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Linköping and Örebro Universities, Linköping, Sweden, 5 Technical University of Denmark, Department of

Electrical Engineering, Lyngby, Denmark, 6 Medical Research Council/Chief Scientist Office Institute of

Hearing Research—Scottish Section (Part of The University of Nottingham), Glasgow, United Kingdom

* y.wang@vumc.nl

Abstract

Objectives

Pupil light reflex (PLR) has been widely used as a method for evaluating parasympathetic

activity. The first aim of the present study is to develop a PLR measurement using a computer

screen set-up and compare its results with the PLR generated by a more conventional setup

using light-emitting diode (LED). The parasympathetic nervous system, which is known to

control the ‘rest and digest’ response of the human body, is considered to be associated with

daily life fatigue. However, only few studies have attempted to test the relationship between

self-reported daily fatigue and physiological measurement of the parasympathetic nervous

system. Therefore, the second aim of this study was to investigate the relationship between

daily-life fatigue, assessed using the Need for Recovery scale, and parasympathetic activity,

as indicated by the PLR parameters.

Design

A pilot study was conducted first to develop a PLR measurement set-up using a computer

screen. PLRs evoked by light stimuli with different characteristics were recorded to confirm

the influence of light intensity, flash duration, and color on the PLRs evoked by the system.

In the subsequent experimental study, we recorded the PLR of 25 adult participants to light

flashes generated by the screen set-up as well as by a conventional LED set-up. PLR

parameters relating to parasympathetic and sympathetic activity were calculated from the

pupil responses. We tested the split-half reliability across two consecutive blocks of trials,

and the relationships between the parameters of PLRs evoked by the two set-ups. Partici-

pants rated their need for recovery prior to the PLR recordings.
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Results

PLR parameters acquired in the screen and LED set-ups showed good reliability for ampli-

tude related parameters. The PLRs evoked by both set-ups were consistent, but showed

systematic differences in absolute values of all parameters. Additionally, higher need for

recovery was associated with faster and larger constriction of the PLR.

Conclusions

This study assessed the PLR generated by a computer screen and the PLR generated by a

LED. The good reliability within set-ups and the consistency between the PLRs evoked by

the set-ups indicate that both systems provides a valid way to evoke the PLR. A higher need

for recovery was associated with faster and larger constricting PLRs, suggesting increased

levels of parasympathetic nervous system activity in people experiencing higher levels of

need for recovery on a daily basis.

Introduction

Physiological assessment of autonomic nervous system functioning

The autonomic nervous system (ANS) is crucial to the human body as it regulates both the

internal environment and the sequence of basic physiological events allowing an organism to

optimally adjust to environmental changes [1]. The ANS is divided into two branches: the

sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). The SNS is

known to govern the ‘fight or flight’ response, while the PNS is commonly considered to be in

control of the ‘rest and digest’ response.

Several methods to measure ANS activity and the relative contribution of the SNS and PNS

systems exist. For example, measuring heart-rate variability (HRV) provides information

about the relative contribution of the SNS and PNS branches into the total ANS activity [2].

The low-frequency components of HRV (0.04–0.15 Hz) index sympathetic activity, while the

high-frequency components (0.15–0.40 Hz) are associated with parasympathetic activity [2].

The pupil size reflects SNS and PNS activation

Similar to cardiovascular responses such as HRV, changes in an individual’s pupil size are also

under the direct control of the ANS. Both PNS and SNS activation are reflected in the diameter

of the pupil [3]. Thus, measurement of the pupil diameter provides a way to assess both the

SNS and the PNS. Activation of the SNS results in pupil dilation, via innervation of the dilator

muscles, and activation of the PNS results in pupil constriction, via innervation of the sphincter

(constrictor) muscles of the eye [3].

A measure that has been used to assess PNS activity is the pupil light reflex (PLR) [4]. The

PLR is the rapid constriction of the pupil diameter in response to an increase in light intensity

[5]. Light falling on the retina(s) leads to increased neural activity in the pretectal regions and

stimulation of the Edinger-Westphal nucleus, where preganglionic parasympathetic neurons

are activated and innervate the ciliary ganglion. These in turn command the constrictor mus-

cles to tighten and this leads to pupil constriction. Both the ciliary ganglion and constrictor

muscles contain receptors for Acetylcholine, which is the main neurotransmitter of the PNS

[3, 4]. A typical PLR consists of three different phases (see different grey areas in Fig 1). It starts

with a fast constriction phase shortly after the eye has been exposed to a light stimulus. Then
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an early fast re-dilation of the pupil diameter occurs, followed by a slow re-dilation phase dur-

ing which the pupil diameter returns to its original size. According to Loewenfeld and Lowen-

stein [3], increased PNS activation is predominantly reflected in the fast constriction phase.

The early fast re-dilation phase reflects both a reduction in PNS activation and an increase in

SNS activation, while the later slower re-dilation phase is predominantly the result of innerva-

tions of the SNS system. PLR measurements have been widely used as a clinical diagnostic tool

to assess PNS dysfunction. As summarized in a recent systematic review [4], the PLR can effec-

tively detect PNS dysfunction in people with cholinergic diseases like Alzheimer’s Disease [6,

7], Parkinson’s Disease [8], diabetes [9], and psychiatric conditions like anxiety disorder [10].

Whereas the PLR has been shown to be a valid and useful method to assess PNS dysfunc-

tion, it is important to note that the PLR parameters (see Fig 1) are highly sensitive to the char-

acteristics of the stimuli used to generate the PLR. For example, the magnitude of the reflex is

influenced by the color and the duration of the light stimulus [11, 12, 13]. Given that in the

PLR studies conducted so far a variety of stimuli have been used to elicit the PLR, direct com-

parisons of the reflexes evoked in different studies cannot be made. A standard method to elicit

the PLR does not yet exist. Most PLR-related studies have used LED(s) as the light source to

generate the flash evoking the PLR [4]. The LEDs are usually mounted either on a standalone

device (e.g. A-1000, Neuroptics Inc, San Clemente, CA) or on a hardware interface [14], which

can be relatively expensive and technically demanding. In contrast, computer screens are gen-

erally available, and have been suggested to be an effective light source to generate PLRs [15,

16]. Recent developments within the disciplines of psychology and neuroscience demonstrate

that PLR is not merely a low-level reflex, but is also influenced by higher-level visual and cogni-

tive processing, at least when relatively complex test paradigms and visual stimuli including context

Fig 1. Schematic illustration of a pupil light reflex after the presentation of a flash light. BPD: baseline pupil diameter; MCV: maximum constriction velocity; ACA:

absolute constriction amplitude; RCA: relative constriction amplitude; T75: time to reach 75% of initial resting diameter during pupillary re-dilation; DV1: Dilation

velocity at 1s after Maximum constriction; PNS: contribution of parasympathetic nervous system; SNS: contribution of the sympathetic nervous system.

https://doi.org/10.1371/journal.pone.0197739.g001
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are used. For instance, researchers reported that PLR is sensitive to cognitive processing [15, 17,

18, 19] and visual attention [20, 21, 22, 23, 24, 25]. A recent study suggested that the attentional

modulation of the PLR is related to the activity of frontal eye fields, a prefrontal cortical area gov-

erning the movements and attention of the eye [26, 27]. Most of these findings were obtained uti-

lizing a computer screen to generate visual stimuli which is different from the traditional approach

using LED. The visual stimuli generated by the computer screen in those studies were quite com-

plex and involving higher-level context. The computer screen is also able to provide simple light

stimuli like the light source required to elicit the PLR. As far as we know, there are no studies avail-

able that have directly compared PLRs generated using a computer screen to those generated with

LED set-ups. Although a direct comparison could be difficult due to the different visual fields

yielded by different light sources (light stimuli generated by LEDs have a narrow visual field, while

a computer screen generates a wider field), we may still expect that parameters calculated from the

PLRs evoked by a computer screen and those evoked by LEDs show high consistency (i.e. are asso-

ciated) within subjects. The first aim of the present study was to examine the split-half test-retest

reliability of the PLRs evoked using a computer screen and a LED device. We also aimed to com-

pare the parameters of the PLRs evoked by these two methods.

Fatigue and ANS functioning

Feeling fatigued is a common complaint that almost half of the adult population has experi-

enced [28]. Fatigue is usually defined as a subjective feeling or mood state of tiredness [29].

Meijman and Schaufeli [30] defined fatigue as: “The change in the psychophysiological control

mechanism that regulates task behaviour, resulting from preceding mental and/or physical

efforts which have become burdensome to such an extent that the individual is no longer able

to adequately meet the demands that the job requires on his or her mental functioning; or that

the individual is able to meet these demands only at the cost of increased mental effort and

coping with increased task resistance”.

Daily-life fatigue may emerge after frequent exposure to stress without adequate recovery

from it afterwards, and this could be a major cause of societal problems like work productivity

loss, sick leave, and even psychiatric disorders [31, 32, 33, 34, 35]. The most intuitive way to

assess fatigue is via self-report questionnaires [29, 36, 37]. Several examples of self-report out-

come measures assessing fatigue are available. One is the Profile of Mood States questionnaire,

which includes assessment of fatigue and vigor from the perspective of mood state [38, 39].

The Chalder fatigue scale [40] is a questionnaire which assesses both mental and physical

fatigue, and evidence suggests it to be an effective tool to evaluate daily fatigue in different lan-

guages and populations [41, 42]

There is evidence showing that fatigue may not only emerge from stressful events or activi-

ties, but also from the lack of ability to adequately recover from stress [31]. The early symp-

toms of fatigue can be measured by assessing an individual’s need for recovery. The concept of

need for recovery reflects the ability to cope and recover from fatigue and distress [31]. Insuffi-

cient recovery after work is an intermediate stage between exposure to the stressful working

situation and the development of long-term fatigue related health issues, like burnout [31, 33,

43]. The Need For Recovery (NfR) scale is an eleven-item scale including items like: ‘I find it

difficult to relax at the end of working day’ or ‘In general, it takes me over an hour to feel fully

recovered after work’ [31]. Multiple studies have confirmed the quality and validity of this

scale for evaluating work-related need for recovery [31, 33, 44, 45]. The NfR scale will be used

in the current study to evaluate need for recovery experienced in daily-life.

Fatigue also influences physiological measurements indexing ANS activity. For example,

fatigue-induced ANS dysfunction has been found in patients with multiple sclerosis [46],
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chronic fatigue syndrome [47] and cancer [48, 49]. A study by Tanaka et al. [50] measured

high-frequency and low-frequency HRV when exposing a group of healthy adults to a 2-back

task. Results of a correlation analysis indicated that higher levels of self-reported daily-life

fatigue, as measured by the Chalder fatigue scale [40], were positively correlated with the low-

frequency (sympathetic) index and negatively correlated with the high-frequency (parasympa-

thetic) index of HRV before the task. As a result, current evidence based on HRV indicates

that increased levels of fatigue may be associated with higher levels of SNS and lower levels of

PNS activity.

In a previous study, we investigated the relationship between self-reported need for recovery

and the task-evoked pupil dilation response during a speech perception in noise task [51]. The

task-evoked pupil dilation reflects the balance or ratio of sympathetic and parasympathetic acti-

vation [52, 53, 54]. In conditions of ambient illumination, the response consists of a ‘direct’ SNS

dilation-component and an additional component that emerges because of a task-evoked reduc-

tion in PNS activity [55]. Importantly, in darkness, PNS activity is maximally inhibited, so PNS

has minimal effect on the task-induced pupil dilation [55]. Therefore, in darkness, the dilation

is mainly driven by SNS activation. Hence, presenting identical stimuli and tasks in dark and

light conditions allows the identification of the relative contribution of PNS and SNS compo-

nents to the pupil dilation response. This aids the understanding of the origin of pupillometry

findings. Wang et al. [51] reports task-evoked pupil response data for 27 normally-hearing

healthy adults performing a speech reception threshold test in light conditions. We observed

that a higher NfR score was associated with a smaller task-evoked pupil dilation response. How-

ever, in the same session, these participants also performed the same task in darkness, where-

upon we observed no relationship between NfR and pupil dilation (unpublished data). Hence,

the findings may suggest that a higher need for recovery is associated with reduced inhibition of

the parasympathetic component of the pupil dilation response, resulting in reduced pupil dila-

tion in light but not in dark where the PNS contribution to pupil size is negligible. This would

be consistent with the notion of the PNS being the ‘rest and digest’ branch, meaning that a

higher need to rest is associated with increased PNS activation–or less inhibition of the PNS in

order to cope with the fatigue [56]. However, this interpretation is contrary to the evidence pro-

vided by Tanaka et al. [50] who claimed that increased daily-life fatigue is associated with

reduced PNS activation, as indicated by their HRV analysis. To test this association, the second

aim of the current study was to investigate the associations between PLR parameters (reflecting

PNS activity) and need for recovery in healthy adult individuals.

Thus, the hypotheses tested in the present study were as follows:

• H1A: PLR parameters generated by the computer screen and the LED show good test-retest

reliability across two consecutive blocks of trials.

• H1B: PLR parameters generated by the computer screen and the LED are consistent across

subjects, but different set-ups may result in systematic differences in absolute values.

• H2: Higher levels of need for recovery are associated with increased PNS activity as indicated

by PLR parameters indexing PNS activation.

Methods

Pilot study

Previous studies suggested that the PLR is sensitive to different characteristics of the light sti-

muli, including Color [11, 12], Light Intensity [10, 57, 58], and Duration [59]. Therefore, we

first conducted a pilot study to confirm the influence of light intensity, flash duration, and

Pupil light reflex evoked by LED and SCREEN, and its association with need for recovery
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color on the PLRs evoked by a computer-screen set-up. Twenty-nine healthy participants were

included in the pilot testing. The details of the pilot study design and results can be found in

S1 Appendix of this paper. The data indicate that our computer screen PLR set-up is sensitive

to the characteristics of different light stimuli and therefore considered to be a valid method to

be used in the main study (below).

Participants

Participants for the main study were twenty-five normal-hearing native Danish participants

(13 females). They were recruited from the subject pool of the Eriksholm Research Centre,

Snekkersten, Denmark. Their mean age was 50.4 years (SD = 11.9), ranging from 26 to 69

years old. All participants had a normal or corrected to normal vision and no neurological,

psychiatric or ophthalmological problems were reported by any of the participants. All partici-

pants provided written informed consent and the study was approved by De Videnskabsetiske

Komiteer (Journal number: H-1-2011-033).

Need for recovery scale

The Need for Recovery (NfR) scale is an eleven-item scale from the Questionnaire on the

Experience and Evaluation of Work, which assesses the experience of daily work situations

[31, 60]. The NfR scale focuses on the evaluation of fatigue caused by work and the need for

recovery afterwards. Examples of items included in this scale are: “I cannot really show any

interest in other people when I have just come home myself”, or “When I get home from work,

I need to be left in peace for a while”. Responses for each item are either ‘yes’ or ‘no’. The total

NfR score is the number of ‘yes’ responses (except for item 4, where ‘no’ signals an unfavorable

situation) divided by the total number of items, presented as a percentage (i.e. range 0–100). A

higher NfR score corresponds to greater need for recovery reported by the respondent.

The NfR scale was originally designed and validated in Dutch. We translated the question-

naire following the guidelines described by Sousa and Rojjanasrirat [61]. The first translator

translated the original Dutch NfR scale into Danish. A second translator (bilingual in both

Dutch and Danish) then performed a blind back-translation of this initial translated version

(Danish to Dutch) to compare the back-translated version with the original version. If there

was any disagreement between the back-translated version and the original version, consensus

was achieved between the two translators. Finally, a third native Danish person checked the

language of the translated questionnaire and this resulted in the final version. The Danish NfR

scale can be found in S2 Appendix of this paper.

Pupillometry

We used an SMI RED 500 (SensoMotoric Instruments, Berlin, Germany) remote eye tracking

system to record the pupil response of both eyes with 120 Hz sampling rate and a spatial reso-

lution of 0.03˚. Only data from the left eye were used in the analyses in the current study.

Conditions and procedure

All participants visited the lab for a two-hour experiment. Participants were asked not to drink

coffee on the same day before the experiment, as the effect of caffeine on the pupil response

remains unclear [62, 63]. The NfR was completed by the participant shortly after he or she had

arrived. During the test, participants were seated in a comfortable chair located in a dark

sound-treated booth. The background luminance of the booth was less than 0.1 cd/m2. Head

position was fixed using a chin-and-head rest. Light stimuli were presented either from a
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computer screen or a light-emitting diode (LED). We considered the light stimuli from these

two light sources as two different PLR conditions.

For the computer screen condition, a DELL 1800FP (18.1") screen was used and placed in

front of the participant. The computer screen was calibrated by a screen calibrator (X-Rite, i1

Display Pro) to ensure the uniformity of both the color and luminance of the light stimuli. The

distance from the fixation mark (small white dot attached to the center of the screen) to the

middle of the eyes was fixed to 55 cm, which yielded a visual angle of approximately 43˚. Red

light (peak wavelength: 680 nm) with 3 cd/m2 luminance was presented for 200 milliseconds

(ms) from the full visual field of the screen.

For the LED condition, we used a set-up similar to that described by Steinhauer et al. [14].

A narrow angle (8˚) red LED, placed 55 cm from the left eye, was used to generate the flash of

light. The intensity of the light was calibrated to approximately 2 cd/m2. This intensity was

determined based on feedback from the participants in the pilot study, which indicated that

higher light intensity might cause discomfort to the participants. Four dim red LEDs, masked

to pinhead size, were placed surrounding the flash LED in order to avoid the optokinetic effect

(when a single light source in darkness starts to have apparent motion, it will evoke eye move-

ments, and this may result in PLR artifacts). We used an Arduino UNO (http://arduino.cc)

board, which is an open-source electronics prototyping platform based on user-friendly hard-

ware and software, as the interface to control the onset and offset of the LEDs.

For each block, we first played an audio instruction asking the participants to get ready by

putting their chin on the chin-rest. Then, after one minute dark adaptation time, flashes with

200 milliseconds duration were presented six times. The interval between each flash was 15

seconds, and pupil recording continued throughout the whole six trials (60 seconds dark adap-

tion time plus 90 seconds testing time). Participants were requested not to blink during and a

few seconds after each flash of light. In some cases, the pupillometry equipment had difficulty

with recording the pupil size in completely dark conditions. A corrective action was then

taken by the experimenter, reminding the participants to avoid eye-blinking or to keep their

eyes open when necessary. Each condition consisted of one block of 6 practice trials and two

blocks of 6 formal trials. The order of the conditions was randomized beforehand for each par-

ticipant, such that half of the participants performed the SCREEN condition first, while the

other half performed the LED condition first.

Pupil data processing

The pupil data processing and analysis was performed using Matlab (MATLAB Release 2016a,

The MathWorks, Inc., Natick, Massachusetts, United States). For each block, we discarded the

first flash trial as it is usually associated with larger initial diameter and greater constriction com-

pared to other trials due to a possible attention effect [14]. Baseline pupil diameter (BPD) was

defined as the mean pupil diameter recorded during 200 ms before flash onset. Pupil diameters

smaller than 0.001 mm together with zero diameter values were characterized as blinks. Trials in

which the data included more than 10% blinks were rejected from the analysis. An additional

blink detection procedure was applied to the pupil data between the start of the baseline to the

maximum constriction part (where the pupil diameter was minimum); the threshold for the

additional blink detection was set to 3%, such that traces with more than 3% blinks in this inter-

val were omitted. Blinks that occurred in the re-dilation part of the trial were corrected by linear

interpolation, blinks in the constriction part were corrected by applying a spline interpolation.

We used a five-point moving average filter to smooth the data afterwards. The smoothed data

then were time-aligned and averaged across all the accepted traces for a given condition, and the

average BPD was subtracted to obtain the baseline-corrected pupil response.

Pupil light reflex evoked by LED and SCREEN, and its association with need for recovery
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Fig 1 shows a schematic illustration of the pupil response after a light flash, i.e. the PLR. It

presents the parameters used in the analysis, as well as how the PNS and SNS contribute to dif-

ferent parts of the reflex. Besides the BPD, the following six PLR parameters were calculated:

1) the absolute constriction amplitude (ACA, mm), which is the magnitude of pupil constric-

tion determined by the difference between BPD and the minimum pupil diameter during the

constriction, 2) the relative constriction amplitude (RCA, %) describing the percentage of

pupil constriction, determined by the ratio of ACA divided by BPD, 3) the maximum constric-

tion velocity (MCV, mm/s), that is characterized by the largest first derivative of the pupil

trace during the constriction, 4) the dilation velocity at 1 second (DV1, mm/s) is the slope of

pupil diameter 1 s after the minimum pupil size, 5) and the latency to return to 75% (T75, s) of

the initial BPD from the point of maximum pupillary constriction. These PLR parameters

were selected based on the studies of Muppidi et al. [64], Steinhauer et al. [14], and Wang et al.

[4]. The parameters reflect the innervation of parasympathetic and sympathetic nervous sys-

tem during the reflex [3]. According to empirical evidence collected from the existing litera-

ture, the MCV, ACA and RCA are considered to indicate PNS activation, the BPD and DV1

reflect combined PNS and SNS activation, and the T75 is considered an indicator of SNS acti-

vation [4, 13, 14, 64].

Statistical analyses

We first examined the descriptive statistics of the NfR data and the PLR parameters (MCV,

ACA, RCA, BPD, DV1, T75), and tested the association between the PLR parameters sepa-

rately for each set-up. Secondly, we tested the split-half test-retest reliability of the PLR mea-

surements, again separately for each set-up. We compared the PLR parameters between the

two consecutive blocks of trials of the same set-up by calculating Intraclass Correlations Coef-

ficients (ICCs) for each PLR parameter. An ICC above 0.75 was considered as indicating abso-

lute agreement between the two blocks [65]. Then, we ran dependent t-tests on the PLR

parameters to test if there were any differences in the parameters of the PLRs evoked with the

LED and the SCREEN. Next, we examined the Pearson correlation coefficients between corre-

sponding PLR parameters obtained from the SCREEN and the LED conditions in order to test

the correlations between the data acquired with the two set-ups. Finally, we tested the Spear-

man correlation coefficients between NfR, age and the PLR parameters obtained in both con-

ditions. Non-parametric Spearman correlation coefficients were calculated as the NfR scores

were not normally distributed.

Results

The mean NfR score was 16% (SD = 14.4), and the distribution of the score was skewed to the

right (skewness = 0.97). After pupil data preprocessing, 26 out of the 250 (25 participants x 10

trials) trials in the LED condition were discarded and 19 out of 250 trials in the SCREEN con-

dition were discarded due to a large proportion of blinks (>10%). Descriptive statistics of the

PLR data (for both the LED and SCREEN conditions) are provided in Table 1. The results are

furthermore illustrated in Fig 2 in the form of the complete average traces.

Table 2 shows the Pearson correlation coefficients between the PLR parameters for the LED

and SCREEN conditions, respectively. The overall pattern of results is similar for the two set-

ups, with relatively strong associations between ACA, MCV, BPD and DV1.

Next, we ran a factor (principal component) analysis on these 6 parameters to examine the

underlying latent factor structure. Results of varimax-rotated factor loadings are listed in

Table 3. Both LED and SCREEN conditions ended up with two factors that had eigenvalue

higher than 1. In both conditions, the first factor was mainly composed by MCV, ACA, BPD

Pupil light reflex evoked by LED and SCREEN, and its association with need for recovery
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and DV1, and accounted for 51.51% (LED) / 61.43 (SCREEN) of the variance. Factor 2 was the

combination of RCA and T75, and accounted for 29.10% (LED) / 24.57% (SCREEN) of the

total variance. The calculated factor scores were stored and used later in the correlation analy-

sis to test their correlations with NfR.

The results of the ICC analysis for the split-half test-retest reliability analysis are shown in

Table 4 for each of the two conditions. The ICCs were calculated with a two-way random-

effect, single measures model [65]. ACA, RCA and BPD had ICC values higher than 0.75. The

ICC values of the DV1 parameter of the PLR evoked in the SCREEN and LED conditions were

0.74 and 0.67 respectively. This is slightly lower than the threshold for good reliability. MCV

and T75 showed lower ICC values, indicative of poor reliability.

Paired-samples t-tests revealed significantly larger PLR parameters in the LED as compared

to the SCREEN condition. This was true for the PNS parameters: MCV (t (24) = 2.77,

p = 0.011), ACA (t (24) = 9.16, p< 0.001) and RCA (t (24) = 8.04, p< 0.001); and the com-

bined PNS-SNS indicators: BPD (t (24) = 6.15, p< 0.001), DV1 (t (24) = 9.68, p< 0.001); but

not for the SNS indicator T75 (t (24) = 1.79, p = 0.085). The LED condition induced bigger

and faster pupil constrictions and initial redilation than the SCREEN condition.

The Pearson correlation coefficients between the corresponding PLR parameters generated

by the LED and SCREEN conditions are shown in Table 5. Most of the corresponding PLR

parameters obtained in different conditions (SCREEN versus LED) were significantly and pos-

itively associated with each other (except for T75), indicating high consistency between the

two conditions.

Correlation analysis between NfR, age and PLR parameters

Because NfR scores were not normally distributed, we performed a non-parametric Spearman

correlation analysis on the NfR scores and PLR parameters (MCV, ACA, RCA, BPD, DV1,

T75) generated by both the LED and SCREEN conditions. A Holm-Bonferroni-correction was

applied to correct for the multiple comparison. Table 6 shows the results. There were signifi-

cant positive correlations between NfR and the ACA as assessed in both the LED (r (23) =

0.54, p< 0.005) and the SCREEN (r (23) = 0.71, p< 0.001) conditions, such that higher NfR

scores were associated with larger pupil constriction. Similarly, we also found significant posi-

tive correlations between NfR and MCV, NfR and BPD, NfR and DV1 in both the LED (r (23)

= 0.63, p< 0.002 for MCV; r (23) = 0.62, p< 0.002 for BPD; r (23) = 0.51, p< 0.01 for DV1)

and SCREEN (r (23) = 0.62, p< 0.001 for MCV; r (23) = 0.68, p< 0.001 for BPD; r (23) =

Table 1. Descriptive statistics for the pupil light reflex parameters for the LED and SCREEN conditions.

PLR parameters LED

Mean (SD)

SCREEN

Mean (SD)

MCV (mm/s) 5.80 (1.47)� 5.20 (0.91)�

ACA (mm) 2.74 (0.45)� 2.21 (0.46)�

RCA (%) 46.08 (3.93)� 41.79 (4.79)�

BPD (mm) 5.96 (0.85)� 5.27 (0.80)�

DV1 (mm/s) 4.52 (0.78)� 3.52 (0.79)�

T75 (s) 6.28 (2.18) 5.54 (2.30)

MCV: maximum constriction velocity; ACA: absolute constriction amplitude; RCA: relative constriction amplitude;

BPD: baseline pupil diameter; DV1: Dilation velocity at 1s after Maximum constriction; T75: time to reach 75% of

initial resting diameter during pupillary re-dilation

� p < 0.05 for paired-sample t-test of the difference between LED and SCREEN conditions

https://doi.org/10.1371/journal.pone.0197739.t001
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0.69, p< 0.001 for DV1) conditions. These correlations indicate that higher levels of NfR were

associated with faster and larger constriction, as well as a larger baseline and faster initial

Fig 2. Baseline-corrected average PLRs of the SCREEN and LED conditions. Shaded area represents standard deviation.

https://doi.org/10.1371/journal.pone.0197739.g002

Table 2. PLR parameter correlations coefficients within LED and SCREEN condition.

LED

ACA RCA BPD DV1 T75

MCV 0.47 -0.16 0.67� 0.32 -0.22

ACA 0.52� 0.84� 0.97� 0.09

RCA -0.02 0.55� 0.06

BPD 0.79� 0.06

SCREEN

ACA RCA BPD DV1 T75

MCV 0.82� 0.50 0.77� 0.80� 0.09

ACA 0.75v 0.84� 0.98� 0.21

RCA 0.28 0.78� 0.37

BPD 0.78� 0.03

MCV: maximum constriction velocity; ACA: absolute constriction amplitude; RCA: relative constriction amplitude;

BPD: baseline pupil diameter; DV1: Dilation velocity at 1s after Maximum constriction; T75: time to reach 75% of

initial resting diameter during pupillary re-dilation.

� Correlation is significant at the 0.0083 level (2-tailed).

https://doi.org/10.1371/journal.pone.0197739.t002
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redilation velocity in the pupil light reflex. Fig 3 shows the scatterplot between the ACA mea-

sured in the SCREEN condition and the NfR scores. For both set-ups, we failed to find any sig-

nificant correlations between NfR and the RCA and T75 parameters of the PLR. In addition,

we separately tested the associations between the factor scores resulting from the factor analy-

sis, and NfR. Results indicated that Factor 1, from both LED and SCREEN conditions, showed

strong positive correlations with NfR (r (23) = 0.69, p< 0.001 for LED; r (23) = 0.76, p< 0.001

for SCREEN). In contrast, Factor 2 scores were not associated with NfR (r (23) = 0.05, p = 0.82

for LED; r (23) = 0.13, p = 0.55 for SCREEN).

Discussion

In the current study, we first aimed to develop a method to generate the PLR using a computer

screen set-up and compare this method with the more commonly used LED system. The test-

retest reliability of both set-ups were examined and we demonstrated that the computer screen

set-up allows a sensitive and reliable registration of the PLR, whose reliability is similar to that

of the PLR generated by a LED set-up. Our second aim was to examine associations between

PLR parameters and a self-report measure of need for recovery, which was assumed to be asso-

ciated with PNS related activity. Higher levels of need for recovery were associated with higher

levels of PNS activity as reflected by PNS related PLR parameters in healthy individuals.

The pilot study described in S1 Appendix will inform future studies aiming to implement

the measurement of the PLR using a computer screen. In S1 Appendix, we report how the PLR

as measured with a computer screen set-up responds to light stimuli characterized by different

colors, light intensities and durations. The findings of the pilot and current study indicate that

it is critical to use the same set-up in studies focusing on the PLR and not switch between sys-

tems if one wants to compare absolute PLR values between studies or experiments. Also, the

color of the light signal as well as the intensity and duration have an influence on the

Table 3. Rotated factor loadings (varimax normalized) for each of PLR parameters (LED and SCREEN) along

with their groupings within the two emergent factors.

LED

Factor 1 Factor 2

MCV 0.74 -0.53

ACA 0.93 0.36

RCA 0.23 0.78

BPD 0.95 -0.09

DV1 0.86 0.48

T75 -0.03 0.70

SCREEN

Factor 1 Factor 2

MCV 0.90 0.07

ACA 0.95 0.30

RCA 0.56 0.67

BPD 0.91 -0.10

DV1 0.92 0.35

T75 -0.04 0.90

MCV: maximum constriction velocity; ACA: absolute constriction amplitude; RCA: relative constriction amplitude;

BPD: baseline pupil diameter; DV1: Dilation velocity at 1s after Maximum constriction; T75: time to reach 75% of

initial resting diameter during pupillary re-dilation

https://doi.org/10.1371/journal.pone.0197739.t003
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magnitude of most of the PLR parameters obtained. Our previous systematic review study [4]

pointed out a lack of standardization in the assessment of PNS activity using PLR measure-

ments. The current study contributes to the further standardization of a valuable method to

evaluate PNS activity.

PLR with screen and LED

In the current study, we evoked PLRs using a computer screen or a LED set-up. We observed

relatively strong associations between ACA, MCV, BPD and DV1. It is generally assumed that

some of the PLR parameters are relatively pure indicators of PNS activation (see Fig 1 and [4]),

whereas others reflect the combined activation of the PNS and SNS [3]. DV1 is one parameter

assumed to reflect both SNS and PNS [64], but the currently observed high (r = .97 for the

LED and r = .98 SCREEN set-ups) correlation coefficient with the PNS index ACA may sug-

gest that this redilation velocity parameter might also largely reflect PNS activation. The same

may be true for BPD, albeit to a lesser extent. The relationship between BPD and ACA may

also stem from the fact that the pupil size at maximum constriction was, on average, very

small. For larger baseline pupil diameters, there is room for more constriction [66]. Results of

the factor (principal component) analysis indicate that two distinct factors were underlying

the PLR parameters. The first factor was mainly composed by MCV, ACA, BPD and DV1, and

partly by RCA, which was likely related to PNS activity as discussed above. The second factor

was made up by T75 and RCA, and might be associated with the SNS component. Contrary to

the traditional view of RCA being a pure PNS indicator [4], the current finding may suggest

that RCA was under the influence of both PNS and SNS. However, we have to admit the com-

plexity of the PLR, as there is ample evidence suggesting that PLR could be affected by cogni-

tive processing [15, 17, 18] and visual attention [20, 21, 22, 23, 24, 25]. As such, the PLR

parameters may not reflect solely autonomic nervous system processes, but could involve com-

plex higher-level processing.

To examine the test-retest reliability across trials within each of the two set-ups, we per-

formed a split-half reliability (ICC) analysis on the PLR parameters determined in two

Table 4. ICCs (single-measure) of the split-half test-retest reliability analysis (within each condition).

PLR parameters (95% CI) MCV ACA RCA BPD DV1 T75

SCREEN 0.51 (0.14–0.76) 0.79� (0.58–0.90) 0.84� (0.66–0.93) 0.84� (0.61–0.93) 0.74 (0.49–0.88) 0.08 (-0.30–0.45)

LED 0.32 (0.09–0.63) 0.75� (0.51–0.88) 0.76� (0.48–0.89) 0.89� (0.78–0.95) 0.67 (0.39–0.84) 0.14 (-0.28–0.51)

ICC: Intraclass Correlation Coefficient; MCV: maximum constriction velocity; ACA: absolute constriction amplitude; RCA: relative constriction amplitude; BPD:

baseline pupil diameter; DV1: Dilation velocity at 1s after Maximum constriction; T75: time to reach 75% of initial resting diameter during pupillary re-dilation

� ICC single measures value above 0.75

https://doi.org/10.1371/journal.pone.0197739.t004

Table 5. Pearson correlation coefficients between the parameters of the PLRs evoked by the SCREEN and LED conditions.

SCREEN

MCV ACA RCA BPD DV1 T75

LED 0.69� 0.80� 0.83� 0.77� 0.74� 0.31

MCV: maximum constriction velocity; ACA: absolute constriction amplitude; RCA: relative constriction amplitude; BPD: baseline pupil diameter; DV1: Dilation

velocity at 1s after Maximum constriction; T75: time to reach 75% of initial resting diameter during pupillary re-dilation.

� Correlation is significant at the 0.0083 level (2-tailed).

https://doi.org/10.1371/journal.pone.0197739.t005
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Table 6. Spearman correlation coefficients between NfR score and PLR parameters.

LED SCREEN

MCV

(mm/s)

ACA

(mm)

RCA

(%)

BPD

(mm)

DV1

(mm/s)

T75

(s)

Factor

1

Factor

2

MCV

(mm/s)

ACA

(mm)

RCA

(%)

BPD

(mm)

DV1

(mm/s)

T75

(s)

Factor

1

Factor

2

NfR 0.58� 0.54� 0.26 0.62� 0.51� 0.42 0.69� 0.05 0.62� 0.71� 0.39 0.68� 0.69� 0.10 0.76� 0.13

NfR: Need for Recovery score (range 0–100%); MCV: maximum constriction velocity; ACA: absolute constriction amplitude; RCA: relative constriction amplitude;

BPD: baseline pupil diameter; DV1: Dilation velocity at 1s after Maximum constriction; T75: time to reach 75% of initial resting diameter during pupillary re-dilation.

� Correlation is significant after Holm-Bonferroni correction; p < 0.008 for the first rank, p < 0.025 for the last rank

https://doi.org/10.1371/journal.pone.0197739.t006

Fig 3. Scatter plot of NfR score against ACA (mm) from the SCREEN condition. Solid line represents the line of best fit; dashed line represents the 95% confident

interval.

https://doi.org/10.1371/journal.pone.0197739.g003
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consecutive blocks of trials within the same set-up. The ACA, RCA and BPD parameters

showed good reliability, DV1 showed moderate reliability, and MCV and T75 showed rela-

tively poor reliability across trials according to the results of ICC analysis. With increasing

interest in PLR study, especially within the fields of psychology and neuroscience, extra cau-

tion needs to be taken considering the validity and reliability of these parameters. In Bär et al.

[67], the test-retest reliabilities of their PLR measures (BPD, RCA, constriction velocity, redila-

tion velocity and one-third-redilation recovery time) were tested over a time window of 10

minutes and again after one week. Results of an ICC analysis indicated good reliabilities for

those parameters after one week. However, the data of the session 10 minutes after the initial

test session indicated significant differences in constriction velocity between these two ses-

sions. Thus, their results together with our current findings might indicate that the reliability

of PLR parameters, like MCV and T75, might be better when assessing across a longer time

span than across a short time span. This may suggest that these parameters are relatively vul-

nerable for adaptation effects when measuring the PLR repeatedly over a short time window.

A retest session for both set-ups after one week would have been helpful to better evaluate the

reliability of our SCREEN and LED set-ups. Note that we cannot perform such an analysis

comparing the parameters of the PLRs evoked by the RL200 stimuli in the pilot and experi-

mental study as the procedures (and hence, the resulting PLRs) differed substantially by

including the warning signal in the pilot study. The parameters with good reliability (ACA,

RCA and BPD) were all directly determined by the amplitude of the pupil signal. The other

parameters (i.e., MCV, DV1s) were calculated from the derivative of the pupil signal, which

may increase the risk of errors during the calculation as compared to the amplitude-deter-

mined parameters. Future researchers might consider examining the pupil curves manually, as

it could be helpful to spot the potential errors. Evidently, in any case, one must take care to pre-

vent the introduction of bias when selecting pupil traces manually.

As far as we know, this study is the first to compare the PLRs generated by computer

screens with those evoked by a LED set-up in the same population. We found significant dif-

ferences in the parameters of the PLRs evoked by the LED and SCREEN set-ups. The results

indicate a systematic difference between the two methods, as all values were significantly larger

in the LED set-up compared to the SCREEN set-up. Also, across conditions, the Pearson cor-

relations of the corresponding PLR parameters were significantly positively associated with

each other. This systematic difference was expected as previous studies [68] have shown that

the PLR is very sensitive to stimulus characteristics such as the angle of the visual field generat-

ing the flash (the main difference between the SCREEN and LED set-up). The light stimuli

generated by LED provided more concentrated light due to the narrow visual field as com-

pared to the SCREEN set-up.

Need for recovery and PNS activity

NfR was significantly associated with several PLR parameters from the SCREEN and LED con-

ditions reflecting PNS activity or the combined activity of the parasympathetic and sympa-

thetic nervous systems. A higher NfR was associated with a larger baseline pupil size, a larger

constriction amplitude and a larger dilation velocity at 1 s after constriction. The association

between NfR and ACA/MCV suggests that increased NfR is related to a more active PNS sys-

tem, as ACA and MCV are considered as uncontaminated indices for PNS [8, 64]. It turns out

that Factor 1 (mainly composed by MCV, ACA, BPD and DV1) is associated with NfR. As

described above, Factor 1 is considered to be mainly related to PNS activity. Given the high

associations between MCV, ACA, BPD and DV1 (see Table 6), we suggest that in the current

study, MCV, ACA, BPD and DV1 were mainly reflecting PNS activity as well. Also, as we
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failed to find any correlation between NfR and either T75 or Factor 2 from the factor analysis

(both of which are considered to reflect SNS [64] activity only), it seems likely that the correla-

tions currently observed are driven by PNS activation rather than SNS activation. The current

results are consistent with the previously observed relationship between increased levels of

NfR and reduced task-induced pupil dilations in light conditions [51], which was interpreted

as reflecting reduced inhibition of PNS activity. Reduced inhibition of the PNS activity is con-

sistent with increased PNS activation.

The significant correlations between NfR and PLR parameters MCV, BPD and DV1 were

observed in both the LED and SCREEN conditions. Among all the previously identified PNS-

related PLR parameters (see Fig 1), RCA was the only one that did not show a significant cor-

relation with NfR. Note that the NfR scores observed in the current study were relatively low

and within a narrow range, as compared to previous data from similar or larger populations

[33, 51]. However, this did not prevent us from finding significant correlations between the

NfR and PLR parameters. It would be reasonable to expect these correlations to remain in pop-

ulations with a larger variation in NfR.

To the best of our knowledge, there is only one other study reporting on the relationship

between daily fatigue and PNS activity in healthy individuals. Tanaka and colleagues (2011)

found a negative correlation between high-frequency power of HRV and subjective rating of

daily fatigue, indicating reduced PNS activity was associated with higher level of daily fatigue,

which is opposite to our present findings and those of [51]. Since the exact mechanism under-

lying the interaction between fatigue / need for recovery and PNS functioning is not yet clear,

there are three possible explanations for the inconsistency between the present and Tanaka’s

findings:

1) Although PNS activity measured by HRV is generally considered to be consistent with

PNS activity measured by the PLR parameters ACA and MCV [4, 69], it is still possible that

the cardiovascular indicators were not assessing exactly the same dimension of the ANS as the

pupil indicators [70, 71]. This is pointed out by Janig and Habler [1] as they stated assessing

autonomic functioning without distinction between different effector organs could lead to

invalid conclusions. As far as we know, few studies have attempted to assess the association

between PLR and HRV within normal populations. Among these studies, Bär et al. [70] mea-

sured HRV before a PLR test, and they observed a significant correlation between HRV com-

plexity and latency of the PLR (which was not included in the current study) in healthy adults.

Daluwatte et al. [71] measured simultaneous HRV before, during, and after the PLR testing

phases in healthy children (8 to 16 years old). Results indicated no correlations between PLR

and HRV parameters. The limited and contradictory evidence available makes it impossible to

confirm that PLR and HRV are measuring the same dimension of ANS.

2) Different populations were assessed by the two studies. The participants in our study

were Danish, whereas Tanaka’s participants were Japanese with slightly younger age (mean

age, 43.6). Therefore, the inconsistency may also be due to the differences between the two

samples.

3) The current paper focuses on NfR, whereas Tanaka et al. (2011) assessed task-induced

fatigue by using the Chalder fatigue scale [40]. This may not correspond to daily-life NfR (a

precursor of long-term fatigue). Having said that, the only study to measure the two scales at

the same time (the NfR was translated into Brazilian Portuguese) found a positive correlation

between the Chalder fatigue scale and NfR [72].

Future research into the relationship between fatigue and PNS activation could use both

HRV and pupillometry indices of SNS and PNS activation, and assess both the effects of task-

evoked and daily-life fatigue [63]. Furthermore, the processes driving the PLR may be even

more complex, as recent work in the fields of neuroscience and psychology has shown it to be
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affected by visual attention and higher-level processing [73]. The current findings suggest that

PLR is also affected by more general factors like need for recovery.

Limitations

There are several limitations of the current study that need to be mentioned. Firstly, we only

measured PLR in this study. Inclusion of another independent ANS measurement like HRV

would certainly be helpful to validate PLR as an ANS measurement, as well as to gain more

insight into the association between fatigue and PNS. Secondly, since higher-level cognitive

and attentional processing may have an impact on the PLR, it is possible that individuals with

higher need for recovery found the light stimulus more annoying, and thereby perceptually

more attended and subsequently evoking a stronger PLR. However, note that the light inten-

sity applied was partly based on the results of a pilot study in which we explicitly asked partici-

pants to evaluate the comfort of the stimuli. Finally, the computer screen was not switched off

during the dark adaptation period or the interval between the flashes. The background illumi-

nation of the screen may have an impact on the pupil light reflex, especially the baseline pupil

diameter.

Conclusions

The current study supports the use of a generally available display device, a computer screen,

as the light source to evoke PLRs. The test-retest reliability of the set-up was tested and the

results indicate good reliability on the amplitude-related parameters. The pilot study and main

experiment indicate that the characteristics of the stimuli used to evoke the PLR have a strong

effect on the PLR parameters. Although the associations between the parameters of the PLR as

evoked by the SCREEN set-up and the parameters of the PLR evoked by a LED set-up were rel-

atively high, the results suggest a systematic difference between the PLRs evoked by the two

set-ups, with relatively large PLRs evoked by the LED system. The reliability of the PLR mea-

surement using a simple computer screen set-up supports the potential application of PLR

measurements to evaluate PNS activity in new research fields like audiology [4]. The factor

analysis reveals that MCV, ACA, BPD and DV1 belong to the same factor, and this factor was

likely to be related to the PNS activity. We furthermore observed that higher levels of need for

recovery were associated with larger ACA, BPD and DV1 (SCREEN condition) values, sug-

gesting larger PNS activation. This result is in line with the previous finding that people with

higher levels of fatigue and need for recovery tend to show smaller pupil dilation during cogni-

tive tasks, reflecting reduced PNS inhibition [51, 74].

Summary recommendations for PLR measurements

• A regular PC screen can be used to evoke reliable PLRs (main experiment).

• Do not present a warning sign to announce the upcoming flash (pilot study).

• Be aware of the large effect of stimulus characteristics (color, intensity, duration) on the

absolute value of the PLR parameters (pilot study).

• Do not switch between systems if one aims to compare absolute PLR values between experi-

ments, unless the systems have been shown to generate equivalent PLR traces (main

experiment).
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