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Summary 

Gene co-expression provides crucial insights into biological functions, however, there is a lack of 

exploratory analysis tools for localized gene co-expression in large-scale datasets. We present 

GeneSurfer, an interactive interface designed to explore localized transcriptome-wide gene co-

expression patterns in the 3D spatial domain. Key features of GeneSurfer include transcriptome-

wide gene filtering and gene clustering based on spatial local co-expression within 

transcriptomically similar cells, multi-slice 3D rendering of average expression of gene clusters, 

and on-the-fly Gene Ontology term annotation of co-expressed gene sets. Additionally, 

GeneSurfer offers multiple linked views for investigating individual genes or gene co-expression 

in the spatial domain at each exploration stage. Demonstrating its utility with both spatial 

transcriptomics and single-cell RNA sequencing data from the Allen Brain Cell Atlas, GeneSurfer 

effectively identifies and annotates localized transcriptome-wide co-expression, providing 

biological insights and facilitating hypothesis generation and validation. 
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Introduction 

The rapid emergence of single-cell RNA sequencing (scRNA-seq) and Spatial Transcriptomics 

(ST) has led to routine generation of high-dimensional, spatially resolved datasets at the whole-

brain scale1-3. These datasets offer high informational content but require scalable computational 

methods for effective data exploration. 

From spatially sampled bulk sequencing we already know that spatially co-varying genes tend to 

be functionally related4. The “guilt by association” principle suggests that genes which are co-

expressed are likely to share function roles, especially within transcriptomically similar cells. 

Methods for grouping genes into co-expression modules include clustering, matrix decomposition, 

network inference-based approaches and others5. The most common approach is to employ 

clustering algorithms for gene set identification. However, one major limitation is that clustering 

methods group genes using the entire dataset as input. It might overlook spatially localized co-

expression patterns within specific cell subsets, since genes can be locally co-expressed at 

certain locations in the brain but not at others. Thus, methods that can detect spatially localized 

co-expression could provide biological specificity of co-expression patterns. Among the various 

module detection methods, biclustering is able to go beyond this limitation by simultaneously 

capturing gene co-expression and sample subsets across the data matrix6,7. But similar to other 

module detection methods, biclustering algorithms are script-based and require predefined 

parameters5. This introduces uncertainty and leads to the need for testing across different 

settings. Therefore, there still exists a gap to identify the local gene co-expression in a flexible 

and interactive manner for the user. 

Besides methods that directly identify local gene co-expression, we can also apply the clustering 

algorithm to a subset of a specific cell type, to compute co-expression within transcriptomically 

similar cells. However, cell clustering algorithms divide cells into disjoint classes according to 

transcriptional similarity, binarizing potentially gradual cell type transitions and gradients into 

distinct subtypes3. This process requires the user to decide beforehand which level of cluster 

resolution is of interest, limiting the ability to explore the complete parameter space. Currently, 

there is a lack of approaches that allow for the identification of local spatial co-expression at user-

defined cell-type resolution, offering a continuum approach to cell transcriptome similarities. 
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ST techniques measure gene expression information of tens to hundreds of genes in individual 

cells, while preserving their spatial context in the tissue2. This enables the visualization of gene 

expression in the spatial domain. Despite significant improvements in the transcriptome resolution 

in recent years2, a primary limitation remains that spatially resolved transcriptomics captures far 

fewer genes compared to scRNA-seq. In contrast, scRNA-seq aims to capture a detailed 

transcriptomic profile, but does not provide spatial context. Integrative tools have been developed 

to facilitate the visualization of gene expression in ST data or to represent scRNA-seq data in 

reduced dimensions8-10, such as through t-distributed stochastic neighbor embedding (t-SNE)11 

and uniform manifold approximation and projection (UMAP)12. Additionally, computational 

imputation methods and machine learning models are actively being researched to integrate 

scRNA-seq data to expand the gene dimensionality of ST data13-16. However, most of these 

methods are static, and interactive visualization softwares for visualizing large-scale scRNA-seq 

data in the 3D spatial domain are lacking. 

Subsequent steps of co-expression identification usually include visualization and functional 

interpretation. Gene set enrichment analysis allows us to derive molecular insights with 

interpretable terms, such as known biological pathways and functions17. Enrichment frameworks 

such as ToppGene18 and gProfiler19 offer Application Programming Interface (API) access to 

integrate enrichment analysis into analytical tools. 

In this work, we introduce GeneSurfer: an interactive interface for exploring localized 

transcriptome-wide gene co-expression patterns in the 3D spatial domain. The major 

contributions of our work are: 1) transcriptome-wide gene filtering and gene clustering based on 

spatial co-expression within transcriptomically similar cell populations, 2) real-time, interactive cell 

selection and multi-slice 3D rendering of average expression of gene clusters, and 3) on-the-fly 

Gene Ontology (GO) term annotation of co-expressed gene sets. In addition, we offer multiple 

linked views for interactive visualization of individual genes or gene co-expression in the spatial 

domain at each stage of the exploration. We demonstrate the utility of GeneSurfer using both ST 

and scRNA-seq data from the Allen Brain Cell (ABC) Atlas1. 
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Results 

GeneSurfer Overview 

By offering multiple linked views of cells and genes, we aim to provide the user with an interactive 

interface to explore local gene expression patterns in the spatial domain, and to gain potential 

biological insights from the identified spatial patterns (Supplemental Movie 1). We support the 

input of ST datasets, and additionally we also project the averages of transcriptome-wide gene 

expression obtained in scRNA-seq data onto the spatial domain by matching annotations (Figure 

1B). This requires that both the ST and the scRNA-seq are classified in the exact same cell type 

taxonomy. 

An overview of the proposed methodology is shown in Figure 1A. Our approach begins with a 

cell-centric exploration, where users select cells of interest that have similar gene expression 

profiles through one of the three selection methods (Figure 1C). Firstly, users can select a cell 

type annotation from the annotated data taxonomy. Secondly, users can use our previous work 

SpaceWalker20 to interactively identify cells with transcriptomically similar profiles at user-defined 

cell locations. And thirdly, users can re-embed the data on-the-fly using Hierarchical Stochastic 

Neighbor Embedding (HSNE)21 or t-SNE11 and select cell clusters from the embedding. As such, 

this initial step focuses on selecting cell populations of interest for further analysis. 

Once similar cells are selected, this workflow instantaneously transitions to gene-centric 

exploration (Figure 1D), allowing for on-the-fly analysis of genes within the selected cells. Prior to 

gene set clustering, gene filtering is performed based on user-defined spatial metrics within the 

cell selection (Moran’s I statistics22 or the correlation of gene expression and coordinate axes in 

a standardized Common Coordinate Frame (CCF)). In addition, a non-spatial gene filter can be 

applied to identify genes highly expressed in the selected cells. 

Based on the expression profiles of the selected cells, genes are grouped into clusters with similar 

local spatial patterns using hierarchical clustering23. The average expression of genes in each 

cluster is shown in subviews to provide an overview of the expression patterns of the gene 

clusters. Gene set enrichment analysis is performed instantaneously on the user-selected gene 

cluster to provide insights into the potential biological functions or pathways associated with the 
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genes. The output of enrichment analysis is presented in a table listing the statistically significant 

GO term annotations, their corresponding p-values, and associated gene symbols.  

Overall, GeneSurfer allows a closed-loop, interactive exploration of gene expression in a user-

defined subset of cells. 
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Figure 1. GeneSurfer is an interactive interface for exploring local gene expression 

patterns in the spatial domain. A. Overview of the proposed workflow. Users select 

transcriptomically similar cells and visualize them in 3D. Genes are filtered and then clustered 

based on their expression within the selected cells. GO terms are retrieved by selecting a gene 

set cluster, and individual genes can be visualized in 2D and 3D. B. scRNA-seq expression 

averages of the annotations are projected in the spatial domain, allowing visual exploration of 

transcriptome-wide gene expression in 3D space. C. Users can interactively select 

transcriptomically similar cells using SpaceWalker, annotations from the data taxonomy, or 

through HSNE or t-SNE embeddings. D. After selecting a subset of cells, genes are filtered based 

on their local expression within the selected cells. Three metrics are available for gene filtering: 

Moran’s I, Pearson correlation between gene expression and corresponding spatial coordinates 

and differential expression between the selection and the whole data. Filtered genes are 

displayed in a bar chart, and are clustered into groups. Associated GO terms of the selected gene 

cluster are retrieved and displayed in a table. Views in GeneSurfer are linked to enable an 

interactive manner of exploration. 

Projection of scRNA-seq annotation averages enables visual exploration of transcriptome-

wide gene expression in 3D space 

To evaluate the projection of annotation averages from scRNA-seq data into the spatial domain 

based on label correspondence, we used the ABC Atlas1. The ABC Atlas is a mouse whole-brain 

transcriptomic cell type atlas, consisting of an annotated scRNA-seq dataset with ~4 million cells 

and more than 30k genes and an annotated 3D ST dataset with ~3.9 million cells and 500 genes 

using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The fine-grained 

cell-type annotations (> 5000 cell types) in the ABC Atlas make it an appropriate benchmark 

dataset for validating our tool, while demonstrating the scalability and discovery potential of the 

proposed approach. The annotation level “Cluster” is used for the projection. 

To validate the 3D spatial projection of scRNA-seq annotation averages, we performed two 

quantitative experiments, comparing the spatial gene expression patterns of the 500 genes that 

are measured in both the MERFISH and scRNA-seq data. First, to establish the validity of 

replacing expression in the 3D spatial data with expression averages of the corresponding 

annotation from scRNA-seq data, we calculated the Pearson correlation at the cluster annotation 
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level between the scRNA-seq annotation averages and the measured MERFISH data for each 

gene available in the MERFISH data. Figure 2A shows that the mean expression levels of genes 

in the clusters are highly correlated between the scRNA-seq clusters and the MERFISH clusters. 

Second, we calculated the spatial Pearson correlation between the 3D projection of the scRNA-

seq annotation averages and the actual MERFISH measurement at the cell level in the 3D spatial 

domain. Figure 2B shows that the spatial correlations at the cell level are lower than those at the 

cell cluster level. Thus we further inspected the individual gene expression by visually comparing 

the spatial patterns of scRNA-seq annotation averages and the MERFISH measurement. Several 

genes exhibit high correlation, particularly in genes with widespread and distinctive expression in 

the whole brain (e.g. Cbln1 in Figure 2C). The relatively low correlations might be due to the fact 

that the correlation at the cell level is calculated for the whole brain (~4 million cells). A gene that 

expresses in the whole brain in a scattered way, or a gene that only expresses highly in a small 

spatially localized hotspot would result in a low correlation coefficient, for example Lsp1 and 

Foxa2 (Figure 2C). However, the main structure of the gene expression is preserved by label 

correspondence of scRNA-seq annotation averages, despite some instances of low correlation 

values. 

To evaluate the projection of scRNA-seq annotation averages for the genes not measured in the 

MERFISH, we compared the spatial gene expression between projection of the scRNA-seq 

annotation averages and the Allen Brain Atlas in situ hybridization data4. Projection of the scRNA-

seq annotation averages show excellent agreement with the Allen Brain Atlas in situ hybridization 

data (Figure 2D).  
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Figure 2. Comparison of projection of scRNA-seq annotation averages with the MERFISH 

measurement and Allen in situ hybridization data. A. The distributions of Pearson correlation 

coefficients between MERFISH measurement and scRNA-seq annotation averages in cell 

clusters. B. The distributions of spatial Pearson correlation coefficients between MERFISH 

measurement and projection of scRNA-seq annotation averages across all cells. C. Examples of 

spatial gene expression patterns and their spatial correlations of MERFISH measurement and 

projection of scRNA-seq annotation averages. D. Examples of spatial gene expression patterns 

from Allen Brain Atlas in situ hybridization data and projection of scRNA-seq annotation averages. 

The Allen Brain Atlas in situ hybridization data are taken from https://mouse.brain-map.org/4. 

GeneSurfer identifies spatial co-expression within user-defined cell populations 

GeneSurfer aims to identify genes with distinct spatial co-expression within interactively selected 

transcriptomically similar cell populations. To validate the gene filtering based on spatial 

expression, and the subsequent gene clustering, we next investigated whether GeneSurfer can 

identify distinct local spatial co-expression using different gene filtering options. 

GeneSurfer provides three gene filtering options to enhance the further gene-centric exploration 

within selected cells: 1) correlation with a spatial coordinate axis in the CCF to identify genes 

exhibiting a spatial gradient along the anatomical brain axes, 2) Moran’s I22 to detect genes with 

non-random spatial expression patterns within the cell selection, and 3) differential expression 

between foreground and background cells to identify genes highly expressed in the selection. 

Filtered genes are clustered into groups, revealing potentially distinct spatial co-expression across 

the brain anatomy. Details on these gene filtering metrics and gene clustering are described in 

the Methods section. 

Figure 3 provides visual examples of the gene filtering and clustering results obtained with 

GeneSurfer using the projection of scRNA-seq annotation averages. The spatial correlation filters 

on the anterior-posterior or dorsal-ventral axis identify genes with spatial gradients along an 

anatomical axis in the CCF. We first selected the IT-ET Glut class from the data taxonomy to 

explore the spatial patterns within the excitatory neurons in the cortex. Genes with local gradients 

on the dorsal-ventral axis were filtered out and were clustered into two groups with distinct 

gradients: dorsal-ventral gradient and ventral-dorsal gradient (Figure 3A). Then we drilled into L5 

IT, L6 IT and L5/6 IT Glut subclasses to explore the potential anterior-posterior gradients at a 
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more refined cell-type level: excitatory neurons in the deeper cortical layers. Genes that exhibit 

an anterior-posterior gradient or posterior-anterior gradient within L5/L6 IT neurons were identified 

and subsequently clustered into two gene clusters (Figure 3B). The Moran's I filter highlights 

genes with patterns that significantly deviate from randomness, suggesting potential functions 

within the spatial context. Figure 3C shows the two different expression patterns identified within 

the OB-IMN GABA class, where genes are filtered by the Moran’s I statistic. Genes in cluster 1 

show a high expression in the subgranular zone, subventricular zone and rostral migratory stream 

(SGZ, SVZ and RMS), which might be related to neuron differentiation and cell proliferation1, 

including marker genes such as Prox1. Genes in cluster 2 are highly expressed in the olfactory 

bulb, with decreasing expression toward the posterior aspect of the brain, which might be related 

to mature olfactory bulb neurons. 

These examples demonstrate GeneSurfer’s utility in filtering genes with spatial expression and 

clustering genes to identify local co-expression, and also guide users in selecting the most 

appropriate gene filtering metrics based on their specific research questions.  

The differential expression filter is used to identify genes that are predominantly expressed in the 

selection. This is designed to explore cell-type specific gene expression which can subsequently 

be inspected in the spatial domain, which is demonstrated in the next section. 
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Figure 3. Example results of gene filtering using different metrics and subsequent gene 

clustering. A. Genes filtered by spatial correlation on the dorsal-ventral axis within IT-ET Glut 

neurons. Filtered genes were clustered into two groups: genes with positive spatial correlation 

show a superior-inferior gradient, with the reverse for genes with negative spatial correlation. B. 

Genes filtered by spatial correlation on the anterior-posterior axis within L5 IT, L6 IT and L5/6 IT 

neurons. Filtered genes were clustered into two groups: genes with a high positive correlation 

display an anterior-posterior gradient, with the reverse for genes with negative spatial correlation. 

C. Genes filtered using Moran’s I within OB-IMN GABA class exhibit non-random expression 

patterns and are clustered into two groups. The first column in panels A, B, and C displays 

average expression of genes in each cluster. The gene expression patterns shown are within the 

selected subset and are color-coded based on normalized values within the subset. (Parameters: 

100 genes, 2 clusters) 

Interactive exploration with GeneSurfer confirms known biological function 

In this section, we demonstrate the interactive exploration workflow with GeneSurfer on the whole 

transcriptome by validating its findings against known biology. 

To evaluate the exploration workflow of GeneSurfer together with SpaceWalker, we demonstrate 

the workflow by exploring cells on a 2D brain slice. GO term annotations were then retrieved for 

these cell populations and compared to known biological pathways for these cells. When a seed 

cell location was selected in SpaceWalker, transcriptomically similar cells were selected by flood-

fill20 on the fly. Subsequently in GeneSurfer, 50 genes were filtered out employing the differential 

expression filter that compares gene expression between selection and background cells. These 

genes were then clustered into two groups based on their local expression. GO term annotations 

were then instantaneously retrieved for gene function annotations. Figure 4 presents the results 

of selecting cells at four spatial locations that are close to each other spatially but 

transcriptomically and functionally distinct, annotated as subclass astrocytes (Astro-TE NN), 

oligodendrocytes (Oligo NN), pericytes (Peri NN) and microglia (Microglia NN). Genes associated 

with corresponding functions were identified and associated GO terms were retrieved, 

demonstrating that SpaceWalker identified transcriptomically similar cells and GeneSurfer 

discovered differentially expressed genes within this selected subset of cells, reflecting the 
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biological function of these cells. These findings confirm the capability of GeneSurfer with 

SpaceWalker to analyze cellular components and gene expression in an explorative manner.  

 

Figure 4. Transcriptome-wide exploration using SpaceWalker and GeneSurfer retrieved 

cell-type specific GO term annotations. Hovering over the 2D mouse brain section allows for 

selecting different cells at close-by locations (annotated as Astro-TE NN, Oligo NN, Peri NN and 

Microglia NN). Transcriptomically similar cells are identified by SpaceWalker and genes are 

filtered by the differential expression filter within the transcriptomically similar cells. For each 

selected cell location, GO terms associated with the filtered genes are retrieved, with the figure 

presenting the five GO terms having the lowest p-values. scRNA-seq annotation averages serve 

as input for gene filtering and clustering. GO terms for scRNA-seq genes are retrieved by 

ToppGene without a background gene set. All p-values in this paper have been adjusted using 
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the Bonferroni correction. (GeneSurfer: differential expression filter, 50 genes, 2 clusters; 

SpaceWalker: flood nodes = 10, flood steps =10) 

It is important to note that cell annotations were only used to validate the results with the known 

annotation, but the methodology does not use these prior annotations in the gene-centric process 

and annotations are not required for this workflow. Annotations were only used to project scRNA-

seq data to the spatial domain, not in the gene-centric exploration with selecting cells with 

SpaceWalker. Thus, ST data without annotations can also be explored using this workflow. 

In addition to selecting transcriptomically similar cells through SpaceWalker and the annotation 

taxonomy, as GeneSurfer is built on top of the ManiVault API24, GeneSurfer seamlessly integrates 

with other ManiVault plugins to extend functionality, such as on-the-fly dimensionality reduction. 

Users can re-embed the whole dataset or a subset of the data, color the embedding using existing 

annotations, and select cells directly from the embedding to further explain the dataset in the 

gene-centric workflow. 

Although this Genesurfer workflow is extremely powerful, the gene-centric clustering may be 

affected by the artifacts in the preprocessing of the MERFISH data. We show here an example of 

endothelial cells, which are annotated as three distinct clusters in the ABC Atlas1. The re-

embedded HSNE map using the MERFISH data reveals additional substructures within the Endo 

NN_1 cluster (Figure 5A). Selecting points of interest in the HSNE embedding, we observed 

spatially distinct structures within the Endo NN_1 cluster (Figure 5B). To further investigate 

whether this suggests additional cellular heterogeneity within the Endo NN_1 cluster in the 

MERFISH data, we performed differential expression analysis between these substructures and 

the Endo NN_1 cluster. We then analyzed the scRNA-seq data to inspect cell-specificity of the 

top differentially expressed genes. We found that each substructure was characterized by a small 

set of differentially expressed genes that were in most cases expressed in other cell types 

surrounding endothelial cells, but with region-specific abundance. Based on these observations, 

we hypothesize that the observed substructures in the spatial data could be caused by a spillover 

effect of gene transcripts between cell types during the segmentation of (small) endothelial cells. 

Thus, GeneSurfer enables users to examine the annotated data, and interactively differentiate 

potential cellular heterogeneity from underlying artifacts inherently present in the data. 
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Figure 5. Demonstration of exploring endothelial cells with HSNE re-embedding. A. HSNE 

embedding of endothelial cells from the MERFISH data, colored by cluster annotation1. 

Substructures in the embedding map are circled and numbered on the map. B. The corresponding 

substructures marked in (A) are visualized in the 3D spatial domain, displaying distinct spatial 

structures. Inspection of the top differentially expressed genes and comparison with the 

scRNASeq data lead to the conclusion that these sub-clusters are most likely an artifact, due to 

spillover from surrounding cells. 

Discussion 

Recent advances in transcriptomics have led to the need for computational tools to explore large-

scale datasets. Computational approaches have been developed to identify co-expressed genes, 

indicating their functional roles. However, current methods fall short in providing an exploratory 

tool that can interactively identify spatial co-expression, particularly in a local cellular subspace. 
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Here, we present GeneSurfer, an interactive interface to explore localized transcriptome-wide 

gene co-expression in the 3D spatial domain. It allows users to dynamically explore local co-

expressed genes within the user-selected cells and on-the-fly GO term annotation of these co-

expressed gene clusters. We also support an approximate visualization of scRNA-seq imputed 

gene expression onto the spatial domain, enabling the user to interactively explore both ST and 

scRNA-seq gene expression in the 3D spatial domain. In addition, we offer multiple linked views 

for interactively investigating individual genes or gene co-expression in the spatial domain at each 

stage of the exploration. By integrating multiple ways to select cells of interest, three gene filtering 

options and various user-defined clustering and visualization parameters, GeneSurfer enables 

user-tailored exploration paths. 

GeneSurfer has novel capabilities in comparison to existing approaches. Compared with existing 

algorithms for identifying co-expression modules in the whole data5, we specifically target 

localized spatial co-expression within transcriptomically similar cells in an interactive manner. 

Secondly, unlike computational methods to integrate scRNA-seq with ST data13-16, which primarily 

focus on data integration, our tool extends the functionality to provide transcriptome-wide gene 

analysis and visualization in the 3D spatial domain by matching annotations. Moreover, while 

some integrative toolboxes offer interactive visualization8-10, they do not support interactive and 

localized gene-centric on-the-fly computational analysis as our tool does. While our previous work 

SpaceWalker20 focuses on cell-centric exploration and expression gradient detection, GeneSurfer 

focuses on a gene-centric analysis approach to explore transcriptome-wide gene co-expression 

within selections of similar cells. Upon selecting cells, GeneSurfer performs the analysis on-the-

fly, providing a responsive and interactive experience on a mid-range PC workstation. 

We validated the functionality of GeneSurfer using the 3D whole-brain mouse dataset ABC Atlas. 

We demonstrated that GeneSurfer is able to identify and annotate local gene co-expression within 

selected cells, providing biological insights in real-time during exploration. We used the projection 

of annotation averages from scRNA-seq data onto the spatial domain to enable transcriptome-

wide exploration, demonstrating its validity when both scRNA-seq and ST datasets are annotated 

and available. Additionally, GeneSurfer can work with unannotated ST datasets to help with 

hypothesis generation, and with the design of targeted validation experiments. It is compatible 

with both 3D and 2D datasets.  
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Overall, GeneSurfer offers an interactive visual interface for exploring local gene co-expression 

and their functional annotation. 
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METHODS 

RESOURCE AVAILABILITY 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

• This paper analyzes existing, publicly available data.  

• GeneSurfer is implemented in C++ as a plugin of the ManiVault plugin system24 for visual 

analytics application building. All original code, along with the Windows installer and a system 

state file containing the data, plugins, and GUI configurations, is publicly available at 
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https://github.com/ManiVaultStudio/GeneSurfer. Installers for MacOS and Linux will be made 

available at https://www.manivault.studio in the future. 

Method details 

Data 

ABC Atlas data was downloaded from https://allen-brain-cell-atlas.s3.us-west-

2.amazonaws.com/index.html. We used both the MERFISH data and scRNA-seq data for the 

analysis in this paper. 

Projecting scRNA data to ST domain 

To visualize scRNA-seq data in the spatial domain, we utilized the matching cell annotations in 

the ST and scRNA-seq data. After loading both ST and scRNA-seq datasets, the user selects an 

annotation dataset to guide the alignment of the two datasets. The system checks whether both 

the ST and scRNA-seq datasets contain the required metadata for the selected annotation. The 

average expression level is then calculated for each gene of each annotation category in the 

scRNA-seq data. These calculated average expressions are assigned to the spatial coordinates 

in the ST data based on their corresponding annotations, replacing the actual measured 

MERFISH expressions at that location. In this way, we get an approximate gene expression matrix 

from scRNA-seq data with spatial coordinates, allowing for visualizing and analyzing the projected 

scRNA-seq gene sets in 2D and 3D spatial domain. In this manuscript, the annotation level 

“Cluster” is used for the ABC Atlas.  

The prior condition is that an annotated ST dataset and an annotated scRNA-seq dataset of the 

same region are required, where the latter covers major annotation types in the ST dataset. We 

assume that the annotations in the datasets are fine-grained enough that the average expression 

of each annotation class is a representative approximation for that annotation class. 

Since some of the scRNA-seq datasets can be prohibitively large, ingesting all of the data in 

memory to compute annotation averages may result in memory overflows or real-time 

computational difficulties. Users have the option to load a pre-computed average expression 
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matrix instead of computing the matrix on-the-fly; this obviates the need to ingest the entire 

scRNAseq data to compute cluster statistics. 

In summary, we bridge the gap in gene coverage between scRNA-seq and ST data by directly 

projecting average expression based on fine-grained annotations, to provide an approximate 

visualization of scRNA-seq data in the spatial domain. 

Selection of transcriptomically similar cells 

GeneSurfer focuses on the gene-centric exploration within a subset of cells with similar 

transcriptome profiles. The user selects cells of interest in three interactive ways, and further 

gene-centric exploration is based on the selected subset of cells. 

First, if annotation is present in the dataset, the user can select a cell type directly by selecting an 

annotation label from the data taxonomy. 

Second, GeneSurfer is designed to seamlessly integrate with SpaceWalker20 by synchronizing 

the user-defined locations, where SpaceWalker automatically identifies transcriptomically similar 

cells at user-defined locations and GeneSurfer  simultaneously provides further gene-centric 

exploration and GO term annotation within these cells. This has the advantage that cell selection 

is not restricted to prior discrete cluster boundaries, accommodating for a more gradual continuum 

of transcriptomic types.  

Third, GeneSurfer can work with the dimensionality reduction plugin of ManiVault24. This workflow 

allows users to select cells from embeddings, such as HSNE21, t-SNE11 or UMAP12, computed 

on-the-fly from the data. 

Gene filtering  

Since the number of genes/features in scRNA-seq data can reach 30k3, we provide a filtering 

option before conducting gene clustering to remove uninformative genes. This step helps to 

selectively filter out genes that show specific spatial expression patterns or are highly expressed 

within the subset, ensuring a focus on the most informative genes for analysis. 

The number of genes to keep for clustering is an interactively modifiable parameter. The user can 

dynamically observe the filtered genes displayed in the bar chart and a real-time overview of the 
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clustered gene patterns while adjusting the desired number of genes. We provide three gene 

filtering modes: 1) differential expression between selected cells and the whole dataset, 2) 

Moran’s I, and 3) correlation of gene expression with spatial coordinate axes. 

Differential: This option filters out genes that exhibit high expression among the selected cells, 

typically indicating cell type specific expression. Genes are sorted based on the difference in 

average expression levels between the selected cells and the whole dataset. 

Moran’s I: Moran’s I22 measures spatial auto-correlation to identify genes with non-random 

expression patterns within the cell subset. Euclidean distances of the spatial coordinates are 

calculated to create a spatial weight matrix 𝑤. GeneSurfer then calculates Moran’s I for each gene 

using the weight matrix and gene expression within the cell subset as: 

𝐼 =
𝑁

𝑊

∑ ∑ 𝑤௜௝(𝑥௜ − 𝑥̅)ே
௝ୀଵ

ே
௜ୀଵ ൫𝑥௝ − 𝑥̅൯

∑ (𝑥௜ − 𝑥̅)ଶே
௜ୀଵ

 

The calculated value is compared against the expected value under the null hypothesis: 

𝐸(𝐼) =  −
1

𝑁 − 1
 

Z-score is calculated for each gene to indicate the statistical significance of the results. Genes 

are sorted by their Z-scores. 

Spatial: This option is for uncovering significant expression correlations along specific spatial axes 

in the CCF, such as the dorsal-ventral or anterior -posterior axis. It calculates the Pearson 

correlation coefficient of each gene’s expression values with the spatial coordinates within the cell 

subset. Genes with high correlation scores are likely to exhibit strong expression patterns along 

the specified axes in the spatial domain. 

Gene clustering 

After filtering genes, hierarchical clustering23 is applied to group these filtered genes based on 

their local expression within the cell subset. The clustering algorithm uses a distance metric 

defined as 1 minus Pearson correlation score between the local expression of each gene pair. 

Subsequently, an average expression view of each cluster is displayed on the spatial map, 
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providing a visual overview of gene expression patterns within each cluster. Meanwhile, filtered 

genes are color-coded in the bar chart according to their clustering labels. 

Determining the optimal number of clusters has always been a challenge with clustering 

algorithms, especially in the context of data that is dynamically updated during exploration with 

our tool. Too many clusters can lead to overclustering, reducing the distinctiveness of gene 

expression patterns across clusters. Conversely, too few clusters might group genes with distinct 

patterns into one single cluster. To address this issue, we enable users to adjust the number of 

clusters on-the-fly, allowing for the determination of an appropriate cluster number through direct, 

iterative inspection for different data.  

Gene set functional enrichment analysis 

Upon selecting a gene cluster, gene set functional enrichment analysis is performed on-the-fly 

using the gProfiler19 or ToppGene18 API, and the results are dynamically updated with each cluster 

selection. The gene symbols of the selected gene cluster are sent to the chosen API and the 

enrichment analysis results are sent back to our system. The statistically significant GO terms, p-

values and associated gene symbols are displayed in a table linked to the bar chart. Clicking on 

a GO term of interest highlights the associated genes in the bar chart, allowing for follow-up 

inspection of individual genes in 2D and 3D visualizations. 

Users have the flexibility to switch between these APIs based on their preference. When using 

the gProfiler API, users can specify the species based on their dataset. For analysis of the limited 

ST gene set, in addition to sending the genes to be analyzed, all genes measured in the ST 

dataset are sent as background genes (500 genes for ABC Atlas). During exploration of whole-

transcriptome scRNA data (> 30k genes for ABC Atlas), no background gene list is used. 

Closed-loop interaction and parameter selection 

A key contribution of GeneSurfer, distinguishing it from existing scripted transcriptomics data 

analysis methods, is its highly interactive interface designed specifically for exploratory analysis 

(see Supplemental Movie 1). The interface includes adjustable toolbars that allow users to tailor 

their data exploration. It offers direct, closed-loop visual feedback, showing users the effect of 

changes to hyperparameters.  
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Figure 6A shows a screenshot of the software interface. The interactive exploration loop starts 

with the selection of transcriptomically similar cells, as detailed in the Selection of 

transcriptomically similar cells section. Changes in the cell selection immediately trigger gene 

filtering and gene clustering based on user-defined settings, with options and adjustments 

detailed in the Gene filtering and Gene clustering section. Adjustments are made in real time 

using user interface controls, such as sliders and checkboxes, allowing users to see immediate 

updates in the bar chart of filtered genes and the clustering visualization of average gene 

expression. Clicking on a cluster triggers retrieval of the associated GO terms for genes in the 

selected cluster. The integration of cell selection, gene filtering and clustering, and visualization 

enables users to perform their analysis through a flexible, interactive interface. 

One of our primary goals is to provide visualization of gene expression in the spatial domain, 

allowing users to inspect individual genes at each step of the exploration workflow. First, the user 

can visualize a specific gene in the dataset in 3D by entering the gene symbol in the search box 

(Figure 6B1). Second, selecting a GO term of interest from the annotation table highlights the 

associated genes in the bar chart (Figure 6B1). Third, hovering the mouse over the bars displays 

the gene symbol and highlights genes with the same cluster label. When the user clicks on a bar, 

the expression level of that gene is plotted in the spatial domain, enabling the user to select a 

gene of interest from the bar chart (Figure 6B2). This feature not only facilitates the exploration of 

genes associated with specific biological functions or pathways, but also allows for the inspection 

of individual gene expression in relation to selected GO terms. 

In addition, point opacity for non-selected cells is adjustable from 0 to 1, providing flexibility in 

visualizing local expression. Setting the opacity to 0 isolates and displays only the selected cells, 

offering a focused view of the region of interest. Conversely, an opacity value of 1 renders all cells 

visible, providing a full overview of the spatial map. Intermediate opacity values allow for visual 

differentiation between the cells of interest and the surrounding cells, improving analytical clarity. 

Furthermore, the user can adjust the point size of the cells to adapt to the varying cell densities 

present in spatial datasets, enabling an optimal visualization across different scales of datasets. 
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Figure 6. GeneSurfer interface and interaction loop. A. Screenshot of the interface of 

GeneSurfer with SpaceWalker. B1. When the user selects a GO term from the table, associated 
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genes are highlighted in the bar chart. B2. Hovering over the bars shows the corresponding gene 

symbols; simultaneously, genes within the same cluster as the hovered gene are highlighted. 

Clicking on a gene displays its expression in both 2D and 3D visualizations. 

Supplemental Information 

Supplemental Movie 1. Demonstration of interactive exploration with GeneSurfer using 

ABC Atlas data. The video showcases how users can select cells of interest, filter and cluster 

genes, retrieve associated GO terms and inspect gene expressions, for an interactive and 

dynamic analysis experience. 

Supplemental Table 1. Top 20 differentially expressed genes for each substructure 

compared to subclass 5310 Endo_NN_1. This table accompanies Figure 5 and lists the top 20 

genes that are differentially expressed in each substructure in the HSNE embedding compared 

to the endothelial subclass. Each column represents one substructure. 

References 

1. Yao, Z., van Velthoven, C.T., Kunst, M., Zhang, M., McMillen, D., Lee, C., Jung, W., Goldy, 

J., Abdelhak, A., and Aitken, M. (2023). A high-resolution transcriptomic and spatial atlas 

of cell types in the whole mouse brain. Nature 624, 317-332. 

2. Moses, L., and Pachter, L. (2022). Museum of spatial transcriptomics. Nature Methods 19, 

534-546. 10.1038/s41592-022-01409-2. 

3. Heumos, L., Schaar, A.C., Lance, C., Litinetskaya, A., Drost, F., Zappia, L., Lücken, M.D., 

Strobl, D.C., Henao, J., and Curion, F. (2023). Best practices for single-cell analysis 

across modalities. Nature Reviews Genetics 24, 550-572. 

4. Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., 

Boguski, M.S., Brockway, K.S., and Byrnes, E.J. (2007). Genome-wide atlas of gene 

expression in the adult mouse brain. Nature 445, 168-176. 

5. Saelens, W., Cannoodt, R., and Saeys, Y. (2018). A comprehensive evaluation of module 

detection methods for gene expression data. Nature communications 9, 1090. 

6. Hartigan, J.A. (1972). Direct clustering of a data matrix. Journal of the american statistical 

association 67, 123-129. 

7. Cheng, Y., and Church, G.M. (2000). Biclustering of expression data. In 2000. pp. 93-103. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2024. ; https://doi.org/10.1101/2024.07.05.602230doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602230
http://creativecommons.org/licenses/by-nc/4.0/


 

26 

8. Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A.C., Kuemmerle, L.B., Rybakov, S., 

Ibarra, I.L., Holmberg, O., Virshup, I., et al. (2022). Squidpy: a scalable framework for 

spatial omics analysis. Nature methods 19, 171-178. 

9. Dries, R., Zhu, Q., Dong, R., Eng, C.-H.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., Bao, 

F., et al. (2021). Giotto: a toolbox for integrative analysis and visualization of spatial 

expression data. Genome biology 22, 1-31. 

10. Megill, C., Martin, B., Weaver, C., Bell, S., Prins, L., Badajoz, S., McCandless, B., Pisco, 

A.O., Kinsella, M., and Griffin, F. (2021). Cellxgene: a performant, scalable exploration 

platform for high dimensional sparse matrices. bioRxiv, 2021.2004. 2005.438318. 

11. Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. Journal of 

machine learning research 9. 

12. Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W., Ng, L.G., Ginhoux, F., and 

Newell, E.W. (2019). Dimensionality reduction for visualizing single-cell data using UMAP. 

Nature biotechnology 37, 38-44. 

13. Abdelaal, T., Mourragui, S., Mahfouz, A., and Reinders, M.J. (2020). SpaGE: spatial gene 

enhancement using scRNA-seq. Nucleic acids research 48, e107-e107. 

14. Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H.W., Li, T., Elmentaite, 

R., Lomakin, A., Kedlian, V., and Gayoso, A. (2022). Cell2location maps fine-grained cell 

types in spatial transcriptomics. Nature biotechnology 40, 661-671. 

15. Wan, X., Xiao, J., Tam, S.S.T., Cai, M., Sugimura, R., Wang, Y., Wan, X., Lin, Z., Wu, 

A.R., and Yang, C. (2023). Integrating spatial and single-cell transcriptomics data using 

deep generative models with SpatialScope. Nature Communications 14, 7848. 

16. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., 

Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive integration of single-cell 

data. cell 177, 1888-1902. e1821. 

17. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., 

Paulovich, A., Pomeroy, S.L., Golub, T.R., and Lander, E.S. (2005). Gene set enrichment 

analysis: a knowledge-based approach for interpreting genome-wide expression profiles. 

Proceedings of the National Academy of Sciences 102, 15545-15550. 

18. Chen, J., Bardes, E.E., Aronow, B.J., and Jegga, A.G. (2009). ToppGene Suite for gene 

list enrichment analysis and candidate gene prioritization. Nucleic acids research 37, 

W305-W311. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2024. ; https://doi.org/10.1101/2024.07.05.602230doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602230
http://creativecommons.org/licenses/by-nc/4.0/


 

27 

19. Kolberg, L., Raudvere, U., Kuzmin, I., Adler, P., Vilo, J., and Peterson, H. (2023). g: 

Profiler—interoperable web service for functional enrichment analysis and gene identifier 

mapping (2023 update). Nucleic acids research 51, W207-W212. 

20. Li, C., Thijssen, J., Kroes, T., de Boer, M., Abdelaal, T., Höllt, T., and Lelieveldt, B. (2023). 

SpaceWalker enables interactive gradient exploration for spatial transcriptomics data. Cell 

Reports Methods 3. 

21. Pezzotti, N., Höllt, T., Lelieveldt, B., Eisemann, E., and Vilanova, A. (2016). Hierarchical 

stochastic neighbor embedding. In 3. (Wiley Online Library), pp. 21-30. 

22. Moran, P.A. (1950). Notes on continuous stochastic phenomena. Biometrika 37, 17-23. 

23. Müllner, D. (2013). fastcluster: Fast hierarchical, agglomerative clustering routines for R 

and Python. Journal of Statistical Software 53, 1-18. 

24. Vieth, A., Kroes, T., Thijssen, J., van Lew, B., Eggermont, J., Basu, S., Eisemann, E., 

Vilanova, A., Höllt, T., and Lelieveldt, B. (2023). ManiVault: A Flexible and Extensible 

Visual Analytics Framework for High-Dimensional Data. IEEE Transactions on 

Visualization and Computer Graphics. 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2024. ; https://doi.org/10.1101/2024.07.05.602230doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602230
http://creativecommons.org/licenses/by-nc/4.0/

