated
in responders; 37 lipids were different between

responder and non-responders.

[141]

Serum TNFi CE-TOFMS

Association with TNFi: Betonicine, glycerol
3-phosphate, N-acetylalanine, hexanoic acid and taurine

are associated with the response to TNFi in RA.
Associated with Abatacept: Citric acid, quinic

acid and 3-aminobutyric acid.

[138]

Serum Tocilizumab MS Changes in arachidonic acid metabolism [127]

Serum Etanercept/adalimumab 1H NMR

3-hydroxyisobutyrate, lysine, L5, acetoacetate,
creatine, GPC+APC, histidine and phenylalanine

were elevated in RA, whereas leucine, acetate,
betaine and formate were lower.

[134]

Serum Tofacitinib/baricitinib 1H-NMR
Levels of omega-3 fatty acids DHA were

increased in JAKi-treated patients. DHA was
associated with decreases in pain.

[142]

Serum GC LC-MS/MS Elevated lysophosphatidylcholines and
lysophosphatidylethanolamines in women. [143]

Abbreviations: GC/TOF MS: gas chromatography/time-of-flight mass spectrometry; NMR: nuclear magnetic
resonance; LC-MS/MS: liquid chromatography tandem mass spectrometry; MTX: methotrexate; NSAID: TNFi:
TNF-α inhibitors; CE-TOFMS: capillary electrophoresis-time-of-flight mass spectrometry; DHA: docosahexaenoic
acid; JAK: Janus kinase inhibitors; UHPLC-HRMS: ultra-high performance liquid chromatography combined with
high-resolution mass spectrometry. GC: glucocorticoids; DMARDS: disease-modifying antirheumatic drugs; b-
DMARDS: biological disease-modifying antirheumatic drugs; RP-UHPLC: reverse-phase liquid chromatography–
electrospray; ESI-QTOF-MS: electrospray QToF mass spectrometry.

Another major class of therapy currently used in RA patients is oral glucocorticoids
(GC). GC inhibits phospholipase A, a key enzyme that hydrolyzes membrane phospholipids
in inflammatory tissues. The effect of GC on phospholipase likely modifies the phospho-
lipid profile and may be related to cardiovascular risks in RA [146]. Fu et al. analyzed
GC therapy on serum polar lipids and observed an increase in lysophosphatidylcholines
(LPC) and lysophosphatidylethanolamine (LPE) in female RA patients [143]. Dimethylargi-



Metabolites 2022, 12, 394 14 of 22

nine levels were lower in patients on chronic GC use compared with non-glucocorticoids
users, suggesting that long-term GC treatments improved endothelial function and induce
cardiovascular protective effects by modulating arginine metabolism [143].

In addition to monitoring responsiveness during treatment and clinical severity, metabo-
lite changes have been also linked to pain. Pain, a dominant component of the patient-
reported outcome, is present in nearly one-third of patients after 21 months of combination
therapy [147]. Given the increasingly acknowledged implication of the JAK/STAT pathway
and its blocking agents (tofacitinib/baricitinib) in the modulation of pain and nociceptive
response, the JAK/STAT pathway and nociceptive cytokine signaling in rheumatoid arthritis
and psoriatic arthritis are observed [147]. On this issue, tofacitinib and baracitinib, JAK
inhibitors, demonstrated increased levels of omega-3 fatty acids and docosahexaenoic acid
(DHA) in treated patients, which were associated with a significant decrease in pain [142].

5. Metabolites and Comorbidities Associated with RA

Extra-articular manifestations and comorbidities are frequently observed in RA, lead-
ing to increased morbidity and premature mortality. The most common comorbidities
include CVD, gastrointestinal, renal and pulmonary disease [131]. CVD was already associ-
ated with elevated levels of plasma dimethylarginine and increased arginase activity as
potential indicators of cardiovascular risk [148]. In interstitial lung disease (ILD) problems
associated with RA were found where the serum levels of decanoic acid and morpholine
were decreased, and glycerol increased [149]. Thus, metabolites analysis may clarify several
extra-articular manifestations of RA.

Changes in body composition, such as reduced fat-free mass with stable or increased
fat mass (FM) are usually observed in RA patients. Low muscle strength associated with
a reduction in muscle mass and size is a clinical manifestation called sarcopenia and the
reduction in lean mass with maintenance or increase in fat mass is a set of alterations is
called rheumatoid cachexia (RC) [9]. In a recent systematic review with a meta-analysis
conducted by our group, we estimated a prevalence of RC of 15–32%, and sarcopenia was
reported to occur in 28–37% of patients with RA [7]. Both RC and sarcopenia have been
associated with chronic inflammation and disease severity [8]. Unfortunately, a lack of
precise assessment of skeletal muscle status and its changes over time potentially hinders
proper diagnosis and treatment of sarcopenia and RC [7]. Several methods are currently
used to estimate muscle mass, including anthropometry (e.g., body mass index), bioelec-
trical impedance analysis (BIA), imaging techniques (e.g., computed tomography), NMR
imaging, dual-energy X-ray absorptiometry (DXA), ultrasound and, more recently, the
D3–creatine dilution method [6]. However, the diagnostic performance of these methods is
limited by high cost and low availability [129]. Thus, it is important to search for biomark-
ers related to skeletal muscle mass to provide the attending physician with viable options
to predict the development, progression and staging of skeletal muscle wasting during
routine follow-up of RA patients. Recently, specific metabolites have been implicated with
muscle wasting and physical impairment in different pathological conditions, which may
be a new field to explore simple and less invasive methods for the management of disease
and comorbidities [13,150].

Metabolomic analysis based on NMR spectroscopy of biofluids may be used to assess
skeletal muscle mass, and a urine-based approach would provide an easy, non-invasive
collection method and a metabolite-rich source [150]. On this matter, higher fatigue scores
in RA patients were associated with a metabolic pattern characterized by the downregu-
lation of metabolites from the urea cycle, fatty acids, tocopherols, aromatic amino acids
and hypoxanthine [148].

There are a few studies that identified metabolites as biomarkers of skeletal muscle loss
in RA patients. Our group has previously demonstrated that urine metabolomic profiles
were associated with muscle wasting in the collagen-induced arthritis (CIA) model [150].
In this study, approximately 100 metabolites were identified and showed differences
when comparing collagen-induced arthritis and control groups. In addition, twenty-eight
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metabolites were muscle-associated (Figure 4). In this sense, the findings identified by
Alabarse et al. (2021) showed that muscle metabolic alterations may be detected in the
urine of mice with CIA, and these results may allow greater validation in the urine of RA
patients [150]. These findings suggest that these metabolites should be tested as biomarkers
for the diagnosis, treatment and follow-up of muscle wasting related to RA.
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6. Conclusions

Metabolomics is a powerful tool that can trace potential biomarkers and provide
new insight into complex diseases such as AR. In the last decade, the metabolomics field
has advanced toward better, more accurate analyses, such as targeted and untargeted
approaches, and sample recovery by NMR methods, which make it possible the reuse of
unique samples. Thus, metabolomics can be used to reveal disease-related changes before
the onset of clinical findings, monitor disease activity and predict prognosis and drug
responses. In this sense, metabolomics analyses of synovial fluid, blood and urine from
RA patients have highlighted a set of metabolites as potential biomarkers. It is important
to mention the relevance of TMAO and TCA cycle products in metabolic modulation
during RA development. Moreover, a combined analysis with lipidomics search, especially
cholesterol, FFAs and PUFAs, may provide important information before disease onset or
preclinical disease, a stage in which several strategies for preventing full clinical disease
development are currently being tested [1,81–83]. Synovial fluid analysis of lipids in
RA patients opens alternatives to target key lipids as a therapeutic strategy without the
immunosuppressive aspect of current treatments.

Several studies using TNF inhibitors observed tryptophan, valine, leucine, lysine,
creatinine and alanine modulation, whereas JAK/STAT inhibitors may modulate exclu-
sively fatty acids. Regarding MTX treatment, the gold standard for RA, the metabolic
profile analysis was able to separate responders and non-responders during the course of
treatment; the same was found in patients using TCZ and rituximab.

In terms of prognosis, little is known about metabolic modulation during a set of
comorbidities, such as cardiovascular risk, lung interstitial disease or muscle wasting.
There is an association between higher fatigue and an increase in urea cycle, fatty acids,
tocopherols, aromatic amino acids and hypoxanthine in RA patients and, in the CIA model,
muscle wasting was associated with a pattern of 100 metabolites present in the mice urine,
indicating a potential for new biomarkers for this complication. As described, many studies
have identified metabolites as biomarkers candidates for AR in several aspects of the
disease, but there is a lack of evidence about disease-specific properties and the association
with the metabolic profile. Only a few studies have combined omics approaches with
current diagnostic tools, and validation studies are critically needed to confirm the identity
and generality of putative biomarkers. Therefore, in the era of omics approaches, this new
field of precise medicine is just beginning, and it has great potential of providing new
evidence for the development and follow-up of RA and other autoimmune diseases.
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