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Abstract: Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which
asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy
adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns
causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS
screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless,
intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of
lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the
expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed
some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB,
enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good
candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and
specificity. We assume that they can be used as an alternative diagnostic method to the presently
recommended bacteriological cultivation and MALDI.

Keywords: Streptococcus agalactiae; Group B Streptococcus; immunogenic proteins; immunodiagnos-
tics; proteomics; newborn infections; GBS carriage; biomarkers; innovative immunoassays

1. Introduction

Streptococcus agalactiae (Group B Streptococcus, GBS) is a β-hemolytic, Gram-positive
bacterium, which colonizes the gastrointestinal and genitourinary tract of up to 30% of
healthy adults [1]. Each year, over 21 million pregnant women worldwide are colonized
with GBS, which includes approximately 18% of pregnancies [2]. This opportunistic
pathogen can cause a life-threatening infection in newborns, which most often takes the
form of sepsis, pneumonia and meningitis, and the first two are more common for early
onset GBS disease (EOD, EOGBSD). EOD appears in the first week of life, however, the
vast majority of cases concerns the first 24 h and it is a consequence of an infection acquired
during natural childbirth from a GBS-colonized mother [1]. In the early 1970s, mortality
in this group was very high, and even reached 55% in newborns diagnosed with GBS
infection [3].

In response to this threat, in the 1990s, the American College of Obstetricians and
Gynecologists (ACOG) and Centers for Disease Control and Prevention (CDC) developed
guidelines to minimize this dangerous phenomenon, which led to a reduction in morbidity
in newborns of over 80%, and presently the incidence of the disease caused by GBS
reaches 0.23/1000 live births [4–6]. It included screening recommendations for women
between the 36th (36-0/7) and 37th (37-0/7) week of pregnancy, by taking swabs from
the vaginal introitus and the anal sphincter, followed by microbial cultivation on the
appropriate growth medium [4]. This method is not flawless due to its time-consuming
nature, as the waiting time for the results is up to 7 days. The results themselves can also
be ambiguous due to the often-difficult differentiation of GBS from other beta streptococci

Pathogens 2022, 11, 43. https://doi.org/10.3390/pathogens11010043 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens11010043
https://doi.org/10.3390/pathogens11010043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0001-9937-5301
https://doi.org/10.3390/pathogens11010043
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens11010043?type=check_update&version=1


Pathogens 2022, 11, 43 2 of 20

using phenotypic methods. It is a severe limitation especially in the case of advanced
preterm labor, before the 36th week of pregnancy, i.e., prior to the recommended carrier
screening test. Therefore, as an alternative for cultivation methods, in the latest CDC
guidelines, mass spectrometry MALDI is also recommended for GBS detection. The main
advantage of this method is a reduction in the waiting time for results as well as the
possibility to distinguish Streptococcus agalactiae from other streptococci: S. halichoeri or
S. pseudoporcinus, whose pathogenic role in newborn infection is not known [4]. When
a positive result from a pregnant woman is obtained and GBS is detected in the studied
specimen, introducing intrapartum antibiotic prophylaxis (IAP) is recommended. This
procedure significantly reduced the morbidity in the case of early onset disease, however,
IAP has not reduced the incidence of late onset disease, which may appear between the 7th
and 90th day of life [7]. Additionally, the side effect of the comprehensive use of antibiotics
is that is leads to the expansion of the adverse phenomenon of bacterial resistance to
antibiotic therapy [4]. Moreover, this solution led to an increase in the rate of infections
caused by Gram-negative bacteria [8]. As an answer to the limitations mentioned above
and the unfavorable phenomena, scientists conduct extensive research to find alternative
methods for GBS carriage detection in pregnant women. Novel diagnostic techniques
should, among others, provide rapid and unambiguous results. An immunodiagnostic
assay (i.e., ELISA) based on highly immunogenic and specific bacterial proteins (antigens)
for detection of anti-GBS antibodies is being considered as a good candidate for innovative
GBS carriage diagnostics. In our paper, we aimed to review some immunogenic proteins
representative of Streptococcus agalactiae, which demonstrate features qualifying them as
potential biomarkers in an innovative immunodiagnostic assay for the detection of GBS
carriage and/or infection in pregnant women. It is worth underlining that such an assay
could be useful also in the diagnostic of GBS infection in adults, in which this bacterium
constitutes a growing clinical problem, taking the form of urinary tracts infection (UTI),
sepsis, septic arthritis, meningitis and it is also isolated from diabetic foot/ulcer [9].

2. Main Text

The first immunological research on Streptococcus agalactiae was carried out by Profes-
sor Rebecca Lancefield who, in the 1930s, classified hemolytic streptococci into sera groups,
according to the differences in the polysaccharide structure present in the bacterial cell
wall. Thus, Streptococcus agalactiae was qualified into Group B, and it is described as GBS
(Group B Streptococcus) [10]. Next, within group B, strains, according to the differences in
the capsular polysaccharide (CPS) structure, were divided into three serotypes: I, II and
III [10,11]. Currently, ten GBS serotypes: Ia, Ib, II-IX are distinguished, and their distribu-
tion is related to, among others, infection type, latitude, and age [2]. Since the 1970s, the
number of publications describing specific GBS immunogenic molecules, with particular
emphasis on immunogenic proteins successively grows from one year to another (source:
https://pubmed.ncbi.nlm.nih.gov/ after entering the phrase: “immunogenic Streptococcus
agalactiae proteins”, accessed on: 16 July 2021). Below we reviewed selected immuno-
genic Streptococcus agalactiae proteins, which can be considered as detective antigens in
immunodiagnostic assay.

2.1. Alpha-like Protein

The best-known group of GBS proteins is the Alpha-like protein family (Alp), which
include the following members: αC, Alp 1 (epsilon), Alp 2, Alp 3, Alp 4, and Rib. Alp
proteins are conservative, chimeric and form mosaic structures on the GBS surface [12].
These surface-anchored proteins play an important role in Streptococcus agalactiae viru-
lence, by supporting bacterial cell adherence to infected cells of the host (Figure 1). For
example, αC protein mediates GBS invasion of cervical epithelial cells by interaction with
glycosaminoglycan [13].

https://pubmed.ncbi.nlm.nih.gov/
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Group B streptococcus immunogenic bacterial adhesin, EF Tu—elongation factor thermo unstable, 
FsbA—fibrinogen-binding protein, IMPDH—inosine 5′-monophosphate dehydrogenase, Lmb—
laminin binding protein, ScpB—streptococcal peptidase C5a, Siglec-14—sialic acid-binding immu-
noglobulin-like lectin, Sip—surface immunogenic protein. The diagram is not true to scale, the in-
dividual elements have a schematic dimension. 

Alp proteins consist of a major signal peptide domain, a N-terminus region, compris-
ing 170–180 amino acids, repeat area with numerous tandem repeats (8–10) of approxi-
mately 80 amino acids each, and a C-terminus region built from 40–50 amino acids. Their 
molecular masses may vary among particular GBS strains, for example α mass can range 
from 65 kDa to 165 kDa, and it can be explained by the differences in the number of repeats 
[14,15]. Amino acid sequences consisting of Alp family members are very likely, which 
may induce cross-reactivity among the individual proteins in the family. 

Alp proteins are also described as immunogenic proteins [12]. In the context of im-
munogenicity, the best-known proteins are αC and Rib proteins. The immunogenicity of 
αC was described as the first immunogenic GBS protein. It was described for the first time 
in the 1980s on mouse model, when it was shown that purified αC protein isolated from 
S. agalactiae cell induced immunogenic response and protected mice against infection 
caused by these bacteria [16]. Afterward, this observation was confirmed in other studies 
[17–20]. This protein, together with β protein, form the so-called C antigen, which was 
detected in serum against the whole bacterial cell [21,22]. It participates in GBS pathogen-
esis, what was examined in the mouse model. It was demonstrated that the deletion of bca 
gene, which encodes αC protein, led to a reduction in bacterial virulence [19]. 

Another well-described immunogenic Alp-like protein is Rib, which demonstrates 
likeliness to αC, which was demonstrated by the analysis of the N-end amino acid se-
quence. Surprisingly, no cross-reactivity between these proteins was noticed, even though 

Figure 1. Scheme of the distribution of immunogenic proteins within the Streptococcus agalac-
tiae (GBS) cell. Legend: αC, Rib, R28 (Alp3)—surface proteins belonging to Alp-like family,
BibA—Group B streptococcus immunogenic bacterial adhesin, EF Tu—elongation factor thermo
unstable, FsbA—fibrinogen-binding protein, IMPDH—inosine 5′-monophosphate dehydrogenase,
Lmb—laminin binding protein, ScpB—streptococcal peptidase C5a, Siglec-14—sialic acid-binding
immunoglobulin-like lectin, Sip—surface immunogenic protein. The diagram is not true to scale, the
individual elements have a schematic dimension.

Alp proteins consist of a major signal peptide domain, a N-terminus region, comprising
170–180 amino acids, repeat area with numerous tandem repeats (8–10) of approximately
80 amino acids each, and a C-terminus region built from 40–50 amino acids. Their molecular
masses may vary among particular GBS strains, for example α mass can range from 65 kDa
to 165 kDa, and it can be explained by the differences in the number of repeats [14,15].
Amino acid sequences consisting of Alp family members are very likely, which may induce
cross-reactivity among the individual proteins in the family.

Alp proteins are also described as immunogenic proteins [12]. In the context of
immunogenicity, the best-known proteins are αC and Rib proteins. The immunogenicity
of αC was described as the first immunogenic GBS protein. It was described for the
first time in the 1980s on mouse model, when it was shown that purified αC protein
isolated from S. agalactiae cell induced immunogenic response and protected mice against
infection caused by these bacteria [16]. Afterward, this observation was confirmed in
other studies [17–20]. This protein, together with β protein, form the so-called C antigen,
which was detected in serum against the whole bacterial cell [21,22]. It participates in
GBS pathogenesis, what was examined in the mouse model. It was demonstrated that the
deletion of bca gene, which encodes αC protein, led to a reduction in bacterial virulence [19].

Another well-described immunogenic Alp-like protein is Rib, which demonstrates
likeliness to αC, which was demonstrated by the analysis of the N-end amino acid sequence.
Surprisingly, no cross-reactivity between these proteins was noticed, even though the
nucleotide sequences are identical [23,24]. The Rib protein has been studied as a component
of anti-GBS vaccine as the first Group B Streptococcus protein. The results received for a
prototype recombinant Alpha-like protein subunit vaccine (GBS-NN), combined with α are
promising. In a randomized placebo-controlled double-blind Phase 1 trial in healthy adult
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women, the safety and immunogenicity of GBS-NN vaccine was proved [25]. This also
indicates potential usability of these proteins as biomarkers in immunodiagnostic detection
of GBS carriage and infections caused by this pathogen.

The Alp3 protein, which can be also found under the name R28 in the literature,
was first described for Streptococcus pyogenes (Group A Streptococcus) and its molecular
likeliness to other Alp proteins was showed [26]. Analysis of the amino acid sequences of
the R28 protein showed an identity of 98% between S. pyogenes and S. agalactiae species [27].
The Alp3 protein is considered to be a chimera of three S. agalactiae proteins: α, β and
Rib [28].

As it was described above, immunoreactivity of the Alp-like proteins had been proved.
Additionally, their conservation allows to consider them as good candidates for markers in
GBS immunodetection. Nevertheless, the distribution of individual Alp proteins within
the species could be a limiting factor as long as only one Alp protein is present in a single
GBS strain [29]. Therefore, constructing an immunoassay based on a single Alp protein can
be insufficient and use of all Alp proteins should be considered.

2.2. β Protein

β protein (approx. 130 kDa), also called Bac, had been previously described as a
component, together with αC, of antigen C, belonging to the Alp-like family. Although
both proteins are encoded by genes located nearby on the chromosomes, they do not
demonstrate a close relationship [15,17,30]. However, β indicates homology to the Alp3
protein, and it consists of 1159 residues [28,31]. The distinguishing feature of this protein,
compared to most of the surface proteins representative of Gram-positive cocci, is lack of
long repetitive tandem sequences [32]. Although the virulent nature of this protein has not
been fully described yet, it is hypothesized that, due to its ability to bind to elements of the
human immune system (Figure 1, Table 1), it may also be associated with virulence [33]. In
addition, the β protein has an affinity for two components of the human immune system:
the Fc fragment of IgA antibodies and the H factor, which regulate the alternative pathway
of complement activation, so that its action is directed against the infecting pathogen,
not human cells or tissues. This fact may suggest an important role of this protein in
induction of immunity [15]. It was also showed that β protein binds to sialic acid-binding
immunoglobulin-like lectin 5 (Siglec-5), which is an inhibitory receptor for phagocytosis,
and therefore attenuates innate immune responses in the infected organism, and promotes
bacterial survival [34]. Moreover, GBS β protein binds to Siglec-14 on neutrophils, and this
engagement counteracts the host immune suppression induced by pathogen by activation
of p38 mitogen-activated protein kinase (MAPK) and AKT signaling pathways. It is also
worth to underline that Siglec-5 and Siglec-14 expression has been present in amniotic
epithelium, which is the place of the initial contact of S. agalactiae with the fetus [35].

In the experiment based on active immunization with β protein of pregnant mice, it
was shown that offspring did not develop infection after contact with GBS strains containing
the β protein [36]. In addition, it has been shown that IgG anti-β antibodies can cross the
placenta, which may indicate the possibility of mother-to-child transmission of immunity,
and thus offer protection against GBS infection [37]. Immunogenicity in the presence of IgM
and IgG class antibodies was studied by natural exposure of pregnant women to β protein.
Geometric mean concentration of anti-β C protein IgM and IgG antibodies was measured
in an enzyme-linked immunosorbent assay (ELISA). The research was carried out on
16 pregnant women colonized with GBS, and 48 uncolonized match-age pregnant women,
who constituted the control group. In the study group, 3 out of 16 women demonstrated a
significant growth in IgM and IgG antibodies; therefore, it had been concluded that GBS
invasion, but not colonization, induces an increase in antibody titer [38]. In summary, with
no doubt, immunogenicity of β protein had been shown, however, due to insignificant
growth of the antibody concentration in carriers, usability of this protein as a marker in
immunoassay could be limited to detection of GBS infection but not carriage.
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Table 1. Summary of chosen GBS immunoreactive proteins—potential biomarkers in immunodiag-
nostic assays for detection of GBS carriage/infection and components of a vaccine against Streptococcus
agalactiae infections.

Proteins’ Name Molecular Mass Function/Characteristic Immunoreactivity Localization in Cell

Alpha-like proteins:
-αC,

-Alp 1 (epsilon)
-Alp 2

-Alp 3 (R28),
-Alp 4,

-Rib

65 kDa–165 kDa

• Facilitation of GBS adherence to
epithelial cell by interaction with
glycosaminoglycan

• Participation in pathogenesis

• First described immunogenic
GBS protein—in mouse model
(αC) in 1980

• Component of the so-called
C antigen (αC)

• Component of prototype of
anti-GBS vaccine (GBS-NN) – 1
phase of clinical trials (αC, Rib)

Surface anchored

β-protein (Bac) 130 kDa

• Ability to bind to elements of the
human immune system, may
indicate its virulence

• Attenuates innate immune
responses, and thus promotes
bacterial survival by binding to
sialic acid-binding
immuno-globulin-like lectin 5
(Siglec-5)

• Counteracts the host immune
suppression by binding to
Siglec-14 on neutrophils

• Component of the so-called
C antigen

• Immunization of pregnant
mouse with β-protein protected
infants from GBS infection

• Proven ability of IgG anti-β to
pass through the placenta

• Proven growth of IgG and IgM
in pregnant women after
exposure to GBS β protein

Cell surface

Laminin binding protein
(Lmb, LmbP) 43 kDa

• Involved in colonization of the
host and invasion through
damaged epithelial cells

• Immunogenicity of Lmb was
shown for GAS, thus its
immunoreactivity for GBS
is hypothesized

Cell surface

Surface immunogenic
protein (Sip) 53 kDa • Unknown

• Identified following
immunological screening of a
genomic library

• Proved mouse protection against
GBS infection representing
6 serotypes

• Proved tilapia protection against
GBS by oral vaccination

• Proved mouse protection against
GBS by oral vaccination

• 75.6% sensitivity of indirect
ELISA for bovine
mastitis diagnostic

• Component of fusion protein in
the indirect ELISA assay for
detection of bovine mastitis

• Studied in the context of
monoclonal antibody generation
to develop
immunochromatographic test kit
for GBS detection in
pregnant women

• Promising biomarker in a rapid
immunochromatographic test
for GBS detection in
pregnant women

Cell surface

Group B Streptococcus
immunogenic bacterial

adhesin (BibA)
80 kDa

• Demonstrates antiphagocytic
properties

• Mediates GBS adherence to both
human cervical and lung
epithelial cell

• Multifactorial GBS
virulence factor

• Binds to C-4 binding protein
in humans

• Mice immunization with a
recombinant BibA protein
(GBS-V BibA) protected from
vaginal colonization with GBS

• Promising biomarker in indirect
ELISA for GBS
carriers/infection diagnosis

• Promising biomarker in
Luminex multiplex
immunoassay for GBS detection

Cell surface

Fibrinogen-binding
protein (FsbA) ap. 26 kDa

• Promotes GBS attachment
to fibrinogen

• Activates the innate immune
responses in the host and
relevant antibody responses

• Proved protection of mice
infants against GBS by pregnant
mother immunization

• Proved protection by bacterial
opsonophagocytosis or
neutralization of FbsA-mediated
Fng binding by administration of
serum with anti-FsbA antibodies

• Proved tilapia protection
after immunization

Cell surface
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Table 1. Cont.

Proteins’ Name Molecular Mass Function/Characteristic Immunoreactivity Localization in Cell

Streptococcal peptidase
C5a (ScpB) 126 kDa

• Responsible for inactivation of
one of the components of the
human complement

• Responsible for disrupting
neutrophil recruitment

• Demonstrates the ability to bind
fibrinogen, thus promotes
bacterial adhesion to epithelial
and endothelial cells

• Nasal immunization of mice
with purified ScpB protein
demonstrated higher bacterial
clearance from the lungs

• Proved opsonizing activity with
mouse macrophages and human
whole blood in experiments on
hyperimmune rabbit serum

• It has been hypothesized that
antibodies directed against ScpB
antigen may protect from
infection by disrupting
fibrinogen binding

• Proved usability of ScpB
in ELISA

Cell surface

Enolase 47 kDa

• Catalyzes the penultimate stage
of glycolysis, which is the
de-hydration reaction of
2-phosphoglycerate to
phosphoenolpyruvate

• Plays an important role in the
pathogenesis by binding
plasminogen on the surface of
the host cell

• Anti-enolase antibodies can be
detected in certain
autoimmune diseases

• Enolase epitopes considered as
potential biomarkers in
immunodiagnostic assay

Cell wall

Elongation factor thermo
unstable (EF Tu) 44 kDa

• Plays an important role in the
pathogenesis by promoting
adhesion, invasion, and
modulation of the host immune
system through stimulation of
humoral immune response

• Involved in the elongation phase
of protein synthesis as well as in
the translation process in
prokaryotic cells

• Ensures a catalysis reaction
• Plays an important role in

shuttling aminoacylated tRNAs
to the ribosome during protein
translation

• Interacts with several molecules,
such as CD21, factor H,
fibrinogen, fibronectin, laminin,
nucleolin, tachykinin,
plasminogen and several
complement factors

• Anti-EF Tu antibodies are being
detected after infection caused
by several pathogen species

• Vaccine against GBS based on EF
Tu is being studied for tilapia

• Mouse vaccination with rEF Tu
of S. pneumoniae led to
increased numbers of cytokine,
IgG1 and IgG2a, and CD4+ T-cell

• Epitopes of GBS EF Tu are being
investigated as potential
biomarkers in ELISA assay for
carrier/infection diagnosis

Part of membrane
cytoskeleton,
cell surface

Inosine
5′-monophosphate

dehydrogenase (IMPDH)
53 kDa

• By participation in catalysis of
the key stage of de novo
synthesis of the guanine and
adenine nucleotide considered
as crucial precursor for DNA
and RNA synthesis

• Catalyzes conversion of IMP
to XMP

• Involved in glycoprotein
synthesis, energy transfer, signal
transduction in cells, and
NAD-dependent catalysis

• Potential target in antiviral,
antibacterial and
anticancer therapies

• Considered as a part of
autoimmunological
disease treatment

• Proved immunoreactivity of
IMPDH epitopes in the presence
of human umbilical cord blood

Intracellular
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Table 1. Cont.

Proteins’ Name Molecular Mass Function/Characteristic Immunoreactivity Localization in Cell

GroEL 57 kDa

• Structurally and functionally
closely related to the human heat
shock protein (Hsp60)

• Plays a key role in folding de
novo emerging proteins
(recognizing, binding, and
releasing other proteins)

• Participates in folding of a wide
range of proteins, with special
emphasis on these, which are
typically large (>20 kDa), slow
folding, and prone
to aggregation

• Known as a virulence factor and
it participates in pathogenesis,
however mechanism is unknown

• GroEL may promote infection by
replication and persistence
followed by adhesion, invasion,
evasion of host immune
responses, and modification of
host cell responses

• GroEL can be considered as
potential plant
protection products

• Promising results of vaccination
of pregnant mice against several
bacterial species

• Promising results of anti-GBS
vaccines administrated to tilapia

• Proved immunoreactivity of
GroEL epitopes in the presence
of human umbilical cord blood
and vascular blood

Cytosol, cell
surface, secretome

2.3. Lmb Protein

Laminin binding protein (Lmb, LmbP) belongs to lipoproteins by its molecular weight
of 43 kDa and it is exposed on the cell surface of most Streptococcus agalactiae strains
(Figure 1, Table 1). The Lmb protein, consisting of 306 amino acids, shows homology to
the members of the Lra1 protein family, which are known for their role in adhesion and
metal transportation in Gram-positive bacteria. Lmb is involved in colonization of the
host and invasion through damaged epithelial cells [39,40]. Even though the Lmb name
was limited to Streptococcus agalactiae species, an almost identical protein of Streptococcus
pyogenes has been referred to as Lsp or Lbp [41,42]. For both species, the gene encoding
this protein is located above the C5a-peptidase encoding gene and nucleotide sequence
identity between these two species is >98% in this region. Nevertheless, contiguous
sequences in the two genomes show no homology, which may indicate that the region was
horizontally transferred [41,43]. The immunogenic character of Lmb had been studied for
Streptococcus pyogenes (GAS), which causes various diseases ranging from pharyngitis to
severe infections such as a toxic shock-like syndrome and necrotizing fasciitis, and at some
points, is phylogenetically similar to Streptococcus agalactiae [44,45]. A recombinant Lmb
GAS protein (rGAS-Lmb) had been studied in the presence of serum from patients with
rheumatic fever and individuals with uncomplicated streptococcal infections. Antibody
response for the study and control groups was examined by ELISA assay, and the differences
observed in reactivity were significant, whereas no difference between infection types was
noticed [46]. No data for Lmb immunoreactivity for the studied group of pregnant women
colonized by Streptococcus agalactiae is available, however it can be assumed that, according
to its confirmed immunoreactivity for Streptococcus pyogenes, it may also be considered as a
potential candidate for GBS detection.

2.4. Sip Protein

Sip protein (surface immunogenic protein) with weight of 53 kDa was, in opposition to
other previously described surface proteins, identified following immunological screening
of a genomic library. Sip is present in all GBS strains, regardless of the serotype represented
(Figure 1, Table 1). Analysis of the nucleotide sequences for the studied strains confirmed
their 98% identity of the sip gene, which encodes the Sip protein. It indicates the conser-
vation of this 434 amino acid protein. Moreover, Sip is also described as an immunogenic
protein. Immunization in mice with the recombinant Sip protein demonstrated efficient
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protection against severe consequences of GBS infection caused by strains representing
six serotypes (Ia, Ib, II, III, V, and VI) [47]. Immunogenicity of the Sip protein was also
studied in the context of the oral vaccine administrated to tilapia, a fish species in which
infection caused by Streptococcus agalactiae is common and leads to huge financial losses in
fishery. The immunizing protein against Streptococcus agalactiae was expressed in Bacillus
subtilis spores. It was shown that immunization indicated an effective immune response
and provided protection against GBS infection [48,49]. Another promising result was ob-
tained for the investigation of a decrease in the S. agalactiae colonization in a mouse model
following oral administration of the vaccine based on Sip protein [50]. This may suggest
that Sip protein induces cross-protective immunity against GBS infections, therefore, it
can be considered as a potential vaccine candidate; on the other hand, its conservation
qualifies the Sip protein as a potential candidate for immunodiagnostic assay. Research on
an immunodiagnostic assay based on Sip protein as a detection antigen has already been
carried out. Nevertheless, selectivity examined in an indirect ELISA assay for bovine masti-
tis detection reached 75.6% (for 45 studied serum antibodies isolated from cows, 35 were
positive, whereas control examination performed by PCR gave 100% positive results) [51].
Immunoreactivity of the Sip protein was also studied as an element of fusion protein com-
bined with two other membrane surface-associated GBS proteins, which were fibronectin
(FbsA) and phosphoglycerate kinase (Pgk) in the indirect ELISA assay for detection of
bovine mastitis. The obtained results indicated relatively higher sensitivity in comparison
with mono-antigen fusion protein Sip [52]. Immunogenicity of the Sip protein, according
to its conservation, was also investigated in the context of usage for monoclonal antibody
generation to develop immunochromatographic test kit for GBS detection in pregnant
women [53]. Another study was focused on examination of Sip protein as a biomarker in a
rapid immunochromatographic test for detection of Group B streptococcus colonization in
vaginal and/or rectal tracts in pregnant women during the 35th–37th weeks of pregnancy.
The obtained results were very promising, and the developed test was characterized by
high specificity, with selectivity reaching respectively 93.1% and 100% [54]. Therefore, we
conclude that the Sip protein can be doubtlessly considered as a GBS detection antigen.

2.5. BibA Protein

BibA protein (Group B Streptococcus immunogenic bacterial adhesin) is an immuno-
genic bacterial adhesin, exhibiting molecular weight of approx. 80 kDa, which demonstrates
antiphagocytic properties. BibA mediates GBS adherence to both human cervical and lung
epithelial cells (Figure 1, Table 1). The protein consists of the N-end α-helix rich domain,
proline-rich region, LPXTG cell-wall anchoring motif, and is composed of 594 amino acids.
Due to its N-terminal helical domain, which consists of three antiparallel α-helical-bundle
motifs, it is considered as unique, and thus is qualified to a new class of Gram-positive
surface adhesins [55]. This protein is identified on the surface of S. agalactiae strains, but
interestingly, it is also present in GBS culture supernatants [56,57]. Four allelic variants (I, II,
III, IV) of this protein correlated with serotypes had been described, and what is worth
underlining, variant IV, which demonstrated high likeliness to the bovine counterparts,
was exclusively associated with the highly virulent ST-17 GBS strain. Therefore, BibA is
considered as a multifactorial GBS virulence factor [7,58,59]. BibA expression is modulated
by the CovS/CovR 2-component regulatory system, and it specifically binds to C-4 binding
protein in humans, which is a regulator of the classical complement pathway. It has been
demonstrated that deletion of bibA gene resulted in reduced capacity of GBS to survive
in human blood as well as decreased ability to resist opsonophagocytic killing by human
neutrophils. Additionally, BibA expression led to an increase in the GBS virulence in a
mouse model [56,57]. While mice immunization with a recombinant BibA protein (GBS-V
BibA) conferred immunity and protected them from vaginal colonization by S. agalactiae,
and eventually led to decrease in mortality. Antibody response after immunization was
examined in ELISA assay in which plates were coated with BibA protein. This indirect
use indicates the usability of BibA protein as detection antigen in ELISA for GBS carriage
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and/or infection diagnosis [60]. A similar conclusion can be drawn from the research
whose aim was to examine the association between antibodies against Streptococcus agalac-
tiae surface proteins and recto-vaginal colonization during pregnancy, in which titers of
IgG antibodies were measured in Luminex multiplex immunoassay [61].

2.6. FsbA Protein

Fibrinogen-binding protein (FsbA), approx. 26 kDa, is one of the virulence factors
of Streptococcus agalactiae, and its role is the attachment to fibrinogen, which leads to
fibrinogen-dependent aggregation of platelets (Figure 1, Table 1). It was demonstrated that
GBS mutants lacking fsbA gene lost the aggregation ability. Furthermore, application of
monoclonal anti-FsbA antibodies impeded bacterial binding to fibrinogen as well as platelet
aggregation caused by Streptococcus agalactiae [62–64]. FsbA is composed of 16 amino acid
repetitive units. It has been demonstrated that human fibrinogen was bound by the
repetitive protein region, and even a single repeat had the ability attach to fibrinogen [63].
FsbA protein consists of C-terminus cell wall anchoring motif (LPKTG), which indicates
that this protein is covalently attached to the cell wall. The second GBS fibrinogen binding
protein is FsbA’s analogue—FsbB, even though these proteins do not reveal significant
likeliness to each other. The feature distinguishing FsbA from other fibrinogen binding
proteins, representative to other bacterial species, is the LPKTG motif [65]. As long as FsbA
protein structure is well described, its function is barely known, except its immunogenic
role. It was shown that maternal immunization of mice with 6pGST, a protein fragment
which consists of five repeats, significantly protected the offspring against lethal infection
caused by Streptococcus agalactiae. It was demonstrated that the protective role of the
antibodies can be obtained by administration of anti-6pGST serum from adult animals. The
introduction of serum with antibodies led to protection by bacterial opsonophagocytosis or
resulted in neutralization of FbsA-mediated Fng binding. Two-track action had also been
noticed [66]. Other studies showed RPS (relative percentage survival) value after tilapia
vaccination consisting of GBS FsbA protein reached 40.63% [67]. It allows to define FsbA as
a multifunctional immunogenic protein, including immunoprotection as well as activation
of the innate immune responses in the host and relevant antibody responses [68].

2.7. ScpB Protein

Streptococcal peptidase C5a (ScpB) is an enzymatic surface protein, which belongs to
serine protease and is related to the subtilisin family of enzymes (Figure 1, Table 1). It was
demonstrated that substitution of the following amino acids: Ser512, His193, or Asp130
with alanine confirmed their proteolytic role, which has an impact on the whole protein [69].
This protein is a large molecule, which consists of over 1100 residues, excluding the signal
sequence and it weighs over 126 kDa [70,71]. A comparison of the amino acid sequence
between Scp N-terminal catalytic triad and subtilisin revealed homology [69]. C-terminus
of Scp includes the peptidoglycan anchor sequence, which is common to other Gram-
positive bacterial surface proteins [72]. C5a peptidase is responsible for inactivation of one
of the components of the human complement, i.e., decay product of C5, C5a converting
enzyme [73]. C5a peptidase was first described for Streptococcus pyogenes, however, further
studies have shown the presence of this enzyme also in Streptococcus agalactiae strains.
Sequence analysis of both proteins revealed their 95% similarity, which is a consequence of
horizontal gene transfer between both species. Therefore, in order to distinguish between
them, the following nomenclature is used: C5a peptidase for the species Streptococcus
pyogenes, belonging to the serological Group A, is called ScpA, while analogously for Strep-
tococcus agalactiae, representative for Group B, this protein is described as ScpB [70,72–76].
Interestingly, scpB gene is common for GBS strains isolated from humans, whereas, in
bovine, it is barely present [41,77]. Additionally, ScpB-related cell envelope proteases,
which have a multi-domain structure, are also common to lactic acid bacteria [70,77].

C5a peptidase is described for its virulence function. It is responsible for disrupting
neutrophil recruitment, resulting in a reduction in the inflammatory response elicited in the
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infected tissue. Interestingly, inhibition of neutrophil recruitment had not been observed
in the mouse model [78,79]. This non-obvious observation should be considered during
the selection of an appropriate model for research on the GBS vaccine, the component of
which will be C5a peptidase, as long as Scp reveals its immunogenic character [15,80,81].
Another Scp feature, on the basis of which it is qualified as a virulence factor is the ability
to bind fibrinogen, which may promote bacterial adhesion to epithelial and endothelial
cells [15,82]. However, studies with mutant bacterial cells, lacking ScpB, revealed only a
partial reduction in the fibrinogen binding capacity compared to the unmutated strains. It
can be explained by the fact that Group B streptococci possess other proteins that are able
to bind fibrinogen [83].

As it was mentioned above, both ScpA and ScpB also show strong immunogenic prop-
erties, and due to their conservation, they are considered as good vaccine candidates [84,85].
Research on mice immunized with the purified ScpB protein, which were next infected
with Streptococcus agalactiae strains via the nasal route, showed a higher clearance of bac-
teria from the lungs [86]. Moreover, experiments on hyperimmune rabbit serum showed
opsonizing activity with mouse macrophages and human whole blood. It has also been
suggested that antibodies directed against ScpB antigen may protect from infection by
disrupting fibrinogen binding [85]. Due to the features described above, ScpB can be
considered as a biomarker in an immunodiagnostic assay, and its usability had previously
been demonstrated in the enzyme-linked immunosorbent assay [87,88].

2.8. Enolase

Enolase is a dimeric protein, weighing approximately 47 kDa (approx. 430 aa), which
is a glycolytic enzyme and catalyzes the penultimate stage of glycolysis, which is the
dehydration reaction of 2-phosphoglycerate to phosphoenolpyruvate [89,90]. Enolase is
also very conservative among the Streptococcus species. It had been demonstrated that
identity of amino acid sequences exceeded 90% among the following species: Streptococcus
pneumoniae, Streptococcus agalactiae, Streptococcus sobrinus, and Streptococcus mutans [91,92].
Furthermore, likeliness between human and streptococcal enolase reaches 49% [93]. There
are three distinct isoforms of enolase: α, β, and γ, with the same molecular mass each.
Nevertheless, the isoform typically found in bacteria is α-enolase. Enolase is a common
protein for numerous bacterial species, and it plays an important role in the pathogene-
sis by binding plasminogen on the surface of the host cell, which mediates fibrinolysis,
homeostasis, and the degradation of the extracellular matrix (Figure 1, Table 1) [94,95].
Interestingly, the investigation of amino acid sequences of the α-enolase in Streptococcus
mutans, which is responsible for inducing dental caries, revealed a lack of the hexameric
cell wall anchoring motif (LPXTGX) [96]. Thus, the way of transportation and cell wall
attachment is not well understood yet [91]. This protein has also been described in the
context of its immunogenicity for Streptococcus agalactiae [84,97–101]. It has been shown
that streptococcal anti-enolase antibodies may react with human enolase produced af-
ter S. pyogenes infection [93]. Additionally, antibodies directed against enolase had been
detected in some autoimmune diseases, such as systemic lupus erythematosus, mixed
cryoglobulinemia, systemic sclerosis, and rheumatoid arthritis [102]. In our previous paper,
we decided to take the next step and detected epitopes representative of enolase, which
specifically recognized anti-GBS IgG antibodies, and which were studied in ELISA with the
presence of umbilical cord blood serum from pregnant women qualified as GBS carriers.
Presently, these epitopes are being investigated as potential components in an immunodi-
agnostic assay for detection of GBS carriage and/or infections in pregnant women [103].
Nevertheless, consideration of enolase as a detection antigen requires taking into account
the fact of relatively close sequence similarity among streptococci as well as a possibility of
cross-reactivity with human enolase.
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2.9. Elongation Factor Tu

Elongation factor thermo unstable (EF Tu) is a moonlight protein, weighing approx.
44 kDa and consisting of approx. 400 residues, which is involved in several pathogenic
functions, such as: adhesion, invasion, and modulation of the host immune system through
stimulation of humoral immune response [104–109]. This conservative protein is the most
abundant protein in bacteria, it constitutes up to 5% of the total cell content, and it is
common for both prokaryotic and eukaryotic organisms [108,110]. In the bacterial cell,
EF Tu constitutes part of the membrane cytoskeleton, and it is involved in the elongation
phase of protein synthesis as well as in the translation process in prokaryotic cells (Figure 1,
Table 1). As a GTPase, it ensures a catalysis reaction, whose aim is the correct addition of the
consecutive amino acid to a growing nascent polypeptide chain [111]. Even though EF Tu is
a component of the membrane cytoskeleton, it does not possess a signal secretion motif, due
to its moonlight roles, it requires to localize on the cell surface [108,110,112,113]. Probably
the protein is exported by several paths, such as cell lysis, extracellular vesicle secretion or
via association with proteins that are secreted by the Sec machinery 54 [114–116]. It plays
an important role in shuttling aminoacylated tRNAs to the ribosome during protein trans-
lation [104,117–120]. In Escherichia coli, EF Tu consists of three domains, whereas the first
domain forms a helix structure with the Rossmann fold topology, which is characterized by
tertiary protein fold composed of both α-helical and β-strands that bind nucleotides [121],
the second and the third domains mostly consist of β-sheets [111,122]. Amino acid se-
quences of the EF Tu protein are characteristic of various bacterial species representing
similarity in sequence identity; therefore, they have been used to generate a phylogenetic
tree [123]. This moonlight protein interacts with several molecules, such as CD21, factor
H, fibrinogen, fibronectin, laminin, nucleolin, tachykinin, plasminogen and several com-
plement factors [107,124–127]. EF Tu is also known for its immunogenic role. Antibodies
against EF Tu are detected after infections caused by Burkholderia pseudomallei, Chlamydia
trachomatis, Mycoplasma capricolum, Mycoplasma hyopneumoniae, Mycoplasma ovipneumoniae,
and Staphylococcus aureus [128–133]. On the other hand, EF Tu for Haemophilus influenzae is
recognized by antibodies, which mediate innate immunity of the host against NTHi [134].
While, when GBS it found, the protein is common for all Streptococcus agalactiae strains,
regardless of molecular differences, such as the serotypes represented, genes encoding
Alp proteins or the origin [101,135,136]. Research on a subunit anti-GBS vaccine based on
EF Tu revealed the capability of the indication of the immunity and protection of tilapia
against infection caused by Streptococcus agalactiae, however vaccination with the subunit
EF Tu vaccine generated moderate immune protection with RPS equal 70% [136]. Mouse
vaccination against EF Tu of Streptococcus pneumoniae resulted in the animals’ protection
against lethal challenges, and on the molecular level, increased cytokine, IgG1 and IgG2a,
and CD4+ T-cell production was observed [137]. Promising results of rEF-Tu vaccination
was obtained for fish as well [136]. In our previous paper, similarly to enolase described
above, we aimed to detect the highly specific epitopes representative of GBS EF Tu as
potential markers in an immunodiagnostic assay for detecting GBS carriage in pregnant
women, and the obtained results were very promising [135]. However, it is necessary
to consider some limitations, such as a tendency for cross-reactivity between different
bacterial species with special emphasis on unencapsulated species, among others, various
Gram-positive streptococci of the oral microbiome. Pneumococci are not detectable, what is
related to the capsules of pneumococci and meningococci, which shield surface-associated
EF Tu from antibody detection [134,138].

2.10. IMPDH

Inosine 5′-monophosphate dehydrogenase (IMPDH, dehydrogenase IMP), with a
mass of 53 kDa, is a stable purine, which participates in catalysis of the key stage of de
novo synthesis of the guanine and adenine nucleotides in all organisms, in other words,
it is a crucial precursor for DNA and RNA synthesis [103,139,140]. IMPDH monomers
contain 400–500 amino acids, and these differences depend on the presence of a subdomain
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that is not required for enzymatic activity. Each monomer is built of two domains: the α

and β (α/β)8 barrel catalytic domain and the subdomain containing two CBS domains
(cystathionine beta synthase, Bateman domain) [140]. The protein most often takes the
form of tetramers, and it is the most stable configuration (Figure 1, Table 1) [141–143].
The IMPDH tetramers have square planar geometry, with the sides of the barrels at the
subunit interfacing and CBS domains sticking out from the corners of the tetramer. The
junction between domains is flexible, and the relative orientation can vary [144]. The
IMPDH also catalyzes conversion of IMP to XMP as the first committed and rate-limiting
step in guanine nucleotide biosynthesis. In turn, XMP is subsequently converted to GMP
by the action of GMP synthetase (GMPS). This IMPDH/GMPS pathway is common for
almost all organisms. IMPDH is also involved in glycoprotein synthesis, energy transfer,
signal transduction in cells, and NAD-dependent catalysis. It is worth to mention that
there are many genes encoding IMPDH [140]. In the literature, due to its crucial role in cell
replication, IMPDH is frequently described as a potential target in antiviral, antibacterial
and anticancer therapies. It is also considered as a part of autoimmunological disease
treatment [140,145–147]. Unfortunately, it has been reported that some pathogens devel-
oped resistance to IMPDH inhibitors by amplifying the IMPDH gene, which significantly
limits its usability as an antibiotic [140]. This protein also demonstrates immunogenic fea-
tures in some bacterial species [148–151]. Immunoreactivity to Streptococcus agalactiae was
also showed. Moreover, highly specific IMPDH GBS epitopes recognized by umbilical cord
blood isolated from GBS-positive women were identified, and what is worth to underline,
it was performed for the first time [101,103]. The obtained results allowed to consider them
as potential antigens in an immunodiagnostic assay for GBS carriage detection.

2.11. GroEL

GroEL is a 57 kDa protein, which belongs to the chaperonin family. Structurally GroEL
is a double ring tetradecamer, composed of seven identical 10 kDa subunits in cis and
trans positions, which demonstrates ability to form barrel-like structures with hydrophilic
cavities, which are isolated from each other by the equatorial domains and the C-terminal
tails of each subunit (Figure 1, Table 1). Each oligomeric complex consists of fourteen
identical 57kDa subunits, and each subunit can be divided into three domains: apical,
intermediate, and equatorial. Apical domains are located at the outer edge of the rings and
contain binding sites for GroES, with which they frequently form complex and non-native
proteins. While equatorial domains adjoin each other within the individual ring, and they
consist of a domain with the ATP binding site. Intermediate domain is connected with
apical domain through the slender intermediate domain [152–154]. This protein is common
for numerous bacteria, and, moreover, it is structurally and functionally closely related
to the human heat shock protein (Hsp60) [155]. The key role of GroEL is folding de novo
emerging proteins. Its functions, as a chaperonin protein, are recognizing, binding, and
releasing other proteins. These actions are performed due to the characteristic structure
of the apical domain, which consists of non-polar amino acids on the inner surface, and
hydrophobic external surface, which demonstrates the ability to capture and tightly bind
protein folding intermediates [156,157]. GroEL participates in folding of a wide range of
proteins, with special emphasis on these, which are typically large (>20 kDa), slow folding,
and prone to aggregation [158,159].

GroEL is also described as a virulence factor and participates in pathogenesis, even
though the switching mechanism from folding supporting protein to virulence factor is not
yet understood [160,161]. Virulence of GroEL can be carried out by promoting infection
by replication and persistence followed by adhesion, invasion, evasion of host immune
responses, and modification of host cell responses [162]. GroEL is described as a moonlight
protein; nevertheless, its ability to change roles has not been determined yet [163]. As
an example of moonlighting, GroEL from some species, such as: Lactobacillus johnsonii,
Mycoplasma pneumoniae or Salmonella enterica, displays an ability to support adhesion
to mucin [164]. Mucin belongs to glycoproteins, which create a gel-like layer on the
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mucosal surface, and thus protect the host from pathogen colonization and invasion [165].
Therefore, binding bacterial cells throughout GroEL protein to mucin promotes initiation
of the colonization and invasion [163]. In turn, GroEL from Helicobacter pylori promotes
binding iron, which is essential for growth of this species, and this ability could allow it
to compete with other species for a colonization niche [166,167]. Another interesting and
surprising function of GroEL is its toxic effect on some species of insects. For example,
GroEL produced and excreted by Enterobacter aerogenes paralyzed a cockroach but not
mice [168]. Some research suggest that GroEL can also be considered as a potential plant
protection product, because it had been showed that GroEL from Xenorhabdus nematophila
expressed in tobacco induced resistance to invading insects [169]. Even though GroEL
plays its role inside a cell, it has an ability to relocate on the cell surface. As a stress response
protein, it demonstrates an ability to introduce changes in the level of expression as well as
in the cellular localization from the cytosol to the cell surface or the secretome. Therefore,
apart from folding, GroEL is also an immunogenic protein, because it can be presented
to the antibodies [163]. Mouse vaccination with rGroEL from H. pylori induced immune
protection for both mother and infants [170]. Successful immunization with rGroEL had
also been demonstrated for other species such as: Mycobacterium bovis [171] and Lawsonia
intracellularis [172].

This molecular chaperon, as well as its epitopes, have an ability to specifically bind
with anti-GBS antibodies present in both umbilical cord and vascular blood [103]. Im-
munogenic features of GBS GroEL were also investigated for tilapia. Immunization with
recombinant GroEL induced to increase titers of anti-rGroEL antibodies and insure protec-
tion against Streptococcus agalactiae with RPS on an approximate level of 70%. While testing
the titer of antibodies produced after rGroEL immunization, an ELISA in which detection
antigen constituted rGroEL protein was performed [49]. It indirectly confirms the usability
of this protein as a biomarker in an immunodiagnostic assay.

3. Conclusions

We conclude that the proteins described above, with special emphasis on Sip, BibA,
Lmb, FsbA, ScpB IMPDH, and GroEL, due to their proven immunoreactivity and conser-
vation, can be considered as good candidates in immunodiagnostic assays for detection
of GBS carriage and infection particularly in pregnant women, but, with high probability,
also in other patients in the so-called high-risk groups, such as elderly or immunosup-
pressed adults. Consideration of Alp proteins and the remaining three proteins, which are
β-protein, enolase, and elongation factor Tu, as potential detection antigens should take
into account their limitations, such as lack of universality in the case of Alp proteins, risk of
cross-reactivity among other bacterial species as well as human counterparts for enolase,
and EF Tu, or insignificant growth of the antibody concentration in carriers following
immunization with β protein. We also believe that in the near future many more immuno-
genic proteins will be described and studied, and this knowledge will find its practical
application, i.e., in the ELISA assay or immunochromatographic assay investigation.
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