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Abstract 

Non-alcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a complex 
multifactorial disease that progresses from steatohepatitis (MASH) to liver cirrhosis and liver cancer. Recent research has revealed 
that crosstalk between innate immune cells and hepatic parenchymal and non-parenchymal cells is involved in the pathogenesis of 
liver disease in MASLD/MASH. Of particular importance, novel inflammatory mechanisms, including macrophage diversity, neutro-
phil NETosis, B-cell biology, auto-reactive T cells, unconventional T cells, and dendritic cell–T cell interactions, are considered key 
drivers for disease progression. These mechanisms and factors are potential targets for the therapeutic intervention of MASLD/ 
MASH. In this review, we focus on recent discoveries related to liver inflammation and discuss the role of innate immune cell subsets 
in MASLD/MASH.
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Introduction
With the global prevalence of obesity, diabetes, and metabolic 
syndrome, the burden of metabolic dysfunction-associated stea-
totic liver disease (MASLD) has been increasing rapidly [1]. 
Currently, MASLD is the most common liver metabolic disorder 
worldwide [2]. Projections suggest that, by 2030, >100 million 
individuals in the USA and 15–20 million individuals in major 
European countries will be affected by MASLD. The current eco-
nomic costs associated with MASLD and its complications are 
substantial [3]. MASLD progresses from simple steatosis to meta-
bolic dysfunction-associated steatohepatitis (MASH) and may 
further advance to liver fibrosis and cirrhosis [4]. MASH has be-
come the major cause of liver transplantation in developed coun-
tries [5], with a 114% increase in registered liver transplants 
related to MASH in males and an 80% increase in females be-
tween 2004 and 2016 [6].

MASH is characterized by hepatic lipid accumulation, hepato-
cellular injury, inflammation, and varying degrees of fibrosis, 
progressing to cirrhosis or end-stage liver disease. Liver fibrosis is 
an independent predictor of disease-related mortality in patients 
with MASH, with mortality rates ranging from 12% to 25% [7]. 
There is substantial evidence that multifaceted mechanisms, in-
cluding lipid toxicity, oxidative stress, and inflammation, act co-
operatively to promote the progression of liver disease [8]. 
Metabolic dysfunction complicated with hepatic steatosis is an 
early event in the pathogenesis of MASH that causes hepatocyte 
injury and insulin resistance [9]. In addition, liver inflammation 
driven by lipotoxicity, as well as innate and adaptive immune 

responses are considered essential drivers in the complex patho-
physiology of MASLD [10].

In 2023, many societies involved in liver disease in various 
regions and countries endorsed the nomenclature change of 
non-alcoholic fatty liver disease (NAFLD) to MASLD [11]. In this 
review, except for the description of MASLD/MASH as a liver dis-
ease, the term NAFLD/nonalcoholic steatohepatitis (NASH) is 
used on the basis of its use in the previous studies cited. This re-
view focuses on the inflammatory aspects of MASLD/MASH in-
volving innate immune cells and discusses the roles of various 
immune cell populations leading to the transition to hepatocellu-
lar carcinoma with potential reference to the review by Peiseler 
et al. [12].

Immunomodulation in the development 
of MASLD
Obese patients with metabolic abnormalities possess adipose tis-
sues exhibiting chronic low-grade inflammation, which can se-
crete adipokines and inflammatory cytokines such as leptin, 
tumor necrosis factor (TNF), and IL-6 [13]. In addition, obese adi-
pose tissue releases free fatty acids into the circulation, promot-
ing ectopic fat deposition in the liver. Lipid accumulation in 
hepatocytes leads to lipotoxicity, mitochondrial dysfunction, re-
active oxygen species generation, and endoplasmic reticulum 
stress [14]. Inflammatory cytokines, lipotoxicity, and products of 
intestinal bacterial origin promote the activation of liver resident 
macrophages called Kupffer cells (KCs) and the mobilization of 
inflammatory macrophages [15]. The activation of innate 
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immunity promotes further hepatic infiltration and accumula-
tion of inflammatory cells, which exacerbates hepatitis and liver 
injury [16]. Recent advances in single-cell transcriptomics have 
allowed a better understanding of how the immune cell reper-
toire is reorganized during MASH in mouse [17–20] and human 
cirrhotic livers [17, 21–23]. For example, significant changes in 
the myeloid compartment were observed with a marked influx of 
monocytes and monocyte-derived cells [17]. In complex diseases 
including MASLD and MASH, there is the phenomenon of pleiot-
ropy, in which multiple genetic variants are involved in the sus-
ceptibility of multiple traits [24]. Recent analyses have shown 
that multiple single nucleotide polymorphism are jointly associ-
ated with metabolic and/or inflammatory traits [25]. Such 
changes in hepatic immune cells are likely to contribute to a dis-
ordered inflammatory environment that promotes liver injury 
[26]. Complex crosstalk between diverse immune cell 

populations and hepatocytes, hematopoietic stem cells, and liver 

sinusoidal endothelial cells (LSECs) is critical for liver disease [17, 

27]. Previous reports of immune cell populations involved in the 

progression of MASLD are described below (Figure 1).

Macrophages
Macrophages—innate immune cells—are an abundant resident 

cell population in the liver [28]. Liver macrophages are broadly 

divided into KCs and monocyte-derived macrophages (MoMFs). 

While all macrophages in the human liver can be identified on 

the basis of their expression of CD68, scRNA-seq studies have 
revealed that these can be further split into distinct subsets [23]. 

Two populations of macrophages have been identified in healthy 

human liver tissue, which are distinguished by their expression 

of MARCO and TIMD4. The development and homeostasis of KCs 

are involved in the etiology of MASLD, which is supported by 

Figure 1. Recently reported mechanisms of the immune cell-mediated regulation of MASLD. This figure illustrates the involvement of immune cells in 
MASLD, based mainly on recent findings using mouse models. Bone-marrow-derived monocytes sense hepatocyte death signals and differentiate into 
restorative or inflammatory Mo/MF. Simultaneously, monocytes differentiate into LAMs or emerge as SAMs in fibrotic niches upon interaction with 
steatotic hepatocytes. Regarding KCs, the resident type KC1 is converted into KC2, a phenotype with high CD36 expression, due to impaired self- 
renewal by FFAs that are derived from steatotic hepatocytes. MoKCs with a KC-like phenotype also emerge from monocytes and replace the impaired 
KC1 population. While MP2 is responsible for immunosuppression by sensing bacteria via Marco in a steady state, it decreases in MASLD. Neutrophils 
accumulate early in MASLD and promote disease progression via cytokine production. NETosis induces HSCs activation and suppresses tumor 
immunity by inhibiting effector T cells through the induction of Tregs. Pre-DC precursors that increase in the bone marrow mature in the hepatic 
lymph nodes and differentiate into XCL1þ cDC1 in the liver. Activated effector memory CD8þ T cells by cDC1 are involved in the pathogenetic 
progression of MASLD. CD20AþIgAþ B cells that are induced in the small intestine form clusters with CD8þ T cells and induce the activation of CD8þ T 
cells. These B cells also induce FcgrþS100a4þ Mo/MF in the liver via IgA production and are involved in the progression of MASLD. CD8þ T cells are 
converted into CXCR6þFasLþFoxolow auto-aggressive T cells by acetate, a metabolic product of fatty hepatic cells, and contribute to the development of 
MASH. While innate-like T cells play a role in promoting fibrosis through the release of cytotoxic factors in MASH, they also contribute to the apoptosis 
of hepatic stellate cells (anti-fibrosis). MASLD ¼metabolic dysfunction-associated steatotic liver disease, Mo/MF ¼monocyte/macrophage, KCs ¼
Kupffer cells, LAM¼ lipid-associated macrophages, SAMs ¼ scar-associated macrophages, MoKCs ¼monocyte-derived Kupffer cells, MP2 ¼Marcoþ

Kupffer cell subset, FFAs ¼ free fatty acids, NETosis ¼ neutrophil extracellular traps-osis, MPO ¼myeloperoxidase, HSCs ¼ hepatic stellate cells, Tregs 
¼ regulatory T cells, HCC ¼ hepatocellular carcinoma, cDC ¼ conventional dendritic cell, NK ¼ natural killer, NKT ¼ natural killer T, γδ T ¼ gamma 
delta T.
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findings that the number of KCs/macrophages in human liver bi-
opsy samples correlated with the severity of disease [29]. An in-
crease in portal vein macrophages was reported in the early 
stages of MASLD livers, the counts of which were associated with 
subsequent inflammatory events in patients [30].

Mouse liver macrophages are broadly divided into KCs and 
MoMFs. Mouse KCs, defined as F4/80hiCD11bint cells, express 
T-cell immunoglobulin mucin (TIM) 4 and C-type lectin domain 
family 4 member F (CLEC4F), whereas mouse MoMFs have a 
CD11bhiF4/80int phenotype and tend to express CX3C motif che-
mokine receptor (CX3CR) 1 and C–C chemokine receptor type 2 
(CCR2) [31]. Recent studies reported that the number of KCs was 
reduced in mouse MASH livers and that KCs were replaced by 
MoMFs of hematopoietic origin [32]. Activated KCs produce che-
mokines and regulate inflammatory cell recruitment [33]. Bl�eriot 
et al. [34] found that, in addition to the major CD206loESAM KC 
population, a secondary CD206hiESAM subpopulation was found 
in healthy subjects and obese mice. Fibrosis causes a KC to lose 
contact with parenchymal cells, downregulating “KC identity” 
and rendering it unable to eliminate bacteria, but infiltrating 
monocytes form multinucleated cells (syncytia) and are respon-
sible for antimicrobial defense [35]. Such infiltrative macrophage 
populations are distinct from resident KCs and their abundance 
in the livers of patients correlates with the severity of MASH and 
the stage of fibrosis. Importantly, Miyamoto et al. [36] identified a 
Marcoþ immunosuppressive macrophage subset, MP2, which is 
enriched in the periportal region and develops in a gut 
microbiota-dependent manner in the MASLD mouse. In patients, 
the number of MP2 cells in the MASH (more severe) group was 
markedly decreased compared with those in the MASLD (less se-
vere) group.

Among the chemokines, C–C motif ligand 2 (CCL2) has an im-
portant role in the pathogenesis of MASH [37]. In a mouse model 
of diet-induced MASH, Ly6Chi monocytes accumulated in the 
liver via interactions between CCL2 and its receptor CCR2 [38]. 
These infiltrating monocytes that derive from bone marrow he-
matopoietic cells give rise to the unique phenotypically different 
macrophage population called MoMFs. Morinaga et al. [39] 
showed that MoMFs infiltrating the fatty liver of obese mice 
expressed higher levels of CCR2 and lower levels of CCL2 com-
pared with KCs. In the livers of MASLD patients, an increase in 
CCR2-expressing MoMFs was also observed [40]. Krenkel et al. [20] 
reported the proliferation of MoMFs characterized by a unique in-
flammatory phenotype in MASH livers using a Western diet 
mouse model. Xiong et al. [17] identified a MASH-specific macro-
phage subpopulation that highly expressed trigger receptor 2 
(TREM2), which is known to be expressed by bone marrow cells. 
This population has been named MASH-associated macrophages 
and is present in human and mouse MASH. In addition, TREM2 
characterizes adipose tissue lipid-associated macrophages 
(LAMs) that are related to obesity [41]. The TREM2þCD9þ subpop-
ulation of macrophages was also found in human MASH and 
named scar-associated macrophages (SAMs) because of their 
fibrogenic phenotype [42]. Spatial analysis of human MASLD 
revealed that aggregation of IBA1þCD16lowCD163low macro-
phages occurs in the non-parenchymal cell region in correlation 
with the disease state and these macrophages show clear spatial 
proximity to ductular cells [43].

Lipogenized hepatocytes secreted cytokines, extracellular 
vesicles, and chemokines including CCL2 and C–X–C motif che-
mokine ligand (CXCL)10, which activate non-parenchymal cells 
including hepatic stellate cells (HSCs), LSECs, and liver macro-
phages [44]. Macrophage populations have an active role in lipid 

metabolism in the MASLD liver, particularly in fatty acid metabo-
lism via CD36 expression [34]. In contrast, activated KCs that se-
crete pro-inflammatory cytokines including IL-1β and TNF are 
involved in hepatic lipid metabolism through the peroxisome 
proliferator-activated receptor (PPAR)-α pathway [45]. KCs inhibit 
the expression of lipid metabolism genes in hepatocytes and pro-
mote hepatocellular lipodystrophy. Indeed, the inhibition of KCs 
in mice that were fed a high-fat diet (HFD) led to a reduction in 
hepatic adiposity and inflammation [46]. Tran et al. [47] also 
showed that Ly6Cþ monocyte-derived Kupffer cells (MoKCs) 
appeared in MASLD as the disease progressed and increased in 
response to the death of embryo-derived KCs (EmKCs). EmKCs 
promoted triglyceride accumulation more efficiently than MoKCs 
during MASH, while MoKCs exacerbated liver injury, highlighting 
functional differences between KCs of different origins.

Macrophages are considered the most attractive therapeutic 
target cells in the innate immune system of MASLD/MASH livers. 
Because KCs/macrophages possess dichotomous ability in liver 
inflammation, leading to the aggravation or alleviation of symp-
toms, it is crucial to identify more specific therapeutic targets of 
disease-associated macrophages for their practical use as regula-
tors of inflammation.

Neutrophils
Neutrophils are important first responders of the innate immune 
system but, in chronic inflammatory diseases, their ability to re-
lease toxic molecules such as proteases, oxidants, cytokines, and 
neutrophil extracellular traps (NETs) may contribute to tissue 
damage [48, 49]. The hepatic expression of neutrophil chemo- 
attractants, such as CXCL1, IL-8, and E-selectin, is higher in 
patients with MASH compared with those with adiposity [50] and 
the plasma levels of neutrophil elastase correlated with the in-
creased severity of MASLD [51]. The depletion of neutrophils 
from a MASH-like mouse model that was fed a methionine/ 
choline-deficient diet (MCD) and a high-fat, high-cholesterol diet 
(HFHCD) alleviated the histological findings of MASH, supporting 
the idea that neutrophils are involved in its pathogenesis [52]. 
Mice that were deficient in myeloperoxidase or neutrophil elas-
tase had reduced liver damage in MCD and Western diet models 
[53, 54]. Importantly, in models of MASH–hepatocellular carci-
noma (HCC) that lacked a response to the immune checkpoint in-
hibitor, the combination of a CXCR2 antagonist with anti-PD1 
reduced the tumor burden and extended survival [55]. 
Furthermore, the overexpression of hepatic CXCL1 promoted the 
progression from fatty liver to MASH in mice that were fed an 
HFD through the activation of neutrophil-derived reactive oxygen 
species and stress kinases, which was reversed by IL-22 
treatment [56].

NETosis is a recently discovered mechanism of neutrophil kill-
ing [57] and there is increasing evidence for the involvement of 
NETs in MASH [58]. Markers of NET formation were elevated in 
patients with MASLD and correlated with the severity of MASLD 
[59, 60]. In a recent study, NETs were present in the early stages 
of a mouse MASH model and the concurrent administration of 
DNase alleviated the severity of MASH and HCC development 
[61]. Of note, a positive correlation was observed between in-
creased NETs and hepatic regulatory T-cell (Treg) levels. In that 
study, NETs promoted Treg activity and regulated MASH patho-
genesis by affecting the gene expression profile of naive CD4þ T 
cells in mice [62]. NETs play critical role in the development of 
MASH hepatic fibrosis by inducing metabolic reprogramming of 
HSCs through the toll-like receptor 3/cyclooxygenase-2/cyclooxy-
genase-2 pathway [63]. In contrast, the inhibition of NET forma-
tion in mice that were fed an HFD did not suppress adipose tissue 
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inflammation or hepatic steatosis [64]. Furthermore, the reduc-
tion of neutrophils in a mouse model of toxic liver injury did not 
affect the development of fibrosis in the mice [65]. Despite the 
findings of these studies and the frequent presence of neutrophil 
infiltrates with pro- and anti-inflammatory functions in the 
MASH liver, their actual role is not fully understood. The single- 
cell analysis of neutrophils in the livers of MASLD/MASH patients 
is expected to address this issue.

Natural killer cells
Natural killer (NK) cells are the major cytotoxic effector cells in in-
nate immunity. Cytotoxic activity of NK cells is important in the he-
patic immune system, as it induces cell death and the subsequent 
clearance of target cells such as infected and tumor cells [66]. NK 
cells are regulated by the integrated signals from an array of acti-
vating or inhibitory receptors and cytokines [67]. Human NK cells 
are classified into CD56dim subsets with high cytotoxic activity and 
CD56bright subsets with a preference for cytokine secretion [68]. We 
previously reported that, in patients with MASLD, the expressions 
of NK-cell activation markers including NKp46 and NKp30 were sig-
nificantly reduced in a peripheral blood CD56dim NK-cell subset. In 
contrast, the expressions of exhaustion or inhibitory markers in-
cluding PD-1 and immunoglobulin-like transcript 2 (ILT2) on 
CD56dim NK cells were increased [69]. In HCC patients, ILT2 is a sig-
nature molecule for cancerous CD56dim NK cells with impaired cy-
tolytic capacity [70]. In the livers of MASLD patients, a dramatic 
numerical increase in CD56bright NK cells and high expression of ac-
tivation markers including NKG2D, CD69, and CD38 were observed 
[69]. Liver fibrosis in MASH patients was associated with an in-
crease in hepatic NKG2D-positive NK cells and the elevated expres-
sion of its ligand MICA/B [71]. NKG2D expression is activated by 
cytokines (i.e. IL-2 and IL-15) [72] and high NKG2D expression in NK 
cells may be associated with increased IL-15 expression [73]. In ad-
dition, NKG2D ligands such as MICA/B in humans and MULT-1, 
RAE, and HS90 in mice [74] were activated in stressed or injured 
lipid-loaded hepatocytes [75], suggesting that NKG2D–NKG2D li-
gand interactions may be involved in the pathogenesis of MASH.

The important role of cytotoxic effector cells in the progression 
of MASH is relatively clear in animal models. NK cells including in-
nate lymphocytes type 1 (ILC1s) have been implicated in tissue in-
jury and inflammation during MASH progression as well as 
metabolic abnormalities such as insulin resistance in mice [76, 77]. 
Hepatic NK cells in MCD-induced MASH mice had increased 
expressions of NKG2D, CD107a, and IFN-γ, and decreased expres-
sion of inhibitory NKG2A [78]. Furthermore, the genetic depletion or 
antibody suppression of NK cells in MASH mice suppressed cyto-
kine levels and JAK-STAT1/3 activity in the liver and significantly 
alleviated MCD-induced steatohepatitis. In contrast, DX5þNKp46þ

NK cells are increased during MASH and have a role in polarizing 
macrophages toward the inflammatory (M1-like) phenotype. The 
depletion of NKp46þ cells promoted the development of fibrosis 
and the increased expressions of pro-fibrogenic genes with skewed 
M2 phenotypes of hepatic macrophages in mice [79]. Hepatic NK 
cells attenuated the fibrosis progression of MASH via CXCL10- 
mediated recruitment in an MCD-induced mice model [80]. Of par-
ticular importance, NK-cell populations are phenotypically and 
functionally distinct according to their localization in the body. 
Peripheral blood NK-cell subsets in patients with MASLD tend to be 
exhausted, whereas hepatic NK cells are relatively activated and 
contribute proactively to the progression of MASLD.

Natural killer T cells
Natural killer T (NKT) cells are a population of innate immune-like 
T cells that are characterized by the expression of T cell receptors 

composed of α and β chains, similarly to conventional T cells, in ad-
dition to surface markers that are specific for NK cells [81]. They 
are divided into two main subsets: invariant natural killer T (iNKT) 
cells and natural killer T type II (NKTII) cells [82]. Both of these sub-
populations recognize lipid antigens presented by CD1d [83]. 
Although NKT cells represent a small proportion of lymphocytes, 
they exhibit innate and adaptive immunological features and have 
a profound immunomodulatory role in a variety of diseases [84, 85]. 
Liver NKT-cell numbers appear to be increased in MASLD patients 
and tend to increase as the disease progresses [86]. Among the vari-
ous populations of hepatic infiltrating cells in MASLD, only the 
number of CD56þ cells was significantly increased with increased 
disease activity, and the expression of CD1d, the ligand for NKT 
cells, was also increased with increased MASLD activity scores 
(NAS) [87]. An increased frequency of CXCR3þIFN-γþT-betþ and IL- 
17Aþ iNKT cells was found in peripheral blood mononuclear cells 
from MASH patients compared with non-alcoholic fatty liver 
patients or healthy controls [88]. CD206-mediated crosstalk be-
tween iNKT and KC-1 cells maintains IL-10 expression in KC-1 cells 
affecting hepatic immune balance [89].

In a MASH mouse model, the inhibition of NKT cells by genetic 
defects/therapeutic interventions suppressed the activation of 
HSCs, reduced neutrophil, KC, and CD8þ T cell infiltration, and 
suppressed inflammatory and fibrogenic gene expressions [88]. 
Similarly, a mouse MASLD model using CD1d-deficient mice 
lacking NKT cells was protected against fibrosis whereas mice 
that were genetically engineered to have an increased accumula-
tion of NKT cells developed exacerbated liver fibrosis [90]. A mice 
study reported a regulatory mechanism whereby NKT cells pro-
moted hepatocyte lipidosis via the secretion of LIGHT (TNFSF14) 
and cooperated with CD8þ cells to induce liver injury [91]. 
Macrophage infiltration and macrophage-derived inflammatory 
cytokines IFN-γ, TNF-α, and IL-4 were also reduced in the fibrotic 
livers of Cxcr6–/– mice, supporting the idea that hepatic NKT cells 
provide essential cytokine signals that perpetuate hepatitis and 
fibrosis [92]. Overall, the depletion or suppression of NKT cells 
appears to inhibit the progression of MASH and might be a novel 
treatment for MASH.

Gamma delta T cells
Gamma delta (γδ) T cells are the prototype “unconventional” T 
cells and represent a relatively small subset in the peripheral 
blood. γδ T cells have broad functional plasticity following the 
recognition of infected/transformed cells mediated by the pro-
duction of cytokines (IFN-γ, TNF-α, IL-17) and cytolysis of infected 
or transformed target cells by perforin, granzymes, and TNF-re-
lated apoptosis-inducing ligand [93]. The interaction of γδT cells 
with other cells, including epithelial cells, monocytes, dendritic 
cells (DCs), neutrophils, and B cells, has been reported [94]. The 
frequency of hepatic γδ T cells was comparable between MASLD 
patients and healthy individuals [95]. Furthermore, the liver pa-
thology was more severe in MASH patients with a higher fre-
quency of IL-17Aþ γδ T cells in the blood compared with those 
with a lower frequency of cells [75]. In patients with MASLD, the 
periportal accumulation of CCR6þ mononuclear cells and induc-
tion of CCL20 by liver parenchymal cells were observed [96].

In mice that were fed an HFHCD, hepatic γδ T cells were in-
creased and the specific depletion of IL-17 in γδ T cells alleviated 
MASH, suggesting that IL-17A is a disease-promoting factor [97]. 
Similarly, IL-17 released from γδ T cells by NKG2D-mediated acti-
vation mobilized inflammatory cells to the liver resulted in en-
hanced MASH [75]. In the liver, CCR6 was mainly expressed by γδ 
T cells after chronic injury and CCR6-deficient mice had exacer-
bated liver fibrosis, inflammation, and chronic liver injury in an 
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MCD-diet-induced MASH model [96]. That study reported that 
the adoptive transfer of γδ T cells alleviated liver fibrosis, pre-
sumably by promoting the apoptosis of activated HSCs in 
mice [96].

DCs
DCs recognize pathogens and danger signals, and have an impor-
tant role as a bridge between innate and adaptive immune 
responses. Hepatic DCs represent <1% of all hepatic myeloid 
cells [98] and are mainly localized in the portal region [99, 100]. 
DCs migrate from the blood to lymph nodes via the hepatic 
sinusoids, where they act as an important enrichment zone for 
hepatic DCs [101]. DCs can be divided into plasmacytoid DCs 
(pDCs) characterized by PDCA1þ and conventional DCs (cDCs)/ 
myeloid DCs (mDCs) [102]. Human cDCs are subtyped further 
into cDC1 (CD11cint XCR1þ) and cDC2 (CD11chi XCR−) and cDC1 is 
divided further into CD103þCD11b− mDC1 and CD103−CD11bþ

mDC2 [103]. cDC1 is regulated by the transcription factors Batf3 
and IRF8 whereas cDC2 is regulated by IRF4 [104]. In healthy liv-
ers, DCs predominantly have an immature phenotype. Immature 
DCs are characterized by a low capacity to endocytose antigens 
and stimulate T lymphocytes, with high production of kynure-
nine and IL-10 [105], and the ability to promote the differentia-
tion of CD4þ T cells into Tregs [106]. Under inflammatory 
conditions, DCs differentiate into mature phenotypes, mobilize 
monocytes, promote the production of inflammatory cytokines 
and chemokines, develop an important capacity to respond to 
Toll-like receptors (TLRs), activate NKT cells, and promote T-cell 
proliferation [107]. DCs are also a source of inflammatory cyto-
kines such as TNF-α and IL-6, which activate stellate cells [108]. 
The role of DCs in MASLD/MASH varies between animal feeding 
models and situations, and conflicting data have been reported.

In a recent human study, the frequency of hepatic DC CD11cþ

expression in liver tissues was higher in MASLD patients than in 
mildly obese or non-obese patients [109]. DCs steadily accumu-
late in the liver in the early stages of the disease and produce sig-
nificant amounts of the pro-inflammatory cytokines TNF-α, IL-6, 
and MCP-1 and the anti-inflammatory cytokine IL-10 [110], sug-
gesting that hepatic DCs are involved in sustaining the inflam-
matory process in MASH. The analysis of livers from patients on 
the MASH spectrum showed that cDC1 was more abundant and 
activated during disease, and that the genetic depletion of cDC1 
or anti-XCL1 treatment in a MASH mouse model suppressed liver 
pathology [111]. A recent transcriptional and immune-profiling 
study of patients with MASLD showed a positive correlation be-
tween cDC2 and the progression of MASLD [112]. In contrast, the 
proportion of cDC2 in total leukemic cells in non-alcoholic fatty 
liver (NAFL) and MASH patients was comparable with those of 
healthy individuals [111]. The increased differentiation of 
CX3CR1þ monocyte-derived DCs in a mouse model of MASH pro-
moted hepatitis through the upregulation of a fractalkine 
(CX3CL1) associated with the proliferation of monocyte-derived 
DCs [113].

Even in mice models, the increased differentiation of CX3CR1þ

monocyte-derived DCs in a mouse model of MASH promoted 
hepatitis through the upregulation of a fractalkine (CX3CL1) as-
sociated with the proliferation of monocyte-derived DCs [113]. In 
contrast, a study that examined the role of cDC1s in Batf3-defi-
cient mice demonstrated that Batf3-deficient mice rapidly pro-
gressed to steatohepatitis and had an increased influx of 
chemokines and inflammatory immune cells [114]. In addition, 
the adoptive transfer of CD103þ cDC1s to Batf3-deficient mice re-
duced inflammatory macrophage accumulation and metabolic 
disturbances [114]. Similarly, other studies of MASH have shown 

that DCs limited CD8þ T-cell expansion and restricted TLR ex-
pression and cytokine production in innate immune effector 
cells, including KCs, neutrophils, and inflammatory monocytes 
[110]. Taken together, these data suggest that hepatic DCs may 
have a dichotomous role in the progression or resolution 
of MASLD.

T cells
CD8þ T cells are effector cells of the adaptive immune system that 
are important for killing cancer cells and infected cells by an major 
histocompatibility complex I-restricted, antigen-specific mecha-
nism [115]. Lymphocytic infiltrates are frequently observed in liver 
biopsies of patients with MASLD, often as focal lymphocyte aggre-
gates that are composed of T cells [116]. Hepatic CD8þ T lympho-
cytes were associated with lobular inflammation, ballooning, and 
the transcriptomic signature of patients with MASH [112]. 
Furthermore, circulating CD8þ T cells were markedly activated 
with the increased expressions of perforin, IFN-γ, and TNF-α. A re-
cent study that used single-cell RNA sequencing identified the ex-
pansion of CXCR6þPD-1þGzmbþCD8þ T cells in the livers of MASH 
patients and mice [19]. The mechanism by which this cell popula-
tion was generated involved the downregulation of the transcrip-
tion factor FOXO1 by increasing IL-15 signaling in fatty livers, 
ultimately inducing direct hepatocyte killing via the high expression 
of FasL. In a mouse model, steatosis, liver injury, and inflammation 
induced by choline-deficient/HFD feeding were reduced in Rag1–/– 

mice that lacked T cells [91]. CD8þ T cells and NKT cells cooperated 
to promote liver injury [91] and a deficiency of CD8þ T cells or NKT 
cells was associated with milder fatty hepatitis [117]. The liver ac-
cumulated pathogenic CD8þ T-cell subsets, which controlled he-
patic insulin sensitivity and gluconeogenesis in mice with diet- 
induced obesity [118]. The interaction between CD8þ T cells and 
monocyte-derived macrophages via inducible T-cell costimulator/ 
ligand is important for maintaining TREM2þ-expressing cells, which 
contributes to the progression of non-alcoholic steatohepati-
tis [119].

CD4þ T helper (Th) cells are broadly classified as Th1, Th2, 
Th17, and Tregs. Their balance is important for maintaining he-
patic immune tolerance, and the dysregulation of regulatory and 
effector T helper cells is a hallmark of chronic liver disease [120]. 
Compared with healthy controls, higher frequencies of IFN-γþ

and/or IL-4þ cells were detected among CD4þ T cells in the pe-
ripheral blood of patients with MASH and to a lesser degree in 
those with NAFL [121]. In a humanized mouse model that was 
fed an HFHCD, CD4þ T cells accumulated in the liver and their 
depletion suppressed liver inflammation and fibrosis [122]. 
Intrahepatic Th17 (ihTh17) cells were increased throughout hu-
man MASLD and were more frequent in those with MASH than in 
those with NAFL [121]. In mice that lacked IL-17, feeding with 
HFD or MCD diets did not affect adiposity, but reduced hepato-
cellular damage and hepatitis [123, 124]. The CXCR3þTh17 subset 
(ihTh17) exacerbated MASLD pathogenesis in a mouse model 
[125] and the ihTh17 cells had increased metabolic activity and 
production of inflammatory cytokines including IFN-γ, TNF-α, 
and IL-17.

Tregs are important immune regulatory cells that were 
reported to be decreased in MASH patients compared with 
healthy controls [121]. More Tregs were apoptotic and had a de-
creased frequency in patients with steatohepatitis, and the adop-
tive transfer of Tregs suppressed subsequent liver inflammation 
in mice [126]. However, BALB/c mice that were fed an HFD had 
increased intrahepatic Tregs, but the adoptive transfer of Tregs 
exacerbated experimental MASH [127]. Patients with MASLD/ 
MASH or mouse models of MASH showed a marked imbalance 
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between ihTh17 cells and Tregs [121, 128]. It is mechanistically 
unclear whether such an imbalance was related to local immune 
dysregulation or extrahepatic factors. Interestingly, recent mice 
studies have identified microbial bile-acid metabolism as an im-
portant regulator of the Th17/Treg balance in the gut [129, 130].

B cells
B cells are a crucial component of the adaptive immune system 
and are particularly susceptible to antigens that are derived from 
the intestinal flora and oxidative stress [131]. There is some evi-
dence to support a pathogenic role for B cells in MASLD, although it 
is more limited than for other immune cells [132]. An increase in 
hepatic B cells has been observed in both humans and mice with 
MASLD [133, 134]. Accordingly, B-cell deficiency-ameliorated MASH 
progression and the adoptive transfer of B cells from MASH livers 
recapitulates the disease in mice [133, 134]. B-cell activation during 
MASLD occurs through the detection of damage-associated molec-
ular patterns or pathogen-associated molecular patterns by pattern 
recognition receptors such as TLR4 or through the binding of anti-
gens that are derived from the microbiota to B-cell receptors [133]. 
The progression of MASLD is associated with an increase in the con-
centration of BAFF [135], a B-cell activation factor, and a deficiency 
of BAFF suppressed hepatic steatosis in a mouse model of MASLD 
[136]. In addition, IgA that was derived from metabolically activated 
B cells in the small intestine contributes to the activation and 
inflammation of myeloid cells in the mouse liver [137].

Development of novel therapies and their 
potential for therapeutic immune 
intervention against MASLD
Specific treatments for MASLD are still lacking, despite positive 
results in early-stage clinical trials [138]. The suppression of in-
flammatory pathways or promotion of anti-inflammatory path-
ways induced by innate immune cells described in this review 
may lead to more specific immunomodulatory strategies. 
Preclinical and clinical data showed that cenicriviroc—a dual 
CCR2/CCR5 antagonist that targets monocyte and lymphocyte 
recruitment in patients with MASH—was a promising drug [139]; 
however, it lacked efficacy when used to treat liver fibrosis in 
patients with MASH in the AURORA phase III randomized study 
[140]. ASK-1 activates p38 mitogen-activated protein kinase (p38) 
and c-Jun N-terminal kinase, which in turn induce tissue apopto-
sis, inflammation, and fibrosis in MASH [141]. This finding led to 
a phase III study in patients with stage 3 and stage 4 fibrosis, but 
no significant efficacy was achieved when ASK-1 was adminis-
tered alone [141]. Galectin 3 is highly expressed by macrophages 
and is involved in liver fibrosis [142]. A recently published phase 
IIb study that evaluated the galectin-3 inhibitor belapectin did 
not demonstrate an improvement in portal hypertension or fibro-
sis in patients with MASH cirrhosis [143].

An emerging strategy is to simultaneously target metabolism 
and inflammation during the development of MASH by using drugs 
with multiple mechanisms of action, such as PPAR agonists, farne-
soid X receptor (FXR) agonists, and thyroid hormone receptor-β 
(THR-β) agonists [144]. These nuclear receptors (NRs) not only re-
stored metabolic disturbances, but also had multiple effects on im-
mune cell function and improved the inflammatory environment 
in preclinical studies of MASLD [145]. The PPAR agonist lanifibranor, 
which targets all PPAR isoforms, had direct anti-inflammatory 
effects on liver macrophages via PPAR β/δ and direct anti-fibrotic 
effects on stellate cells via PPARγ in a mouse model of MASH [146]. 
In a phase IIb trial of patients with active MASH, the proportion of 
patients with at least a two-point reduction in steatosis, activity, 

and fibrosis scores without worsening fibrosis was significantly 
higher in the lanifibranol group than in the placebo group [147]. 
FXRs are bile-acid-activated NRs that regulate bile-acid, lipid, and 
glucose metabolism with a central role in metabolic homeostasis 
[148]. FXR signaling modulated inflammatory pathways by inhibit-
ing the production of pro-inflammatory cytokines, activating 
inflammasomes, and upregulating anti-inflammatory mediators 
[149]. Importantly, the steroidal FXR agonist obeticholic acid has 
shown promise in clinical trials of patients with MASH [150]. This 
includes the ongoing phase III REGENERATE trial, which reported a 
significant improvement in fibrosis, although it did not lead to the 
remission of MASH [151]. Because of their potential to restore bile- 
acid metabolism and reduce inflammation, pharmacological FXR 
agonists remain an important target of future combination therapy 
in MASH [152].

The thyroid hormone modulates hepatic glucose and lipid me-
tabolism [153]. THR-β agonists can reverse steatosis by many 
mechanisms, including the improved hepatic conversion of T4 
into T3 and enhanced mitochondrial function [154]. The efficacy 
of resmetirom, a THR-β agonist, was reported in the ongoing 
phase III MAESTRO-MASH trial [155]. Resmetirom was superior 
to placebo on two primary end-points: MASH resolution without 
worsening of fibrosis and improvement (reduction) in at least one 
level of fibrosis without worsening of the MASLD activity score. 
Resmetirom (which will be marketed under the name “Rezdiffra”) 
was recently conditionally approved by the Food and Drug 
Administration as a treatment for adult patients with non- 
cirrhotic MASH who have moderate to severe fibrosis. Previous 
analyses have shown that the severity of MASH is strongly corre-
lated with the risk of liver-related mortality and non-transplant 
survival [156] and this approval should be seen as a landmark 
event for MASH patients.

Another promising future treatment for MASLD may be the 
targeting of T cells. Auto-aggressive CD8þ T cells that expand in 
the MASH liver have an exhausted profile and metabolic distur-
bances are associated with the development of this cell popula-
tion [19]. The restoration of glycolytic pathways and 
mitochondrial function, as seen in T cells that are exhausted by 
chronic viral infection [157], may reduce auto-aggression. In ad-
dition, inhibitors of IL-17 and IL-23 signaling are expected to be 
effective treatments for inflammatory diseases that share the 
same immunopathological features as MASLD/MASH [158] and 
IL-17 inhibitors have been shown to be effective in improving 
NAS scores and FIB-4 indices in patients with MASLD/MASH 
[159], suggesting that inhibition of this signaling pathway may 
also be useful as a therapeutic agent.

A deeper understanding of the pathogenesis of the onset, 
propagation, and resolution of inflammation and fibrosis in 
MASLD highlights the complexity of potential anti-inflammatory 
and anti-fibrotic targets. However, despite the association of in-
flammation and fibrosis with MASLD-related outcomes, no 
“pure” anti-inflammatory or anti-fibrotic drugs for the treatment 
of MASH have been approved to date. This is because of the indi-
vidual variations in and complexity of the processes that cause 
inflammation and fibrosis. Detailed insights into the complex sig-
naling circuitry between metabolism, inflammation, and fibrosis 
in MASLD and MASH should ultimately enable better stage- 
specific and personalized treatment in the near future.

Conclusions and future perspectives
MASLD is a common liver disease worldwide that encompasses a 
variety of conditions ranging from basic lipidosis and metabolic 
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dysfunction-associated fatty liver to MASH-related fibrosis, cir-

rhosis, and hepatocellular carcinoma. Hepatic immunology re-
search has led to a greater understanding of the contribution of 
macrophages and other innate immune cells to the progression 
of MASLD. These studies have established that immune abnor-

malities have an important role in the progression of MASLD, 
various immune cell populations are involved in the pathogene-
sis of MASLD, and organized communication between them may 
contribute to the formation of the hepatitis environment that is 

observed during the pathogenesis of MASLD. Future studies 
should stratify patients with specific metabolic and immune dis-
orders more appropriately to determine which mouse models re-
flect the specific human MASLD subtypes. With the recent 

advent and application of state-of-the-art technologies, a better 
understanding of the dynamic accumulation and activation of 
immune cells is expected, which will pave the way for innovative 
therapeutic strategies against MASLD. The stratification of 

patients based on stage, risk profile, and modifying factors will 
allow us to design more personalized treatment options, result-
ing in a decrease in the global burden of MASLD.
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