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Introduction
Time course transcriptomic profiling has been widely used to study and model dynamic biological pro-
cesses in cells (1). By profiling mRNA levels during consecutive time points, researchers can infer dynamic 
responses to various external cues that cannot be observed by looking at only initial and terminal states. 
Recent improvements in high-throughput RNA-Seq technologies, including single-cell RNA-Seq (scRNA-
Seq) provide viable approaches to study dynamic gene expression changes (2). scRNA-Seq especially allows 
for the in-depth analysis of  temporal changes in distinct cell populations, thus providing insights into the 
heterogeneity and dynamics of  responses to environmental cues or pathogenic stimuli. However, the analy-
sis and visualization of  longitudinal bulk RNA-Seq data or scRNA-Seq can be computationally challenging.

Currently, there are 2 predominant strategies for the analysis of  sequential transcriptomic data sets. 
One strategy treats the sampling time points as categorical variables and is based on generalized linear 
models (GLMs). GLM-based packages include DESeq2 (3), edgeR (4), and limma (5). A complemen-
tary strategy is to treat time as a continuous variable and fit the time expression data into a spline-
like model. These methods include DESeq2Spline (DESeq2 adopted with spline model for temporal 
RNA-Seq data sets) fitting, ImpulseDE2 (6) and Next maSigPro (7). The former strategies focus on 
the magnitude of  change instead of  the time order of  gene expression, and they may also suffer from 
a relative loss of  statistical testing power, especially if  many time points are assessed (6). The latter 
strategy increases the power of  detecting dynamic genes but is based on strong model assumptions that 
are not optimally suited for multiphasic responses, such as gene trajectory patterns that reflect initial 
acute stimuli, followed by counterregulatory compensatory responses. Furthermore, there is a lack of  
tools that leverage existing knowledge of  functional pathway databases to infer and visualize pathway 
trajectories instead of  individual gene trajectories only.

Studying temporal gene expression shifts during disease progression provides important insights 
into the biological mechanisms that distinguish adaptive and maladaptive responses. Existing tools 
for the analysis of time course transcriptomic data are not designed to optimally identify distinct 
temporal patterns when analyzing dynamic differentially expressed genes (DDEGs). Moreover, 
there are not enough methods to assess and visualize the temporal progression of biological 
pathways mapped from time course transcriptomic data sets. In this study, we developed an 
open-source R package TrendCatcher (https://github.com/jaleesr/TrendCatcher), which applies 
the smoothing spline ANOVA model and break point searching strategy, to identify and visualize 
distinct dynamic transcriptional gene signatures and biological processes from longitudinal data 
sets. We used TrendCatcher to perform a systematic temporal analysis of COVID-19 peripheral 
blood transcriptomes, including bulk and single-cell RNA-Seq time course data. TrendCatcher 
uncovered the early and persistent activation of neutrophils and coagulation pathways, as well as 
impaired type I IFN (IFN-I) signaling in circulating cells as a hallmark of patients who progressed 
to severe COVID-19, whereas no such patterns were identified in individuals receiving SARS-CoV-2 
vaccinations or patients with mild COVID-19. These results underscore the importance of systematic 
temporal analysis to identify early biomarkers and possible pathogenic therapeutic targets.
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We found that this is challenging in a complex disease, such as COVID-19, caused by the SARS-CoV-2 
infection (8). COVID-19 is characterized by distinct disease progression patterns that suggest diverse host 
immune responses (9). Patients with severe disease exhibit profound inflammatory responses and immuno-
pathology (10). COVID-19 immunophenotyping studies involve a large number of  time points from cor-
responding RNA-Seq and scRNA-Seq data sets (11, 12). Existing approaches for temporal transcriptom-
ic analysis either do not take the temporal sequence into account when identifying dynamic differentially 
expressed genes (DDEGs) using pairwise comparison between time points or they do not systematically 
analyze pathways that are dysregulated at defined time points.

In this study, we developed TrendCatcher, an open-source R package (https://github.com/jaleesr/
TrendCatcher) tailored for longitudinal bulk RNA-Seq and scRNA-Seq analysis. TrendCatcher uses a 
framework that combines the smooth spline ANOVA model and break point searching strategy, which 
identifies inflection points when gene expression trends reverse. We show that TrendCatcher outperformed 
commonly used methods for longitudinal RNA-Seq analysis when using simulated time course data for 
benchmarking. We also analyzed bulk RNA-Seq and scRNA-Seq gene expression profiles of  peripheral 
blood cells in COVID-19 patients at various disease time points. TrendCatcher allowed us to identify and 
visualize dynamic gene expression signature profiles in peripheral blood that were associated with poor 
disease outcomes during the early phases of  disease and could, thus, serve as potentially novel mechanistic 
targets, as well as early biomarkers for patient prognostication.

Results
TrendCatcher accurately identifies DDEGs in simulated data sets. First, we tested the prediction performance 
of  the TrendCatcher platform (Figure 1A) using a set of  simulated time course RNA-Seq data sets 
because simulated data provide defined standards to assess the accuracy of  analytical platforms. We 
considered a comprehensive collection of  gene temporal trajectory patterns to simulate a set of  realistic 
data with biological characteristics (1). We embedded 10,000 simulated trajectories with varied tempo-
ral patterns, including 90% nondynamic trajectories, 2.5% monotonous transition trajectories (contin-
uously increasing or continuously decreasing gene expression levels throughout the time course), 2.5% 
impulse-shaped single–break point trajectories (only 1 temporal inflection point — i.e., up-peak-down 
or down-trough-up), 2.5% two–break point trajectories, and 2.5% three–break point trajectories (multi-
modal dynamic response — e.g., a combination of  2 or more basic types of  trajectories). Compared with 
DESeq2, DESeq2Spline, and ImpulseDE2 using receiver operator characteristic (ROC), TrendCatcher 
had the largest AUC in a mixed simulated data set for time course data with 7 time points (Figure 1B). 
We also tested each model’s performance on a varying number of  time points, including 3, 5, 7, 9, and 
11 time points. As shown in Figure 1C, TrendCatcher had the highest prediction AUC across all time 
points, with the AUC values range from 0.88 to 0.90.

We next evaluated the prediction performance for each type of  temporal trajectories. As shown in 
Supplemental Figure 1, A–C (supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.157255DS1), although the other 3 methods achieved slightly higher accuracy than 
TrendCatcher in monotonic trajectories, their AUCs dropped markedly when more complicated trajecto-
ries were embedded. DESeq2 only achieved AUC values of  0.49 to 0.62 for both biphasic trajectory and 
multimodal trajectory. The DESeq2Spline approach using a spline curve fitting model also dropped to an 
AUC of  approximately 0.7 once multiphasic trajectories were introduced. These results suggest that exist-
ing approaches for longitudinal or time course analyses are well suited for monotonic trajectories (continu-
ously up or continuously down) but that TrendCatcher may be more broadly applicable because it identifies 
monotonic, biphasic (up-down, down-up) and multiphasic shifts in gene expression, which are especially 
important in complex pathological setting when initial biological responses are followed by counterregula-
tory adaptive or maladaptive responses.

TrendCatcher identifies rapid but transient upregulation of  IFN signaling in peripheral blood following SARS-
CoV-2 infection in a nonhuman primate model. To define the key dynamic gene signatures associated with 
SARS-CoV-2 infection in peripheral blood, we first analyzed the global transcriptomics profiles from a 
nonhuman primate data set (13), in which samples were collected on days 0 (uninfected controls), 1, 2, 4, 
7, 10, and 14 following the live SARS-CoV-2 inoculation. This experiment in nonhuman primates had the 
advantage of  clearly defining the timing of  inoculation and following the time course of  dynamic genes. 
TrendCatcher identified 962 DDEGs out of  12,754 total genes, accounting for 7.6% of  total expression; 
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this suggests that over 90% of  the expressed genes in the peripheral blood remain close to the baseline 
expression levels even in the setting of  the SARS-CoV-2 infection. We observed 2 major types of  dynamic 
trajectories: (a) 167 genes followed a biphasic “0D-2D up, 2D-14D down” pattern, with their expression 
level peaking at day 2 and gradually returning close to baseline levels at day 14 (Figure 2A). These dynam-
ic genes were primarily associated with host defense biological pathways annotated by gene ontology 
(GO), such as defense response to viruses, regulation of  viral life cycle, and type I IFN (IFN-I) signaling 
pathways (Figure 2B). (b) Furthermore, 263 genes follow a “0D-14D down” pattern (Figure 2A). This set 
of  genes followed a monotonous trajectory, with their expression gradually decreasing until day 14. Inter-
estingly, we found these genes were primarily associated with mitochondrial ATP synthesis and oxidative 

Figure 1. Overview and benchmarking of TrendCatcher. (A) TrendCatcher’s framework. TrendCatcher preprocesses input data, which includes creating cell 
type–specific “pseudobulk” data sets for temporal analysis when scRNA-Seq data is used. TrendCatcher’s core algorithm is composed of 5 main steps. 
TrendCatcher’s output includes 4 main types of visualizations and DDEGs identification (numbered 1–5). (B) TrendCatcher’s prediction ROC for a 7 time point–
simulated data set compared with DESeq2, DESeq2Spline, and ImpulseDE2, with mixed trajectories. (C) TrendCatcher’s prediction performance (AUC) across 
different numbers of time points, from 3 to 11 time points. TrendCatcher’s AUC values across time points from 3 to 11 are 0.90, 0.92, 0.90, 0.89, and 0.88.
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phosphorylation, suggesting that disruption of  mitochondrial respiration and ATP generation may be an 
important feature of  the circulating cells’ transcriptomic shift in a SARS-CoV-2 infection (Figure 2C). 
TrendCatcher assigned trajectory pattern types to all dynamic genes and provided hierarchical pie charts 
to visualize the composition of  trajectory patterns (Supplemental Figure 2A).

To systematically assess and visualize the dynamic programming of  the top biological pathways asso-
ciated with SARS-CoV-2 infection, TrendCatcher generated a TimeHeatmap. The TimeHeatmap function 
of  TrendCatcher visualizes shifts in pathways by displaying the mean-fold change of  individual DDEGs in 
a given pathway at defined time points, while also depicting the number of  dynamic genes and the percent-
age of  dynamic genes within that pathway (Figure 2D). This quantifies the pathway level shifts over time 
and allows for the magnitude of  pathway change to be visualized, together with the number and fraction of  
dynamic genes in a given pathway, to gauge the relative importance of  the pathway during the time course.

During initial infection (days 0–2), pathways related to innate immune response and IFN pathways 
were highly upregulated. Examples are upregulation of  pathways such as defense response to virus and 
regulation of  innate immune response increased with an average log2 fold change (log2FC) of  2.57 and 1.76 
within the first day. Mucosal immune response, antimicrobial humoral response, and killing of  cells of  oth-
er organisms were activated during the later stage of  infection (days 4–7), with an average log2FC around 2. 
On the other hand, mitochondrial ATP synthesis–coupled electron transport and protein targeting to ER, 
on the other hand, were gradually downregulated until day 14. Dynamic gene signatures from the IFN-I 
signaling pathway and mitochondrial ATP synthesis–coupled electron transport were shown using tradi-
tional heatmaps in Supplemental Figure 2, B and C. The temporal analysis of  this nonhuman primate data 
set not only highlights the rapidity of  IFN signaling activation, but also underscores that this initial burst of  
immune activation is transient and is followed by a gradual downregulation of  the antiviral IFN responses 
during the first week following infection.

Increased generation of  immunoglobulin synthesis in plasma B cells as early as day 1 of  symptom onset in 
patients diagnosed with SARS-CoV-2 infection. Next, we analyzed the longitudinal gene expression profiles 
of  peripheral blood mononuclear cells (PBMCs) obtained from patients diagnosed with a SARS-CoV-2 
infection who were admitted to the hospital but predominantly had uncomplicated disease progression, 
with 4 of  5 patients showing only mild symptoms (14). The study performed scRNA-Seq analysis on 
PBMCs (Figure 3A), allowing for a cell type–specific analysis of  gene expression shifts in distinct B 
cell subtypes, T cell subtypes, and NK cells. We adopted the cell type labels from the original study and 
generated pseudo-bulk RNA-Seq data sets for each cell type in order to quantify changes in DDEGs for 
a specific cell type. We also adopted the time annotation using stages, by binning the disease processes of  
COVID-19 patients from symptom onset to discharge into stages 0, 1, 2, 3, and 4. We defined stage 0 as 
the time point of  samples obtained from healthy controls, and stages 1, 2, 3, and 4 represented days 1–16 
from symptom onset. We only applied TrendCatcher to cell types containing more than 1000 cells at any 
given stage to ensure the robustness of  the results.

TrendCatcher identified 400 DDEGs in memory B cells, 213 DDEGs in naive B cells, 1413 DDEGs 
in plasma B cells, 398 DDEGs in CD4+ T cells, 645 DDEGs in CD8+ T cells, 423 DDEGs in MAIT, 1161 
DDEGs in naive T cells, and 667 DDEGs in NK cells. The TimeHeatmap of  plasma B cells visualized the 
most dynamic biological pathways. Importantly, this temporal analysis of  scRNA-Seq data shows how rapid-
ly plasma B cells ramp up the upregulation of  Fc-γ receptor signaling and immunoglobulin synthesis as early 
as stage 1 (which corresponds to day 1 of  symptom onset) (Figure 3B). However, not all immunoglobulin 
genes are upregulated during the same temporal phase. As shown in Supplemental Figure 3, genes involved in 
immunoglobulin synthesis show distinct temporal patterns. Due to the comparatively lower number of  plas-
ma B cells, the prominence of  such increased immunoglobulin changes may be diluted in peripheral blood 
bulk RNA-Seq analysis or PBMC bulk RNA-Seq analysis. However, temporal analysis of  all PBMC types 
across the whole time course demonstrated increases in IFN-I signaling and defense responses to viruses as 
the most prominent changes over time (Figure 3C), thus mirroring the responses to SARS-CoV-2 we observed 
in the peripheral blood of  nonhuman primates (Figure 2). To define cell type–specific temporal dynamics, 
we generated TimeHeatmaps for individual PBMC cell types and found significant upregulation of  IFN-I 
signaling in T cells, NK cells, and memory B cells during stage 1 but subsequent downregulation by stage 2 of  
the disease in patients with mild symptoms (Supplemental Figure 4, A–C, and Supplemental Figure 5, A–D).

TrendCatcher identifies early and persistent neutrophil activation as a hallmark of  severe COVID-19. We then 
assessed whether a systematic temporal analysis of  gene expression trends could be used to distinguish 
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disease severity and prognosis of  COVID-19 patients. We thus applied TrendCatcher to a time course 
human whole-blood bulk RNA-Seq data set (11), which contained longitudinal whole-blood transcrip-
tomes from COVID-19 patients with mild, moderate, and severe clinical outcomes. TrendCatcher identi-
fied 77 DDEGs from the mild group, 226 DDEGs from the moderate group, and 1205 DDEGs from the 
severe group. Only 42 DDEGs were shared among these 3 groups (Figure 4A), and these were primarily 
associated with B cell–mediated immunity, Fc-γ receptor signaling pathways, humoral immune response, 
and lymphocyte mediated immunity (Figure 4B). However, TrendCatcher identified 978 DDEGs unique-
ly shown in the severe COVID-19 patient group. Importantly, these genes were strongly enriched for neu-
trophil-related biological pathways, including neutrophil activation and neutrophil-mediated immunity.  

Figure 2. Dynamic gene expression in peripheral blood following SARS-CoV-2 inoculation in a nonhuman primate model. (A) Analysis of the 2 predomi-
nant trajectory patterns in the nonhuman primate peripheral blood RNA-Seq data from days 0 to 14. The top left figure represents 167 DDEGs following an 
up-down expression pattern, which peaked at day 2 and then slowly decreased until day 14. The top right figure represents their expression using a tradi-
tional Z score–normalized heatmap. The bottom left figure represents 263 DDEGs following a monotonic downregulated trajectory pattern, and their gene 
expression values were represented in the corresponding heatmap on the right. Gene expression values have been normalized and log2 transformed. (B 
and C) Top 3 GO enrichment analysis pathways using 167 DDEGs from trajectory pattern “0D-2D Up, 2D-14D Down” and 263 DDEGs from trajectory pattern 
“0D-14D Down”. The x axis represents the number of genes enriched in GO terms; the y axis represents the enriched GO terms; p.adjust represents adjusted 
P values using Holm-Bonferroni methods; and P values were generated by Fisher’s exact test. (D) TimeHeatmap of the top 15 dynamic pathways and their 
dynamic time windows visualizes the temporal patterns. Each column represents a time window. “0D-1D” represents days 0 and 1. The “%GO” column 
represents the percentage of DDEGs found in the corresponding pathway. The “nDDEG” column represents number of DDEGs found in the corresponding 
pathway. The number in each grid represents the Avg_log2FC of gene expressions compared with the previous time window. Color represents the Avg_log-

2FC of the DDEGs within each time window for the corresponding pathway.
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These severe-disease–associated genes also included genes found in pathways such as myeloid cell 
differentiation, reactive oxygen species metabolic process, and positive regulation of  cytokine produc-
tion (Figure 4B). To compare how DDEGs and pathways identified by TrendCatcher compared with 
those identified by other platforms, we also applied 3 additional computational platforms (DESeq2,  

Figure 3. Cell type–specific dynamic gene expression in peripheral blood mononuclear cells following SARS-CoV-2 infection in patients. (A) UMAP visu-
alization of scRNA-Seq PBMC data set (14) with annotated cell types from the original study. (B) TimeHeatmap of top dynamic biological pathway from 
plasma B cells. Each column represents a time window. Stage 0 represents uninfected baseline. The “%GO” column represents the percentage of DDEGs 
found in the corresponding pathway. The “nDDEG” column represents number of DDEGs found in the corresponding pathway. The number in each grid 
represents the Avg_log2FC of gene expressions compared with the previous time window. Color represents the Avg_log2FC of the DDEGs within each time 
window for the corresponding pathway. (C) Top GO enrichment comparison analysis using DDEGs from each cell type. The x axis represents cell types with 
the number of DDEGs shown in the brackets; the y axis represents the enriched GO terms; p.adjust represents adjusted P values using Holm-Bonferroni 
methods; and P values were generated by Fisher’s exact test. Dot size represents gene ratio.
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DESeq2Spline, and ImpulseDE2) to RNA-Seq data obtained from different COVID-19 severity groups 
and set the adjusted P value to 0.05 as a threshold to compare the DDEGs identified by different meth-
ods. As shown in the Venn diagram in Supplemental Figure 6, A–C, all methods showed that the number 
of  identified DDEGs increased with disease severity and that the neutrophil activation pathway was 
highly enriched in the severe COVID-19 group when compared with the mild and moderate groups (Sup-
plemental Figure 6, D–F). While there was broad consistency across platforms in the enriched pathways, 
the central advantage of  the TrendCatcher approach is that it also identifies the time interval when the 
gene expression enrichment between groups begins to diverge.

To systematically characterize which biological processes in whole-blood RNA-Seq samples were most 
dynamic in severe COVID-19 patients and how they progress over time, we applied the TrendCatcher’s Time-
Heatmap function. As seen in the nonhuman primate PBMC and the human COVID-19 scRNA-Seq data 
sets, we again observed the upregulation of  genes involved in the response to virus, humoral immune response 
and IFN-I signaling pathway within week 1 of  disease onset (Figure 4C). Importantly, some dynamic biolog-
ical responses were only enriched in the group of  patients that subsequently progressed to severe COVID-19, 
including neutrophil activation (117 DDEGs, 23.4% of the corresponding GO term), blood coagulation (36 
DDEGs, 10.5% of the corresponding GO term), and regulation of  response to cytokine stimulus and respira-
tory burst (Figure 4C and Supplemental Figure 7, A and B). For instance, neutrophil activation gene expres-
sion increased by a mean of  1.3 log2 units (approximately 2.5-fold increase in mean gene expression) within 
week 1, increased continuously until week 4, and only very gradually decreased in surviving patients by week 
7. However, the summation of  the averaged log2FC (Avg_log2FC) from the TimeHeatmap was larger than 0, 
which indicates that the neutrophil activation may not have returned fully to baseline levels by 7 weeks. We 
next applied LOESS smooth curve fitting to all the neutrophil activation DDEGs identified from the 3 sever-
ity groups, and we used a permutation test approach to quantify when and how the gene signatures differed 
significantly between groups. LOESS fitting confirmed that severe COVID-19 patients showed markedly high 
neutrophil activation at the early stage of  infection (weeks 1 and 2), and also remained highly activated even 
after 7 weeks (Figure 4D). The permutation test function module in the TrendCatcher package identified the 
time interval when the differences between groups became apparent. We found that persistent neutrophil acti-
vation significantly separated the mild COVID-19 group from the severe COVID-19 group as early as the first 
time interval (days 0–7; Supplemental Figure 8A), whereas the difference in neutrophil activation between 
the moderate and severe group become apparent only at the beginning of  week 2 (Supplemental Figure 8B).

Next, we combined TrendCatcher with the in silico cellular deconvolution tool MuSiC (15) to estimate 
cellular composition change over time, using a single-cell whole-blood data set (16) as a reference. As 
shown in Supplemental Figure 9, A and B, each stacked bar chart represents the cellular composition of  
a given sample. After quantifying estimated neutrophil percentages over time (Supplemental Figure 9C), 
we found an increase in the neutrophil percentage starting in week 1 in the severe COVID-19 group. We 
also applied TrendCatcher to the deconvoluted neutrophil gene expression profile using weighted cellular 
composition and observed persistent upregulation of  neutrophil activation in the severe COVID-19 group 
(Supplemental Figure 9D), suggesting that the increase in neutrophil activation gene expression is driven by 
changes intrinsic to neutrophils.

From our bulk RNA analysis, we also observed that severe COVID-19 patients showed evidence of  
greater humoral immune response gene upregulation (Figure 4E), as well as markedly higher upregulation 
blood coagulation genes (Figure 4F) and respiratory burst genes (Figure 4G), which remained upregulated 
even after week 6. These were not found to be upregulated in patients with mild or moderate COVID-19 
disease. These DDEGs and dynamic biological pathways may, thus, be suited to serve as early biomarkers 
that distinguish severe COVID-19 from mild and moderate COVID. All these dynamic gene signatures 
from neutrophil activation, blood coagulation, and respiratory burst pathways were listed using traditional 
heatmaps (Supplemental Figure 10 and Supplemental Figure 11, A and B).

Early impaired IFN-I signaling in PBMC provides a hallmark of  severe COVID-19. Next, to define the 
cell type–specific dynamic gene signatures and biological processes, we used TrendCatcher to analyze 
a human PBMC scRNA-Seq time course data set in which patients were categorized as having either 
moderate or severe COVID-19 (17). Importantly, since this data set only contained mRNA from PBMCs, 
it lacked mRNA from neutrophils. TrendCatcher generated “pseudo-bulk” mRNA profiles for each cell 
type in order to perform the analysis of  gene expression dynamics in a cell type–specific manner. Trend-
Catcher identified more dynamic shifts in almost all cell types from severe COVID-19 patients compared 
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Figure 4. Temporal analysis of whole-blood RNA-Seq data in patients grouped according to disease severity. (A) Venn diagram of DDEGs identified from 
3 COVID-19 severity groups, including mild, moderate, and severe. (B) Top GO enrichment from shared DDEGs across 3 groups compared with top GO enrich-
ment from DDEGs only identified in severe group. The x axis represents comparison groups with the number of DDEGs shown in the brackets; the y axis rep-
resents the enriched GO terms; p.adjust represents adjusted P values using Holm-Bonferroni methods; and P values were generated by Fisher’s exact test. 
Dot size represents gene ratio. (C) TimeHeatmap of the top dynamic pathways from the severe group. Each column represents a time window. “0W-1W” 

https://doi.org/10.1172/jci.insight.157255


9

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2022;7(7):e157255  https://doi.org/10.1172/jci.insight.157255

with moderate groups (Supplemental Table 1 and Supplemental Table 2). To identify dynamic responsive 
processes unique to the severe group, we compared GO enrichment for each cell type between severe 
and moderate groups. As shown in Figure 5A, all innate immune cells and some adaptive immune cells 
(including B cells and CD8+ T cells) from moderate COVID-19 were highly enriched in IFN-I signaling, 
negative regulation of  viral processes, and defense to viruses, whereas these pathways were not signifi-
cantly enriched in severe COVID-19. Severe COVID-19 patients were highly dynamic in MAPK cascade, 
NF-κB signaling, T cell receptor signaling and positive regulation of  cytokine production for both NK 
cells and CD4+ T cells. For monocytes and DC, no uniquely enriched dynamic biological processes were 
observed in severe COVID-19 patients versus moderate COVID-19 patients.

Furthermore, we also found the extent of  the IFN signaling response to be the key distinguishing fea-
ture between moderate and severe COVID-19. To quantitatively compare the trajectory differentiation of  
the IFN-I signaling pathway, we performed the LOESS smooth fitting to the DDEGs identified from this 
pathway. As shown in Figure 5B, there is a profound separation between these 2 groups, with early strong 
activation of  IFN-I signaling in NK cells, monocytes, B cells, and CD8+ T cells in moderate COVID-19 
patients but not in severe COVID-19 patients. Patients with moderate COVID-19 showed activation of  
IFN-I signaling pathways, whereas patients with severe COVID-19 had a blunted activation of  IFN-I sig-
naling. This is also shown in the cell type–specific TimeHeatmap. As shown in Figure 5, C and D, although 
NK cells from both moderate and severe COVID-19 patients demonstrated activation of  IFN-I response 
within the first week, moderate COVID-19 exhibited a stronger activation than the severe group, with 
average 1.62 log2FC compared with 0.87 log2FC. In CD8+ T cells, only moderate COVID-19 groups were 
observed to have a strong IFN-I response within the first week. On the other hand, CD8+ T cells in patients 
who would go on to develop severe COVID-19 showed upregulation of  cell proliferation and cell differen-
tiation genes, instead (Figure 5, E and F). These data suggest that a robust early IFN-I response in PBMCs 
is associated with reduced severity of  COVID-19.

TrendCatcher identifies metabolic gene expression shifts in NK cells as a hallmark response to COVID-19 vacci-
nation. We next applied TrendCatcher to a longitudinal human PBMC scRNA-Seq vaccination data set 
(18) to provide insight into how the immune system physiologically responds to mRNA vaccines over 
time. The vaccination study collected single-cell PBMCs from 56 healthy volunteers vaccinated with the 
Pfizer-BioNTech on days 0, 1, 2, 7, 21, 22, 28, and 42 after the vaccination. We processed each patient’s 
scRNA-Seq individually. We clustered cells using the Seurat algorithm (19) and annotated the cell types 
using SingleR (20). Then we remove cell types containing fewer than 1000 cells for each time point across 
all samples. As Figure 6A shows, it is the Uniform Manifold Approximation and Projection (UMAP) of  
1 patient’s PBMCs single cell data on day 0.

TrendCatcher identified 650 DDEGs in NK cells, 450 in B cells, 23 in CD8+ T cells, 62 in mono-
cytes, and only 6 in CD4+ T cells. This indicates that NK cells exhibit a strong dynamic gene expression 
shift after vaccination. After comparing the GO enrichment analysis across cell types, we found that 
NK cells gene expression shifts were enriched in metabolic processes in response to the Pfizer-BioN-
Tech SARS-CoV-2 mRNA vaccine, such as regulation of  cellular amino acid metabolism and ATP 
metabolism (Figure 6B). As shown in Figure 6C, a TimeHeatmap of  NK cells shows 54 DDEGs, which 
account for nearly half  of  the ATP metabolic process pathway genes and exhibited a mean of  0.44 log2 
fold upregulation after the first dose of  vaccination. These findings indicate that the reprogramming 
of  metabolism in NK cells may be an indicator of  an intact vaccine response. Another hallmark of  the 
vaccine response was the activation of  IFN pathways, including IFN-I signaling pathway and response 
to IFN-γ (Supplemental Figure 12A). Importantly, the TimeHeatmap demonstrates that these gene 
expression shifts were very transient, usually decreasing by day 2 or day 7, and were again upregulated 
when the subjects received the booster vaccine at day 21. IFN pathways showed an average increase 
of  0.71 and 1.42 log2FC. In adaptive immune cells, we also observed strong IFN-I signaling pathways 

represents week 0 (healthy control) to week 1. The “%GO” column represents the percentage of DDEGs found in the corresponding pathway. The “nDDEG” 
column represents number of DDEGs found in the corresponding pathway. The number in each grid represents the Avg_log2FC of gene expressions compared 
with the previous time window. Color represents the Avg_log2FC of the DDEGs within each time window for the corresponding pathway. (D–G) LOESS curve 
fitting of DDEGs identified in the severe COVID-19 group of the neutrophil activation pathway, humoral immune response pathway, blood coagulation path-
way, and respiratory burst pathway. Red curves represent the severe group, blue curves represent the moderate group, and green curves represent the mild 
group. The x axis represents time in weeks; the y axis represents the Avg_log2FC of gene expressions compared with the baseline.
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Figure 5. Temporal analysis of scRNA-Seq data of PBMCs from patients with either moderate or severe COVID-19. (A) Dot plot showing GO enrichment 
comparison between severe COVID-19 and moderate COVID-19 for each cell type. Each panel represents 1 cell type. The x axis represents severity group; 
the y axis represents the enriched GO terms; p.adjust represents adjusted P values using Holm-Bonferroni methods; and P values were generated by 
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activated in both B cells and CD8+ T cells (Supplemental Figure 12, B and C). Additionally, B cells 
demonstrated upregulation of  antigen processing and protein synthesis (Supplemental Figure 12B), 
which were upregulated only for the first day and then began decreasing. It is noteworthy that early 
upregulation of  IFN pathways in the PBMCs of  vaccine recipients mirrors that seen in patients with 
moderate COVID-19 infection, consistent with the notion that early and transient IFN upregulation is 
a hallmark of  a healthy immune response to the SARS-CoV-2 infection.

Discussion
Temporal analysis of  gene expression is gaining importance in the analysis of  complex dynamic process-
es such as disease progression. Besides gene dynamic pattern characterization, time course gene expres-
sion data are also used to infer regulatory and signaling relationships among genes (21, 22). Integrating 
with other different types of  measurements, such as pathology and infection over time, helps disentangle 
the complex dynamic processes and possible underlying mediators (23). Thus, accurate identification of  
DDEGs in a time course RNA-Seq or scRNA-Seq study can help identify time-dependent disease mech-
anisms, adaptive and maladaptive molecular signatures, and potential biomarkers that may be associated 
with disease severity.

In recent years, tools have been implemented to characterize time course RNA-Seq data; however, 
these tools were focused on bulk RNA-Seq data sets (3, 6, 7), and few infer trajectories from scRNA-Seq 
(24, 25). Compared with methods that analyze time course data without considering the sequential nature 
of  time points, modeling time as a continuous function avoids a relative loss of  statistical testing power, 
especially when many multiple time points were studied. There is also a need for methods that combine 
DDEG identification with the visualization of  dynamic pathway shifts.

In this study, we developed an open-source R software package to perform temporal analysis in longitu-
dinal bulk RNA-Seq and scRNA-Seq data sets. TrendCatcher can identify DDEGs and infer the trajectories 
for each DDEG. By combining a time window sliding strategy on inferred gene trajectories and leveraging 
annotated biological pathway databases, TrendCatcher can infer and visualize the most dynamic biological 
pathways in response to the external stimuli. Using simulated data sets for benchmarking, TrendCatcher 
achieved higher accuracy (AUC = 0.9) compared with other commonly used methods for the analysis of  
temporal gene expression data sets, when analyzing 3 or more time points. When comparing our results with 
other methods using the whole-blood RNA-Seq data, we found that DESeq2 identified the fewest number 
of  DDEGs in all patient groups, likely caused by a relative loss of  statistical testing power by treating time 
as factorial variable. ImpulseDE2, identified the largest number of  DDEGs, but around 50% of  the DDEGs 
had only a 0.5 log2FC. This oversensitivity to gene expression changes of  limited magnitude may be due 
to the strong model assumption, which is that the dynamic gene expression trajectory must either follow a 
monotonic curve or an impulse shape. However, none of  the other 3 methods provided the output of  gene 
expression estimation from replicates at each time point and also did not infer gene expression trajectories. 
As a result, these approaches cannot center a given gene’s expression level to its baseline, let alone compare 
their trajectories. In contrast, TrendCatcher provides an output of  gene expression estimation from multiple 
replicates for each time point, which makes it possible for further trajectory comparison and further analysis, 
such as timing of  the upregulation and downregulation of  specific biological pathways. A key advantage of  
using TrendCatcher is identifying the time intervals when differences emerge. This is especially apparent in 
the setting of  biphasic or multiphasic temporal trajectories, in which gene expression levels can change their 
trend of  upregulation or downregulation during a time course. Importantly, by utilizing the TimeHeatmap 
function, TrendCatcher can help researchers identify the magnitude and dynamic nature of  pathways shifts.

Despite the extraordinary success of  rapidly developed and deployed mRNA vaccines against SARS-
CoV-2, the ongoing COVID-19 pandemic remains a major global health problem, in part due to the 
emergence of  newer highly contagious SARS-CoV-2 variants of  concern, as well as vaccine hesitancy.  

Fisher’s exact test. Dot size represents gene count. (B) LOESS curve fitting on DDEGs identified from the IFN-I pathway using TrendCatcher from moderate 
COVID-19 and severe COVID-19. Blue indicates moderate group, and red indicates severe group. The x axis represents time in weeks; the y axis represents 
the Avg_log2FC of gene expressions compared with the baseline. (C–F) TimeHeatmap of NK cells from moderate and severe COVID-19, CD8+T cells from 
moderate and severe COVID-19. Each column represents a time window. “0W-1W” represents week 0 (healthy control) to week 1. The “%GO” column 
represents the percentage of DDEGs found in the corresponding pathway. The “nDDEG” column represents number of DDEGs found in the corresponding 
pathway. The number in each grid represents the Avg_log2FC of gene expressions compared with the previous time window. Color represents the Avg_log2FC 
of the DDEGs within each time window for the corresponding pathway compared with the previous time window.
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This requires the identification of  novel mechanistic targets, especially in vulnerable patients who have 
a high risk of  developing severe COVID-19. One of  the key pathogenic factors driving COVID-19 sever-
ity is the profound immune dysregulation observed in patients with severe COVID-19 that can result in 
respiratory failure (26–29). Human immune responses to SARS-CoV-2 infection are highly dynamic and 
time dependent, requiring upregulation, as well as downregulation, of  distinct immune signaling path-
ways at the appropriate times to ensure optimal host defense (26–29). Understanding the dynamics of  the 
COVID-19 immune response could form the basis of  developing therapies that are appropriate for a given 
time window (30). Personalized medicine or precision medicine are gaining traction by developing ther-
apies tailored to patients based on their genotype and phenotype, but personalization likely also requires 

Figure 6. Temporal analysis of PBMC scRNA-Seq data from human subjects receiving the SARS-CoV-2 mRNA vaccine. (A) UMAP of the single-cell 
transcriptional profile of 1 patient on day 0. Cell types were autoannotated by SingleR. (B) Dot plot of comparison of the top GO terms enriched 
from cell type–specific DDEGs. The x axis represents cell type with the number of DDEGs shown in the brackets; the y axis represents the enriched 
GO terms; p.adjust represents adjusted P values using Holm-Bonferroni methods; and P values were generated by Fisher’s exact test. Dot size rep-
resents gene ratio. (C) TimeHeatmap of NK cells. Each column represents a time window. “0D-1D” represents day 0 (healthy control) to day 1. The 
“%GO” column represents the percentage of DDEGs found in the corresponding pathway. The “nDDEG” column represents number of DDEGs found 
in the corresponding pathway. The number in each grid represents the Avg_log2FC of gene expressions compared with the previous time window. 
Color represents the Avg_log2FC of the DDEGs within each time window for the corresponding pathway. The first dose was administered on day 1, 
and the second dose was administered on day 21.
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tailoring therapies based on the temporal phase of  a disease. These studies highlight the need for time 
course or longitudinal analyses of  the host responses to the SARS-CoV-2 infection.

In this study, we applied TrendCatcher to systematically analyze sequential blood samples from 
either nonhuman primates infected with SARS-CoV-2, human patients with COVID-19 of  varying sever-
ity, or human subjects who received a SARS-CoV-2 mRNA vaccine. TrendCatcher identified dynamic 
gene expression and biological pathway signatures for (a) SARS-CoV-2 infection progression over time, 
(b) severe COVID-19 versus moderate or mild COVID-19, and (c) COVID-19 vaccine recipients versus 
control. TrendCatcher established response to virus, humoral immune response, and IFN-I signaling 
pathway activation across peripheral blood cell types in mild, moderate, and severe COVID-19. How-
ever, we found temporal patterns of  gene expression shifts that were unique in the severe COVID-19 
patients. Severe COVID-19 was associated with marked activation of  neutrophils and upregulation of  
coagulation pathways, as well as with blunted IFN-I signaling as early as week 1 in the peripheral blood 
of  patients. Importantly, severe COVID-19 was associated with persistent activation of  neutrophils and 
genes regulating coagulation for as long as 6 weeks, underscoring that the importance of  the temporal 
analysis by TrendCatcher, which identified hallmarks of  severe COVID-19 in peripheral blood samples. 
It is important to note that, while peripheral blood samples are convenient to obtain for longitudinal 
studies because they only involve minimally invasive blood draws, they give a limited picture of  the gene 
expression and activation states because gene expression patterns of  immune cells in a tissue may be 
different from their counterparts in the circulating blood.

Our findings complement recent studies that implicate neutrophils in the excessive inflammation, 
coagulopathy, immunothrombosis, and organ damage that characterize severe COVID-19 (31–35). Neu-
trophils are particularly active in highly vascularized organs, such as lungs and kidneys, which are prime 
targets of  SARS-CoV-2–induced injury in COVID-19 (36). Dysregulated neutrophil responses, such as 
prolonged activation, may cause damage to vessels and underlying parenchymal (37–39). Studies also 
show that activated neutrophils through TLRs, chemokine receptors, and cytokine receptors can stimu-
late the neutrophil extracellular trap (NET) formation (31). Furthermore, recent studies showed that the 
disbalance between NET formation and degradation can trigger immunothrombosis and tissue injury 
(40, 41). Excessive activation of  macrophages and adaptive immune cells in severe COVID-19, which 
can form vicious cycles of  positive feedback circuits, has also been demonstrated (42, 43), but less is 
known about how early neutrophils are activated in disease progression because many of  the studies on 
neutrophils in clinical COVID-19 or animal models of  severe SARS-CoV-2 focused on the late stages of  
the disease, as well as the neutrophils in the lung tissue. In our study, we used a systematic temporal anal-
ysis and observed that profound neutrophil activation in the peripheral blood, which was predominant in 
the severe COVID-19 group, occurs as early as week 1 after diagnosis, and we observed that symptoms 
persist even after 6 or 7 weeks in surviving patients.

Our observation of  early upregulation of  coagulation genes in the whole-blood transcriptomes of  severe 
COVID-19 patients also points to another feature that is associated with severe COVID-19, thrombotic, 
and embolic complications such as strokes (13, 44, 45). Recent studies have found that the procoagulant 
changes in endothelial cells underly the coagulopathy in severe COVID-19 (46). Endothelial dysfunction 
in COVID-19 patients may be exacerbated through inflammatory cytokines and NETs, thus pointing to 
interactions between circulating or recently recruited neutrophils and the vessel wall endothelial cells that 
are in contact with circulating immune cells as drivers of  such coagulopathic manifestations (47–49). We 
believe the analysis of  the RNA-Seq and scRNA-Seq data support neutrophil activation and upregulation 
of  coagulation genes as defining features of  severe COVID-19, highlighting their role as early biomarkers 
to provide prognostic information and, thus, optimally treat patients who have a higher likelihood of  pro-
gressing to severe disease. Importantly, our results also raise questions about the role of  neutrophils and of  
coagulation in what is referred to as “long COVID” or “postacute sequelae of  COVID” (50–52) because we 
observed that the activation persists for as long as 6–7 weeks after the initial infection.

Our temporal analysis showed that severe COVID-19 single-cell PBMCs were characterized by 
impaired IFN-I signaling at the onset of  infection (week 1), compared with the moderate COVID-19 group. 
This impaired IFN-I signaling was identified in innate cells, such as NK cells and monocytes, and adaptive 
cells, such as B cell and CD8+ T cells. IFN-I, which are essential for antiviral immunity (53, 54), have been 
shown to be upregulated in COVID-19 (55, 56). Other studies also suggested that impaired IFN-I signaling 
may promote severe COVID-19 and that IFN therapy could be used as therapy in severe COVID-19 (57). 
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However, since these studies were not designed for longitudinal analyses, the timing of  when to intervene 
on IFN signaling was not clear. Traditional analyses of  gene expression data are not suited for the identifi-
cation of  temporal windows and, thus, do not address whether impaired IFN production is present at the 
onset of  infection, whether it was delayed, or whether IFN production is exhausted after an initial activa-
tion (56). TrendCatcher addressed this question by showing the dynamic timing of  type I IFN from both 
the moderate group and severe group.

In our COVID-19 vaccination single-cell PBMC temporal data analysis, we also identified prominent 
metabolic shifts in NK cells. Cellular metabolism is recognized as an important factor that can determine 
the fate and function of  lymphocytes (58, 59). Certain metabolic pathways have been shown to have direct 
immunoregulatory roles (58). Activated NK cells engage in a robust metabolic response, which is required 
for normal effector functions (60), and our data suggest that assessing NK metabolic shifts may be an 
intriguing alternative to assessing vaccine responsiveness; this does not rely on antibody levels, which can 
be highly variable in laboratory assays.

In conclusion, we have developed the potentially novel TrendCatcher R package platform designed for 
time course RNA-Seq data analysis, which identifies and visualizes distinct dynamic transcriptional pro-
grams. When applied to real whole-blood bulk RNA-Seq time course data sets from COVID-19 patients, 
we observed that patients with severe COVID-19 showed gene expression profiles consistent with profound 
neutrophil activation and coagulopathy early during the progression of  the disease (starting from the first 
week of  symptom onset). Even though the application of  TrendCatcher in this manuscript focused on 
COVID-19 data sets, it has been designed to be used for the analysis of  a broad range of  dynamic biological 
processes and diseases.

Methods
TrendCatcher framework. The main components of  the TrendCatcher framework are shown in Figure 1. 
TrendCatcher requires 2 main inputs: the raw count table C of  a temporal study with a dimension of  m × 
n, where m denotes the number of  genes and n denotes the number of  samples, and a user-defined baseline 
time variable T, such as “0 hour”. Since samples may have different sequencing depths and batch effect, 
TrendCatcher integrates with limma (5) and provides preprocessing steps, such as batch correction and 
normalization. For scRNA-Seq data sets, TrendCatcher extracts cells for each cell type annotated in the 
meta data slot of  Seurat object and converts it into a cell type–specific “pseudobulk” time course RNA 
library. Based on a user-specified threshold, genes of  relatively low abundance are removed from the count 
table, reads are normalized, and batch effects are removed. TrendCatcher’s core algorithm is composed 
of  5 main steps: (a) baseline fluctuation confidence interval estimation, (b) model dynamic longitudinal 
count, (c) time point dynamic P value calculation, (d) gene-wise dynamic P value calculation, and (e) break 
point screening and gene-wise dynamic pattern assignment. Mathematical details will be expanded in the 
following sections. For the output of  TrendCatcher, there are mainly 2 components: a master table and a 
set of  functions for versatile visualization purposes. The master table contains all the dynamic details of  
each single gene, including its dynamic P value, its break point location time, and its dynamic trajectory 
pattern. In addition to the master table, TrendCatcher produces 5 main types of  visualizations: (a) a figure 
showing the observed counts and fitted splines of  each gene, (b) genes trajectories from each trajectory pat-
tern group, (c) a hierarchical pie chart that represents trajectory pattern composition, (d) a TimeHeatmap 
to infer trajectory dynamics of  top dynamic biological pathways, and (e) a 2-sided bar plot to show the top 
most positively and negatively changed (averaged accumulative log2FC) biological pathways.

Baseline f luctuation confidence interval estimation. We assumed that the observed number of  RNA-Seq 
reads count from the baseline time (e.g., t = 0 hour) Xi,t baseline was generated from a negative binomial 
(NB) distribution. 

Xi,t baseline ~ NB(μi,t baseline,φi) (Equation 1)
Where μi,t baseline is the mean count of  gene i (i refers to the index of  the gene) at the baseline time point, and 
φi is the dispersion factor. First, the dispersion factor φi was preestimated as a constant hyperparameter for 
each gene with DESeq2 (3), as shown in Equation 2. Here, σi(t) is the variance at time t. 

σi(t)
2 = μi(t) + φi × μ(t)2 (Equation 2)

Then, μi,t baseline was estimated using maximum likelihood from Equation 3. 

 (Equation 3)
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Based on the NB distribution and the estimated mean count for baseline time, we constructed the 90% CI 
(Xi,t baseline,0.05, Xi,t baseline,0.95) as the baseline count fluctuation interval.

 (Equation 4A, 4B)
Model dynamic longitudinal count estimation. To model the time-dependent gene expression value, we 

applied a smoothing spline ANOVA model (61, 62) with a NB family constraint to fit the reads from sam-
ples across nonbaseline multiple time points. The random variable Xi,t (t≠t baseline) is assumed to follow the NB 
distribution in Equation 5, with a positive integer α represents number of  failures before the αth success in 
a sequential of  Bernoulli trials, and p(t) ∈ (0,1) represents the success probability. 

Xi,t (t≠t baseline) ~ NB(α,p[t]) (Equation 5)
The log-likelihood given a time course observed count x = {xi,t (t≠t baseline)}i = 1,...,n; t = 1,... T is calculated as 
Equation 6. 

 (Equation 6)
Taking the logit link and model time effect, we define the logit link η.

 (Equation 7)
To allow for flexibility in the estimation of  η, and find the best trade-off  between goodness of  fit and the 
smoothness of  the spline curve, soft constraints of  the form J(η) is added to the minus log-likelihood, with 
the smoothing parameter λ > 0.

–L + λ J(η) (Equation 8)
The solution to the optimization of  Equation 8 leads to a smoothing fitting to the reads from samples across 
different nonbaseline time points. The estimated mean of  μi,t(t≠tbaseline) can be estimated using Equation 9.

 (Equation 9)
Gene’s dynamic P value calculation. To calculate gene’s nonbaseline dynamic signal significance, each 

gene’s nonbaseline estimated mean count μi,t(t≠tbaseline) was tested against the baseline fluctuation interval. 
Based on Equation 10A and Equation 10B, for each gene at each single nonbaseline time point, a dynamic 
time P value was calculated.

If μi,t(t≠tbaseline) ≥ μi,tbaseline, then pi,t = ∫P(x)≥ μi,t(t≠tbaseline)|μi,tbaseline,φi) (Equation 10A)
If μi,t(t≠tbaseline) ≤ μi,tbaseline, then pi,t = ∫P(x)≤ μi,t(t≠tbaseline)|μi,tbaseline,φi) (Equation 10B)

Then, we applied Fisher’s combined probability test method to calculate a gene-wise dynamic P value. 

 (Equation 11)
Trajectory pattern assignment. First, we connect all the significant dynamic signal time points, with a P 

value threshold less than 0.05. Then, we applied a break point searching strategy to capture the gene expres-
sion change trend. The definition of  break point is defined using Equation 12A and Equation 12B.

If μi,t, > μi,tnext AND μi,t > μi,tprevious, break point type I (Equation 12A)
If μi,t, < μi,tnext AND μi,t < μi,tprevious, break point type II (Equation 12B)

There are 2 types of  break points: type I means a gene’s expression level is upregulated followed by a down-
regulation, and type II means a gene’s expression level is downregulated, followed by an upregulation. By 
screening along the break point, the master-pattern and subpattern were assigned to each gene.

TimeHeatmap enrichment analysis and 2-sided bar plot. To build the TimeHeatmap for visualizing the biolog-
ical pathway enrichment change over time, we designed a window-sliding strategy to capture all the upreg-
ulated or downregulated genes within each time interval. If  we denote time vector as tj and ∈ 1,…, T, each 
time interval is denoted as [tj-1, tj]. We found Nup upregulated genes and Ndown downregulated genes within 
the time window [tj-1, tj]; then, Fisher’s exact test was performed to obtain the GO term enrichment with the 
corresponding time interval for upregulated genes and downregulated genes separately. Users can select the 
top most enriched biological pathways (ranked by enrichment P value) for each time interval (the default is 
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top 10 most enriched pathways). Then, for each selected GO term within the corresponding time window, 
we calculated the averAvg_log2FC of all the DDEGs from this GO term. A series of  Avg_log2FC values over 
time characterize the trajectory dynamics of  the corresponding biological pathway; it is defined as biological 
pathway trajectory inference in this study. The summation of  the series of  Avg_log2FC estimates the aver-
aged accumulative log2FC (GO_mean_logFC) for the corresponding GO term. TrendCatcher ranks biologi-
cal pathways based on their dynamic magnitude inferred from the GO_mean_logFC value. Users are free to 
choose the top most positively and negatively changed (averaged accumulative log2FC) biological pathways. 
Besides GO enrichment analysis (63), TrendCatcher also packages Enrichr (64) biological pathway databases. 
Visualization is constructed using the ComplexHeatmap (65) package.

Simulated data set. To mimic the real biological RNA-Seq data set, we only allowed approximate-
ly 10% of  the genes to be dynamic responsive genes. In this study, we embedded 5 different types of  
trajectories into the temporal RNA-Seq simulated data sets, including nondynamic trajectory (~90%), 
monotonic trajectory (~2.5%), biphase trajectory (~2.5%), and multimodal trajectory (~5%), includ-
ing 2–break point and 3–break point trajectory. Each type of  trajectory was constructed by adding 
NB distribution noise to the embedded trajectory count. For example, for monotonic trajectory, we 
defined the first and last time points’ RNA expression level changes to be 0.5–2 log2FC. Then, we added 
NB distribution noise to the embedded monotonic trajectory. To check how the AUC changes as time 
course study extends longer, we sampled 3, 5, 7, 9, and 11 different numbers of  time points with even 
time intervals, and we randomly sampled 3 replicates for each time point. To validate how the predic-
tion AUC varies across different types of  trajectories, we embedded approximately 10% of  the genes to 
have nondynamic trajectories, and approximately 90% of  the genes have a specific dynamic trajectory 
(monotonic, biphase, or multimodal).

Pseudobulk RNA library construction. To construct “pseudo-bulk” RNA library from scRNA-Seq data 
sets, all cells for each cell type in a given sample were computationally “pooled” by summing all counts for 
a given gene. Since pseudobulk libraries composed of  few cells are not likely modeled properly, we removed 
cell types containing less than 1000 cells in this study. Lowly expressed genes were removed for each cell 
type, as well, using the filterByExpr function from edgeR R package (4). Gene counts were transformed 
using the log of  the counts per million (CPM), and library size was normalized using calcNormFactors 
function with the method relative log expression (RLE).

Gene set enrichment of  DDEGs. Gene set enrichment analysis (GSEA) in this study was performed using 
clusterProfiler (63) R package, and enrichment comparison from multiple groups as visualized using the 
compareCluster function.

Permutation testing for assessing differences between groups over time. After fitting gene expression longi-
tudinal profiles from each severity group with a LOESS smoothing spline, we binned the time variable 
into 100 time intervals and calculated the observed area ratio between 2 curves within each time interval. 
Next, we shuffled the severity group label on the gene expression longitudinal profiles and repeated the 
previous step to calculate the shuffled area ratio for each time interval. We iterated the shuffling step 
1000 times. In this way, for each time interval, we calculated the P value using the empirical distribution 
from the permutation test. This permutation test module in TrendCatcher allows users to assess between 
group differences of  dynamic gene expression pathways in a time interval–dependent manner.

Table 1. Data sets analyzed in this study

Data set Organism Number of time 
points

Study Figure Data set source Reference

Bulk Peripheral Blood Macaca mulatta 7 Covid versus Normal Figure 2 GSE156701 (13)
scRNA PBMC Homo sapien 5 Covid versus Normal Figure 3 https://db.cngb.org/search/

project/CNP0001102/
(14)

Bulk Peripheral Blood Homo sapien 8 Severe versus 
Moderate

Figure 4 https://www.covid19cellatlas.org/
patient/citiid/

(11)

scRNA PBMC Homo sapien 4 Severe versus 
Moderate

Figure 5 GSE161918 (17)

scRNA PBMC Homo sapien 8 Vaccination Figure 6 GSE171964 and GSE169159 (18)

https://doi.org/10.1172/jci.insight.157255


1 7

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2022;7(7):e157255  https://doi.org/10.1172/jci.insight.157255

Source code. The R package source code of  TrendCatcher is available on GitHub (https://github.com/
jaleesr/TrendCatcher).

Statistics. The statistical tests for each computational approach model are described in-depth above. 
Generally, P values less than 0.05 were considered significant, and when multiple comparisons were per-
formed, we applied Holm-Bonferroni method for P value adjustment.

Study approval. All the data sets used for the analyses were publicly available (as indicated in Table 1), 
and no human subjects were recruited.
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