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Ovarian cancer, in particularly high-grade serous ovarian cancer (HGSOC) and ovarian
carcinosarcoma (OCS), are highly aggressive and deadly female cancers with limited
treatment options. These tumors are generally unresponsive to immune check-point
inhibitor (ICI) therapy and are referred to as immunologically “cold” tumors. Cell-based
therapy, in particular, adoptive T-cell therapy, is an alternative immunotherapy option that
has shown great potential, especially chimeric antigen receptor T cell (CAR-T) therapy in
the treatment of hematologic malignancies. However, the efficacy of CAR-T therapy in
solid tumors has been modest. This review explores the potential of another cell-based
therapy, T-cell receptor therapy (TCR-T) as an alternate treatment option for
immunological “cold” OC and OCS tumors.
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INTRODUCTION—OVARIAN CANCER; HIGH GRADE SEROUS
OVARIAN CANCER AND OVARIAN CARCINOSARCOMA

Ovarian cancer (OC) is the 8th most commonly diagnosed cancers among women globally, with
epithelial ovarian carcinomas being the most common type of OC diagnosed (1, 2). Unfortunately
most OC, more than 75% of cases, are diagnosed at late stages (stage III to IV) due to their indolent
presentation and the lack of effective screening tools.

The majority of epithelial ovarian carcinomas are high-grade serous ovarian carcinomas
(HGSOC), which are of aggressive nature and associated with poor 5-year overall survival of less
than 35 percent (2) (see Figure 1A). HGSOC is a heterogenous group of cancers that can be
molecularly subtyped based on their gene expression profile (3). Ovarian carcinosarcomas (OCS)
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are a rare subtype of OC with a worse prognosis (4). It is argued
that OCS may be a subtype of HGSOC given that they share
common genomic features and cell of origin (5).

Improvements in survival outcomes for OC patients
worldwide over the past two decades have been minimal, with
the exception of the recent introduction of Poly (ADP-ribose)
polymerases inhibitors (PARPi) (6). In recent years, in vivo pre-
clinical testing of novel therapeutics for OC have been aided by
an improved understanding of tumor biology – built upon
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decades of technological advancements in genetic engineering
and refinements in mouse models, including the patient-derived
xenograft (PDX) model.

Currently, cell-based immuno-oncology for solid tumors such
as in OC is an emerging field, which holds a wealth of unrealized
potentials. This review will provide an overview of cell-based
immunotherapies for OC, in particular T-cell receptor cell-based
immunotherapy approach targeting tumor neoantigens (TNA)
to treat immunologically “cold” HGSOC and OCS.
A

C

B

FIGURE 1 | (A) Ovarian cancer can be classified into four subtypes based on their cell of origin and histological characteristics. Epithelial OC is the most common
subtype of OC, which can be further divided into 5 histological groups. HGSOC is the most common subtype of EOC accounting for about 70% of cases and is
associated with the poorest prognosis. HGSOC can be further molecularly sub-classified based on its gene expression profile, into 4 groups (C1, C2, C4 and C5).
Ovarian or fallopian tube derived carcinosarcoma (O/FTCS) is a rare subtype of OC and may belong within the spectrum of HGSOC tumor. (B) CIRCOS plots of a
patient with HGSOC (top) and a patient with OCS (bottom) with low tumor mutation burden – demonstrating a high degree of chromosomal instability (C) Schematic
diagram of tumors with high and low tumor mutation burdens versus inflamed and non-inflamed immunophenotypes based on their T-cell and IFN signature.
Although some ovarian cancers may have low TMB, these tumors may still respond to ICI if they are associated with a “hot” immunophenotype. Completely “cold”
tumors are those associated with low TMB and cold immunophenotype features, such as pancreatic, prostate cancer and some OCS.
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HIGH-GRADE SEROUS OVARIAN CANCER
AND OVARIAN CARCINOSARCOMA ARE
OFTEN REGARDED AS
IMMUNOLOGICALLY “COLD” TUMORS

Immunotherapies (IO), in Particular,
Immune Checkpoint Inhibitors (ICI), Are
Often Ineffective When Delivered as a
Single Agent in OC, Particularly in HGSOC
Immunotherapies are increasingly being explored as a potential
treatment option for OCs, given the longevity of responses
observed in responsive tumors (7–9). These responsive tumors
are often referred to as immunologically “hot” tumors. ICIs are a
traditional class of immunotherapies used to target tumors that
disrupt the immune checkpoint pathways for immune evasion.
ICIs such as anti-PD-1/PDL-1 monoclonal antibodies (e.g.,
nivolumab, pembrolizumab) targeting the PD-1/PD-L1 axis or
anti-CTLA-4 antibodies (e.g., ipilimumab) have shown a great
degree of clinical efficacy as single agent or in-combination in
non-small cell lung cancer and melanoma respectively with the
list of cancer subtypes that are being or under investigation is
rapidly expanding (currently including head and neck
carcinoma, renal cell carcinoma, uterine carcinoma, colorectal
and upper gastro-intestinal carcinoma, bladder carcinoma,
hepatocellular carcinoma and small cell lung cancer) (10, 11).
These therapies are associated with acceptable toxicities reported
in multiple Phase II/III clinical trials (12).

However, ICI efficacy is limited in HGSOCs. These tumors are
often not mutation-driven and tend to have low rates of tumor
mutation burden (TMB) (13–16).. The use of single agent ICIs
has resulted in modest response rates in most clinical trials
involving HGSOC, however, those who responded, achieved
significant clinical benefit. Hence, these findings serve to inform
and outline the importance of selecting the right tumor groups
within HGSOC for ICI, in particular identifying biomarkers to
predict ICI responses. Another approach to improve the response
rate is to use ICI with a combinatory synergistic partner such as in
combination with a PARPi or a mitogen-activated protein kinase
kinase inhibitor (MEKi) (17, 18).

Due to OCS rarity, the efficacy of IO, in particularly ICI, is
relatively unknown. Given that OCS share similar genomic
landscape with HGSOC, it is likely that OCS is also relatively
immunologically “cold” (19).

HGSOC and OCS Are Often Regarded as
“Class C” Tumors Where Tumorigenesis Is
Driven by Chromosomal Instability Rather
Than Mutation
Almost all HGSOCs demonstrate the loss of maintenance of their
genome integrity leading to extreme genomic instability (20). This
is demonstrated by the remarkable degree of genomic disarray
seen in all these tumors characterized by high level of genomic
structural variability, associated with frequent somatic copy
number alterations (SCNA), in both gains and losses (21–23).
Therefore, these tumors are classified as “Class C” malignancy,
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together with a large fraction of lung (LUSC) and head and neck
(HNSC) squamous cell carcinoma and endometrioid tumor of the
serous subtype (UCEC-serous) (24). The “Class C” tumors in
general have high levels of chromosomal instability as well as
enrichment of TP53 mutations, which in turn contribute to the
tumor genomic instability. The opposite is the “Class M” tumor,
which is predominantly driven by mutation.

The genomic instability is highly relevant for HGSOC
tumorigenesis because chromosomal structural change is one
of the important mechanisms for tumor suppressor gene (TSG)
inactivation either through heterozygous or homozygous loss
(25), or gene breakage (26). Similarly, high gene copy number
gain can result in differential expression of oncogenes, such as
MYCN and CCNE1, which are relevant in the initiation of
tumorigenesis and as mechanisms of drug resistance (3, 26–28).

Therefore, HGSOC tumorigenesis driven by loss of TSG and/
or over-expression of oncogenes, which are normal genes with
specific function in normal tissue whose expressions are well
regulated within non-malignant cells. Hypothetically, the loss of
TSG and over-expression of oncogenes should not make these
tumors immunogenic. These tumorigenic processes do not result
in expression of abnormal mutant proteins or peptides that
would be recognizable by the body’s immune system.

OCS tumorigenesis is thought to be based on the “conversion
hypothesis” of sarcomatous transformation of a differentiated
cancer cell-type (carcinoma) into undifferentiated (sarcomatous)
malignancy (29, 30). It is generally accepted that the
transformation is not driven by somatic mutation, but via
reprogramming of gene expression and associated with high
level of genomic instabilities (see Figure 1B). In keeping with
HGSOC, OCS should also not be immunogenic.

Tumor Mutational Burden Is Often Low
in HGSOC (and/or OCS) and May Be One
of the Reason for the Immunological
“Cold” Phenotype
Tumor mutational burden (TMB) is defined as the total number
of somatic mutations per coding area of a tumor genome (31).
TMB has been regarded as an emerging potential clinical
biomarker associated with response to immune checkpoint
inhibitor (ICI) therapy (32). A higher TMB is commonly
observed in cancers associated with mutagens, such as
ultraviolet light exposure in melanoma and smoking in non–
small-cell lung cancer (NSCLC). The prevalence of high TMB
was seen in approximately 52% of patients with melanoma and
38% to 42% of patients with NSCLC. High TMB or TMB-H is
often defined as detection of more than 10 mutations per
megabase of DNA, denoted as mut/Mb. In general sense,
tumors with high TMB are likely to express more neoantigens
that may be one of the factors driving anti-tumor immunity thus
making these tumors “hot” and more responsive to anti-PD-1/
PD-L1 therapies (33). It is important to take into consideration
that ICI therapies mode of action is not to initiate T-cells
activities but to re-invigorate already tumor-reactive T-cells (33).

In contrast, due to the drivers underlying HGSOC and OCS
tumorigenesis, HGSOC and OCS are often associated with lower
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TMB or TMB-L. Tumors with TMB-L have been linked to
poorer responses to ICI. In contrast, TMB-H tumors are
associated with better responses to ICI as they potentially have
higher levels of neoantigens that can be recognized by the
immune system (32, 33). However, not all TMB-L tumors are
immunologically “cold” as the presence of tumor infiltration
lymphocytes (TILs) or inflamed T-cells may improve tumor
response to ICI – see Figure 1C.

There are a number of other factors that have been proposed
to contribute to the “cold” tumor immune-phenotype in
HGSOC. These include the expression of endothelin B receptor
(34) and Fas ligand (35) within the tumor endothelium, elevated
levels of vascular endothelial growth factors (VEGF) which are
commonly seen in HGSOC (36), and the presence of epigenetic
silencing of Th1-type chemokines (37). The overexpression of
endothelin B receptor, Fas ligand and VEGF altered the tumor
micro-environment, in particularly affecting the tumor
endothelial barrier to hinder T-cell homing and infiltration
into the tumor. Similarly, the repression of Th1-type
chemokines expression, such as CXCL9 and CYCL10, leads to
impaired T-cell trafficking into the tumor. The reduction or
absence of TILS compounds the lacks of ICI activity. Cold OC
tumors are also shown to be enriched for a class of genomic
alterations known as foldback inversions, resulting in high level
of chromosomal translocation (38).

However, not all OC or HGSOC are cold immunologically
(see Figure 1C). Those HGSOC that are immunologically “hot”
are associated with mutations in BRCA1 and, in some studies,
BRCA2 (39, 40). Studies have shown that within immunological
cold tumors, there are tumor sites which showed enhanced signs
of immune editing, including neoantigen depletion and allele-
specific loss of MHC class I, suggesting that these tumors were
immunologically “hot” to begin with (38).
ADOPTIVE T-CELL THERAPIES (ATC);
A POTENTIAL APPROACH TO TREAT
IMMUNOLOGICALLY “COLD”
OVARIAN CANCERS

Cell-Based Therapy May Be an
Alternative Immunotherapy Option
for Immunologically “Cold” OCs
Cell-based therapy strategy includes the adoptive transfer of
autologous antigen-specific T-cells, which have undergone ex
vivo modification and expansion, with the aim of achieving a
targeted immune response (41). This can be achieved with the
utilization of ex vivo expanded tumor infiltrating lymphocytes
(TIL) with high tumor-specific reactivity, or genetically modified
peripheral blood mononuclear cells (PBMC) (41).

Earlier attempts have been relatively unsuccessful due to
various challenges posed by these approaches in solid tumors,
mainly the smal l number of invasive TILs within
immunologically “cold” tumors and the lack of anti-tumor
ability of the body’s immune system (41). However, recent
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advances have shown that the low survival and migration of T
cells can be overcome, and immune evasion, at least in
hematological malignancies, can be circumvented by T-cell
genetic engineering (42).

With respect to generating ATC with improved OC antigen
specificity, peripheral blood lymphocytes can be genetically
modified to express: (i) a T cell receptor (TCR) with specificity
for a tumor-restricted peptide presented by a given HLA
molecule (43, 44), or (ii) a “chimeric antigen receptor” (CAR)
comprising an antigen-binding domain (typically derived from
an antibody) linked via a transmembrane domain to one or more
intracellular signaling domains derived from the T cell receptor
complex and associated co-stimulatory molecules (45).

Chimeric Antigen Receptor T Cell
Therapy Is a Well-Developed Approach to
Treat Hematologic Malignancies
Chimeric antigen receptors (CARs) redirect T cells to recognize
cell surface antigens in an HLA-independent manner. By doing
so, it has the potential of becoming an “off-the-shelf” universal
approach to treat wide range of tumors expressing the
appropriate cell surface antigens. To achieve this, CAR-T cells
utilize antibody fragments that bind to specific antigens on the
surface of cancer cells.

CAR-T cell therapy has been well studied and is approved for
the treatment of various hematological malignancies (38). These
include the treatment of relapsed or refractory B-cell precursor
acute lymphocytic leukemia (ALL) in patients ≤25 years old (46)
approved by the Food and Drug Agency (FDA) in August 2017
and the treatment of adults with relapsed or refractory large B-
cell lymphoma, including diffuse large B-cell lymphoma
(DLBCL), after two or more lines of systemic therapy (47).

Despite CAR-T therapy successes in hematologic malignancies,
the efficacy in solid tumors is less dramatic and is confounded
by the associated risk of cytokine release storm (CRS) and
other significant immunologic toxicities (48, 49). Unlike for
hematological malignancies, it is harder to justify the use of
CAR-T in solid tumors due to its much lower response rates
and associated high cost. Despite this, there are multiple on-going
or completed clinical trials of CAR-T therapies in OC targeting
MUC1, MUC16, mesothelin, or folate receptor a (50).

T Cell Receptor Therapy Is an Alternate
Cell-Based Therapy With Great Potential
for Treatment of Solid Tumors
T cell receptors (TCRs) use T-cell antigen receptors, which
consist of alpha and beta chains, to recognize polypeptide
fragments presented by major histocompatibility complexes
(MHC) molecules (51). The generation of TCR-T involves a
transfer of TCR genes from an activated T-cell to a naïve T-cell.
In doing so, the TCR binding to tumor antigens can be
genetically modified to enhance specificity and affinity to
desired cancer antigens (51). Unlike CAR-T therapy, whose
target antigens are only cell surface proteins, TCR-T cell
therapy can recognize intracellular antigen fragments as well as
surface proteins as long as these are presented by MHC
April 2021 | Volume 12 | Article 672502
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molecules. However, this also means that TCR-T cell therapy is
MHC restricted and depends on the presentation by MHC
molecules to recognize targets and activate T cell function.
There lies both the advantages and disadvantages of TCR-T
over CAR-T therapies (49). Furthermore, the somatic loss of
HLA-1 in immunologically “cold” tumor will also have a
negative impact on the efficacy of TCR-T (52).

CD8+ cytotoxic T cells play crucial role in the killing of
cancerous or virally infected cells. The CD8+ T cells that are used
in TCR-T therapy retain all their natural auxiliary molecules of
the TCR signal transduction pathway. Therefore, TCR-T cells
can be fully activated even when a very small amount of antigen
is present, resulting in effective antigen-specific killing (51).

Furthermore, there are many downstream co-stimulatory
factors involved in TCR signaling, including the upregulation
of anti-apoptotic factors such as B cell lymphoma 2 (BCL-2),
BCL extra-large (BCL-xL) and BCL2-related protein A1
(BCL2A1). These anti-apoptotic factors promote T cell
activation and more importantly their survival during this
process (53). Although, there are also confounding co-
inhibitory factors within the T-cell system to extinguish T cell
signaling in order to keep their cytotoxic activities in check, such
as cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed
cell death protein 1 (PD-1), these co-inhibitory factors can be
circumvented with anti-PDL-1 and anti-CTLA-4 compounds
that are widely available in the clinical settings (49).

Lastly, the bystander effect is largely unappreciated in cell
based therapy in solid tumor. It has been observed that
significant numbers of T cells are activated in a T cell receptor-
independent and cytokine-dependent manner, a phenomenon
referred to as “bystander activation” during T-cell cytotoxic
process. The mechanisms of the bystander effect are unclear,
but the innate inflammatory cytokines, such as IL-18 and IL-15,
are thought to play crucial roles for inducing bystander
activation during infection (54). Bystander activation leads to
host injury mediated by exerting a higher level cytotoxicity that is
further facilitated by natural killer cell-activating receptors, such
as NKG2D, and cytolytic molecules, such as granzyme B.
Therefore, hypothetically a small number of activated CD8+ T
cells infiltrating into a “cold” tumor may exert both T cell
receptor dependent and independent cytotoxic effects on the
cancer cells. There is evidence that the bystander effect has been
demonstrated to be less profound in relation to CAR-T in solid
tumor seen in syngeneic mouse cancer models that is not
augmented by co-administration of anti-PD-1 or anti-CTLA-4
agents (55).
T-CELL RECEPTOR TRANSDUCED T
CELL THERAPY IN OVARIAN CANCER:
CURRENT THERAPEUTIC LANDSCAPE

T-cell receptor transduced-T cell (TCR-T) therapy in OC is
currently in early phase clinical trials. There are currently well-
documented OC markers and targets for TCR therapy, in
particular cancer-testis antigens (CTA). These CTAs include
Frontiers in Immunology | www.frontiersin.org 5
melanoma-associated antigen 4 (MAGE-A4) and New York
esophageal-1 (NY-ESO-1) (56–60).

CTAs are a group of proteins important for early
organogenesis and as developmental proteins. Their
expressions are highly regulated and are often switched off in
adulthood, with the exception of the male germ cell population
and in certain subset of cancers (61). Due to this, in particularly
their tumor-restricted expression, and their abilities to induce
strong in vivo immunogenicity, CTAs are now regarded as ideal
targets for tumor specific IO approaches.

The Melanoma-associated antigen (MAGE)-A gene family is
a group of CTA genes that encode for MAGE-A1, MAGE-A2,
MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, and
MAGEA12 (51, 62). These were the earlier targets for TCR-T
and are expressed at a frequency of about 1/10 000.
Unfortunately, there were cross-reactivities seen in TCR-T
specific to MAGE-A peptides to related peptides in the brain
and the heart. These cross-reactivities have resulted in severe
immune related toxicities reported in TCR-T early phase clinical
trials which included severe organ damages (such as the brain
and heart) and even death (63).

NY-ESO-1 or New York esophageal squamous cell carcinoma
1 is another well-known CTAs where its expression is usually
restricted to testicular germ cells and placenta trophoblasts.
There was no or low expression seen in normal adult somatic
cell, with re-expression observed in numerous cancer types
including ovarian cancers (64)

As these CTAs are not entirely private but can still be found in
normal somatic tissues, targeting these may result in minor to
detrimental off-target toxicities. Furthermore, these listed CT
antigens are not mutagenic proteins but re-expression of normal
developmental proteins in cancer cells. In addition, these
markers are not always exclusively upregulated in every OC,
resulting in variable response rates. Table 1 listed all the Phase I
and II clinical trials that are recruiting women with OC to assess
the safety profiles of TCR-T.
POTENTIAL FUTURE ROLE OF TCR-T
THERAPY IN IMMUNOLOGICALLY COLD
RARE TUMOR AND THE CONCEPT OF
PERSONALIZED THERAPIES TARGETING
TUMOR NEOANTIGENS

TCR-T approach may be an attractive cell based therapy option
for immunological “cold” tumor given the wider repertoire of
targetable tumor neoantigens (compared to CAR-T cell based
therapy). Despite having low TMB, each HGSOC and OCS will
have tumor neoantigens (TNA), which can be identified by next
generation sequencing of the tumors. There are a wider array of
TNA targetable by TCR-T, as they are not restricted to the
peptides presented on the surface of cancer cells, but also internal
TNA as long as these are associated with high affinity to the
patient’s human leukocyte antigen (HLA) class I complexes.
Thus, these will be presented to CD8+ T-cytotoxic cells.
April 2021 | Volume 12 | Article 672502
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The selection of the target TNA should not be affected by the
heterogeneity or clonality of the tumor, although the selection of
a truncal TNA is preferable, as tumor infiltrating activated T cells
will exert a degree of bystander cytotoxic effect - a phenomenon
that is well documented in CD8+ T cell activity in viral infections.
The more crucial step to the process of developing a TNA-specific
T cell therapy is the identification of a TNA-specific TCR. Once
the TNA-specific TCR is identified, the TCR can be transduced
into patient derived autologous CD8+ T cells.

TNA selection, TCR identification and ex vivo genetic
engineering are the key components for a successful
personalized TCR-T in immunologically cold tumors, such as
OC and OCS. At present, there are now technologies that enable
the modification of the patient’s own CD4+ and CD8+ cells’
TCRs to express specific peptide enhanced affinity receptors
(SPEARs) to increase the binding affinity of natural TCRs, thus
overcoming their low affinities as a result of negative thymic
selection during maturation of T cells in the thymus (51). Lastly,
the reducing cost of Next Generation Sequencing will allow for
faster, cheaper TNA discovery and may pave the way for
personalized TCR-T.
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