Supplementary Material

Supplementary Tables

Suppl. Table 1. Correlation matrix

p-value	PAP sys	PAP dias	PAP mean	PCWP	TPG	СО	CI	PVR	E 0.5	σt 1MPa	Age
PAP sys	_	9.2054E-18	6.689E-25	1.7769E-16	0.00023095	0.05668168	0.00075945	0.00020576	0.00424887	0.03610612	0.05319756
PAP dias	9.2054E-18		2.8127E-26	1.7274E-14	8.8309E-06	0.19654905	0.0316959	5.8443E-06	0.00466381	0.01313668	0.13580809
PAP mean	6.689E-25	2.8127E-26		8.857E-18	1.249E-05	0.16425377	0.01136559	1.8709E-05	0.0056207	0.02144032	0.22959234
PCWP	1.7769E-16	1.7274E-14	8.857E-18		0.04585938	0.08392796	0.01007379	0.0092285	0.00430816	0.02330523	0.36904932
TPG	0.00023095	8.8309E-06	1.249E-05	0.04585938		0.71172626	0.96106241	2.6064E-08	0.12830844	0.12213188	0.51238498
СО	0.05668168	0.19654905	0.16425377	0.08392796	0.71172626		2.3624E-13	0.0337304	0.97936681	0.91268416	0.00720519
CI	0.00075945	0.0316959	0.01136559	0.01007379	0.96106241	2.3624E-13		0.02983893	0.42824919	0.61269661	0.19313284
PVR	0.00020576	5.8443E-06	1.8709E-05	0.0092285	2.6064E-08	0.0337304	0.02983893		0.44448533	0.28565155	0.34299387
E 0.5	0.00424887	0.00466381	0.0056207	0.00430816	0.12830844	0.97936681	0.42824919	0.44448533		3.4318E-31	0.20370881
σt 1MPa	0.03610612	0.01313668	0.02144032	0.02330523	0.12213188	0.91268416	0.61269661	0.28565155	3.4318E-31		0.29297683
Age	0.05319756	0.13580809	0.22959234	0.36904932	0.51238498	0.00720519	0.19313284	0.34299387	0.20370881	0.29297683	
Spearman r	PAP sys	PAP dias	PAP mean	PCWP	TPG	СО	CI	PVR	E 0.5	σt 1MPa	Age
PAP sys		0.88393001	0.94312025	0.90688885	0.53895924	-0.335009	-0.4838231	0.64582579	0.39757599	-0.3098753	0.27506929
PAP dias	0.88393001		0.95032493	0.87972523	0.62711241	-0.2306599	-0.3207498	0.74334884	0.3937882	-0.3630806	0.2139021
PAP mean	0.94312025	0.95032493		0.91619629	0.61889066	-0.2478855	-0.3740543	0.71550006	0.38606888		0.17299593
PCWP	0.90688885	0.87972523	0.91619629		0.3098178	-0.3324185		0.48299595	0.43170254	-0.3672845	0.14218883
TPG	0.53895924	0.62711241	0.61889066	0.3098178		0.07307438	-0.0080803	0.83814954	0.23846198	-0.2551281	0.10395121
СО	-0.335009	-0.2306599	-0.2478855	-0.3324185	0.07307438		0.90950308	-0.4024659	-0.0046827	0.02018534	-0.4590552
CI	-0.4838231	-0.3207498	-0.3740543	-0.40727	-0.0080803	0.90950308		-0.4109184	-0.1210644	0.08041272	-0.1976379
PVR	0.64582579	0.74334884	0.71550006	0.48299595	0.83814954	-0.4024659			0.15054058	-0.2131949	0.18611853
E 0.5	0.39757599	0.3937882	0.38606888	0.43170254	0.23846198	-0.0046827	-0.1210644	0.15054058		-0.976311	0.18285938
σt 1MPa	-0.3098753	-0.3630806	-0.3383771	-0.3672845	-0.2551281	0.02018534	0.08041272	-0.2131949	-0.976311		-0.1584301
Age	0.27506929	0.2139021	0.17299593	0.14218883	0.10395121	-0.4590552	-0.1976379	0.18611853	0.18285938	-0.1584301	
Sample size	PAP sys	PAP dias	PAP mean	PCWP	TPG	СО	CI	PVR	E 0.5	σt 1MPa	Age
PAP sys		50	50	42	42	33		28	50		
PAP dias	50		50	42	42	33		28	50		
PAP mean	50	50		42	42			28	50		
PCWP	42	42	42		42	28		28	42	38	
TPG	42	42	42	42		28		28	42	38	
СО	33	33	33	28	28		33	28	33		33
CI	45	45	45	39	39			28	45		45
PVR	28	28	28	28	28	28			28	27	28
E 0.5	50	50	50	42	42	33	45	28		46	50
σt 1MPa	46	46	46	38	38			27	46		46
Age	50	50	50	42	42	33	45	28	50	46	

Right heart catheterization

Statistically significant association

PAP sys, systolic pulmonary arterial pressure PAP dias, diastolic pulmonary arterial pressure PAP mean, mean pulmonary arterial pressure PCWP, pulmonary capilary wedge pressure TPG, transpulmonary gradient CO, cardiac output CI, cardiac index PVR, pulmonary vascular resistance Uniaxial tensile test

E0.5, stiffness at 0.5 strain

εt 1MPa, true strain at 1MPa stiffness

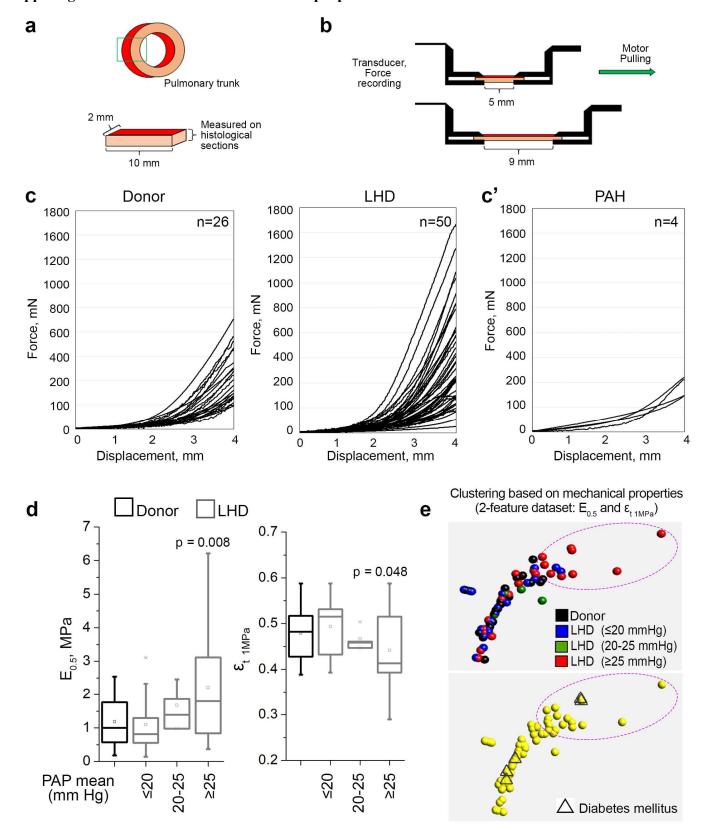
Age, patient's age

Note, statistical analysis is not adjusted for multiple comparisons.

Suppl. Table 2. Patient characteristics

Studied Group	Donor	LHD w/o PH	PH-LHD	PAH	
	(n=33)	(n=41)	(n=49)	(n=4)	
Sex, female/male	10/23	18/23	14/35	1/3	
Age (years); median (range)	41 (16-72)	55 (19-65)	55 (31-65)	39 (15-54)	
Body weight (kg); median (range)					
Female	67 (60-90)	70 (56-122)	65 (50-91)	74	
Male	80 (65-110)	94 (69-117)	85 (55-127)	70 (55-76)	
Underlying diseases, n/%					
ICM	-	10/24.4	16/32.6	-	
NICM	-	31/75.6	33/67.3	-	
DCM	-	27/65.9	31/63.3	-	
НСМ	-	1/2.4	1/2.0	-	
NCC	-	1/2.4	-	-	
GCM	-	1/2.4	-	-	
VCM	-	-	1/2.0	-	
Loeffler endocarditis	-	1/2.4	-	-	
iPAH	-	-	-	3/75	
aPAH (in connective tissue disease)	-	-	-	1/25	

n, number of patients; ICM, ischemic cardiomyopathy; NICM, nonischemic cardiomyopathy; DCM, dilatative cardiomyopathy; HCM, hypertrophic cardiomyopathy; NCC, noncompaction cardiomyopathy; GCM, giant cell myocarditis; VCM, valvular cardiomyopathy; iPAH, idiopathic pulmonary arterial hypertension; aPAH, associated arterial hypertension.

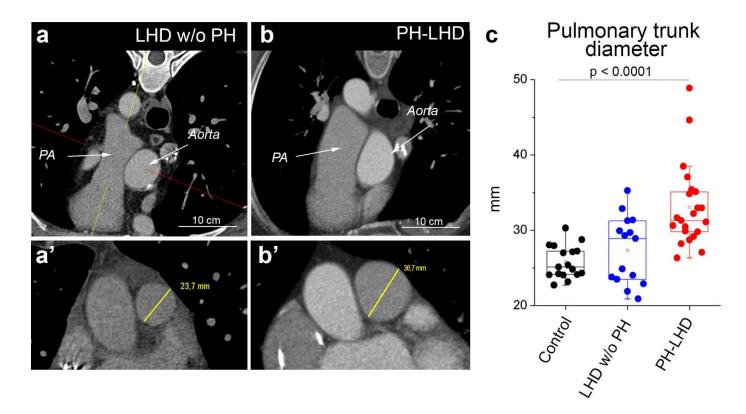

Suppl. Table 3. Patient pulmonary hemodynamics

Studied Group	LHD w/o PH	PH-LHD	PAH
CO, L/min	4.9±1.6	3.4±0.9	3.87±0.9
CI, L/m/m ²	2.4 ± 0.6	2.0±0.4	2.0±0.6
PAP systolic, mmHg	25.0±7.6	42.0±6.1	90±25.3
PAP diastolic, mmHg	12.0±5.3	22.0±5.1	39±16
PAP mean, mmHg	17.0±4.9	30.0±4.8	56±21
PCWP, mmHg	10.0±4.0	21.0±5.1	9±8
TPG, mmHg	7.0±3.7	10.0±3.6	34±2
PVR, dyn×s×cm ⁻⁵	102.0 ± 76.2	194.0±135.7	919 ± 342

Data are presented as the median±standard deviation. CO, cardiac output; CI, cardiac index; PAP, pulmonary arterial pressure; PCWP, pulmonary capillary wedge pressure; TPG, transpulmonary gradient; PVR, pulmonary vascular resistance.

Supplementary Figures

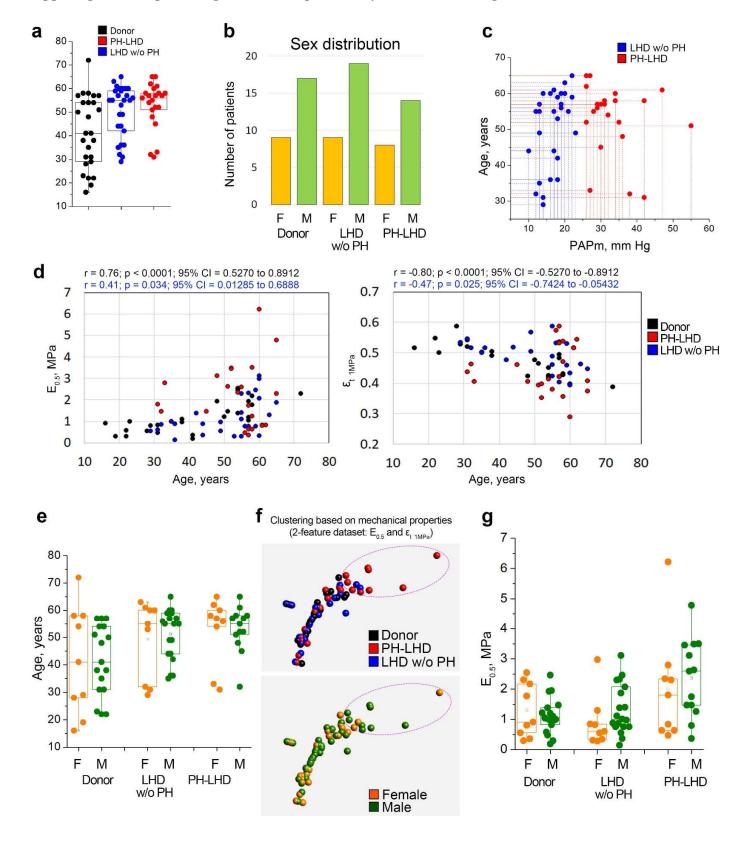
Suppl. Figure 1. Assessment of biomechanical properties in PAs


Suppl. Figure 1. a, Schematic illustration depicting the preparation of PA samples. Arrow points to the pulmonary trunk used for analysis, from which circumferential strips of 10 x 2 mm were prepared. **b**, Illustration of the experimental setup for uniaxial tensile testing of arterial biomechanical properties ex vivo. c, Force/displacement curves acquired by uniaxial tensile tests on PA samples obtained from donors, LHD patients, and PAH patients. **d**, Box-and-whisker plot graphs show E_{0.5} in biologically independent PA samples from donors (n=26) and LHD patients with mean PAP \leq 20 mmHg (n=24), mean PAP 20-25 mmHg (n=4), and mean PAP \geq 25 mmHg (n=22), and $\varepsilon_{t \text{ 1MPa}}$ in biologically independent PA samples from donors (n=22) and LHD patients with mean PAP \leq 20 mmHg (n=20), mean PAP 20-25 mmHg (n=4), and mean PAP \geq 25 mmHg (n=22) (subgroup analysis of dataset in Figure 1e). Samples of LHD patients with mean PAP \geq 25 mmHg differ from donor controls with p=0.008 for $E_{0.5}$ and p=0.048 for $\varepsilon_{t 1MPa}$. e, Upper PCA plot generated based on a 2-feature biomechanical dataset (E_{0.5} and $\varepsilon_{t \text{ 1MPa}}$) shows that LHD samples with a mean PAP \geq 25 mmHg (red) cluster apart from donor (black) and LHD samples with either mean PAP ≤ 20 mmHg (blue) or mean PAP 20-25 mmHg (green). Note that LHD samples with mean PAP 20-25 mmHg (green) are clustered together with samples with mean PAP ≤ 20 mm Hg (blue), and apart from stiff samples with mean PAP \geq 25 mmHg (red). Lower PCA plot shows of same samples shows 5 patients with diabetes mellitus (triangle) that cluster with both stiff (n=2) and non-stiff (n=3) samples alike. Dashed circles outline stiffened PA samples.

Box-and-whisker plots (d) show mean (rectangle), median (line within the box), lower and upper 25% quartiles (limits of the box), 1.5 IQR (whiskers) and outliers (if applicable).

Statistics: d, Unpaired two-tailed Mann-Whitney U test (comparisons vs. donor).

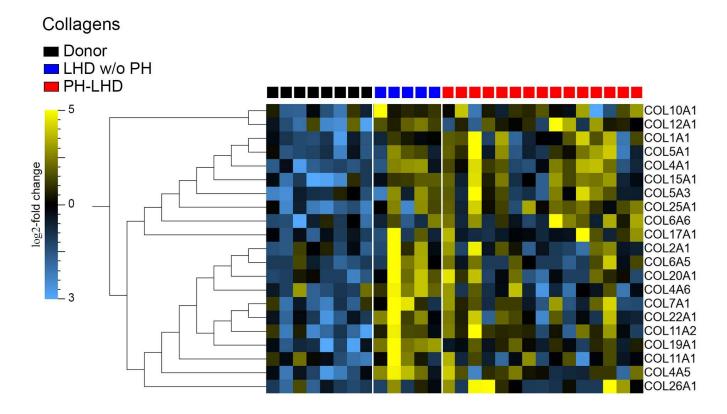
Source data are provided as a Source Data file.


Suppl. Figure 2. PA ectasia in PH-LHD

Suppl. Figure 2. a-b, Representative CT images show longitudinal (top) and cross-sectional (bottom) views of the PA trunk in an LHD w/o PH (left) and a PH-LHD (right) patient, respectively. PA diameter in **a'-b'** is given in yellow. **c**, Box-and-whisker plot shows pulmonary trunk diameter in control (n=17), LHD w/o PH (n=16), and PH-LHD (n=22) patients (p<0.0001 for PH-LHD vs. donor).

Box-and-whisker plots overlaid with dot plots (c) show individual data points, mean (rectangle), median (line within the box), lower and upper 25% quartiles (limits of the box), 1.5 IQR (whiskers) and outliers (if applicable). *Statistics:* c, Kruskal-Wallis one-way ANOVA on ranks followed by pairwise multiple comparison (Dunn's test). Source data are provided as a Source Data file.

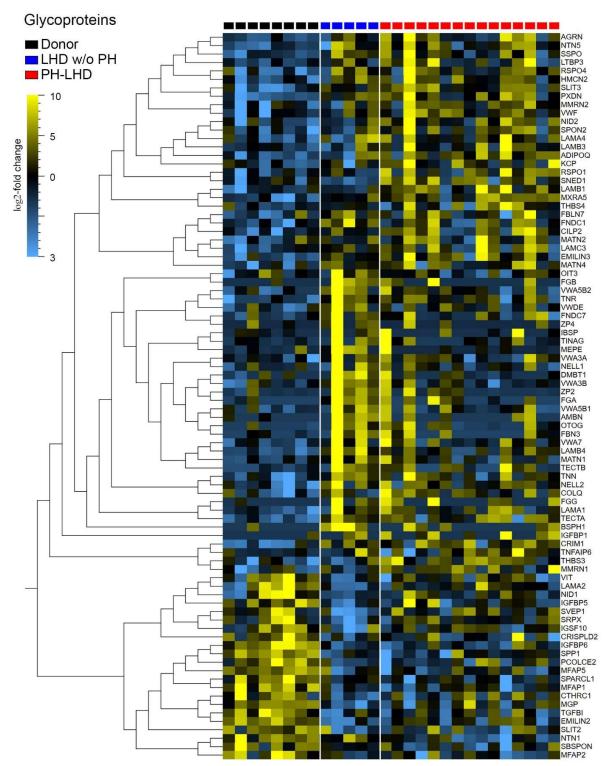
Suppl. Figure 3. Impact of age and sex on pulmonary arterial stiffening

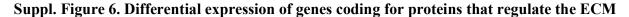


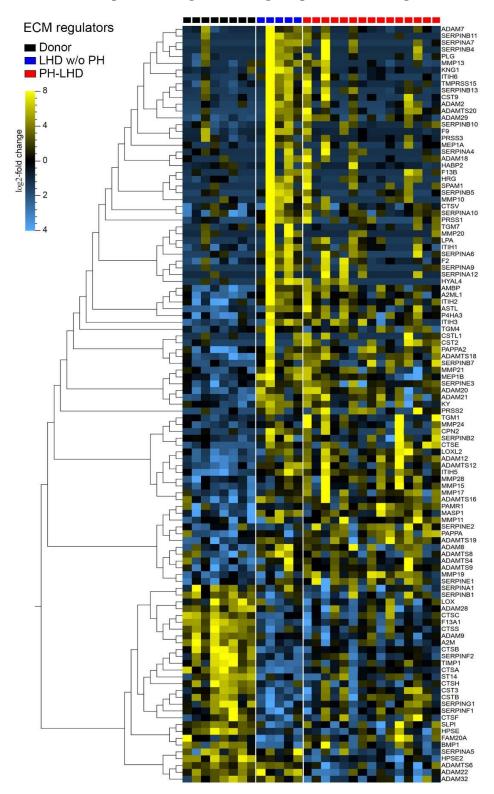
Suppl. Figure 3. a, Box-and-whisker plot shows the distribution of patient age in the donor (n=26), LHD w/o PH (n=28), and PH-LHD (n=22) groups. **b**, Bar graph shows the number of female (F) and male (M) patients in each group. **c**, Scatter diagram shows the relationship between patient age and mean PAP (PAPm). No significant correlation was detected by Spearman's correlation analysis. **d**, Scatter plots show relationships between age and the arterial biomechanical parameters $E_{0.5}$ and ε_{t-1MPa} in PAs of donors, LHD w/o PH patients, and PH-LHD patients. Biomechanical properties of PA samples correlate significantly with patient age in donor and LHD w/o PH cohorts, indicating a significant impact of physiological aging on PA stiffening. In the PH-LHD cohort, however, none of the PA biomechanical parameters correlated with age, highlighting the impact of PH-related remodeling rather than age in these patients. **e**, Box-and-whisker plot shows age distribution in female (F) and male (M) patients in studied groups. **f**, PCA plots generated based on $E_{0.5}$ and ε_{t-1MPa} differentiated by study group (donor, LHD w/o PH, and PH-LHD) and by sex (F and M). PCA revealed that the majority of stiff PA samples (encircled area) were from male patients. **g**, Box-and-whisker plot shows $E_{0.5}$ differentiated for female (F) and male (M) sex in the PAs of donors, LHD w/o PH patients and PH-LHD patients. Compared to female samples, male samples showed a tendency for higher $E_{0.5}$, particularly in the PH-LHD group, but the difference did not reach significance.

Box-and-whisker plots overlaid with dot plots (**a,e,g**) show individual data points, mean (rectangle), median (line within the box), lower and upper 25% quartiles (limits of the box), 1.5 IQR (whiskers) and outliers (if applicable). *Statistics:* **c-d,** Spearman's coefficient of correlation Rho (r) and corresponding two-tailed statistics; 95% CI, r-and p-values are given. Note: statistical analyses (**d**) are not adjusted for multiple comparisons, **g**, Unpaired two-tailed Mann-Whitney U test.

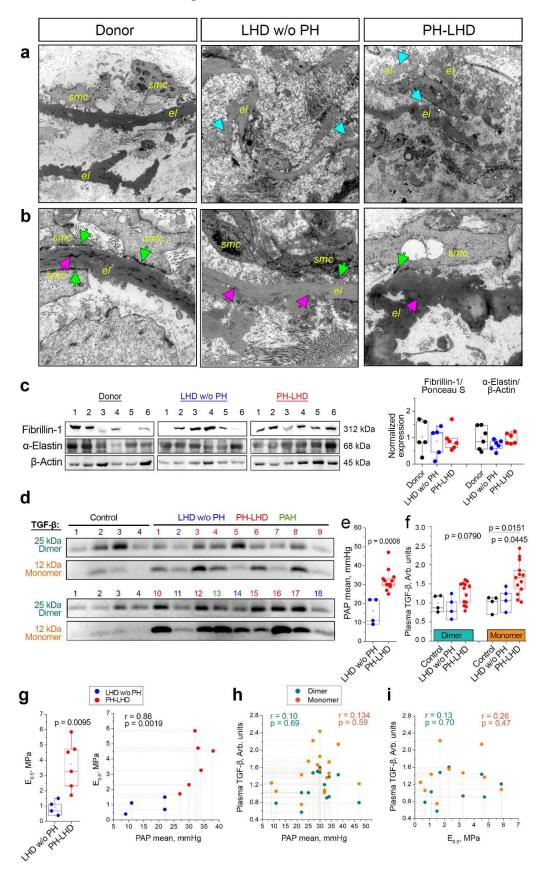
Source data are provided as a Source Data file.


Suppl. Figure 4. Differential expression of genes coding for collagens


Suppl. Figure 4. Heat map shows log2-fold change in expression for differentially expressed genes coding for collagen types in PA samples of LHD w/o PH and PH-LHD patients relative to donor samples.


Statistics: Please see Source Data file corresponding to Suppl. Figure 4.

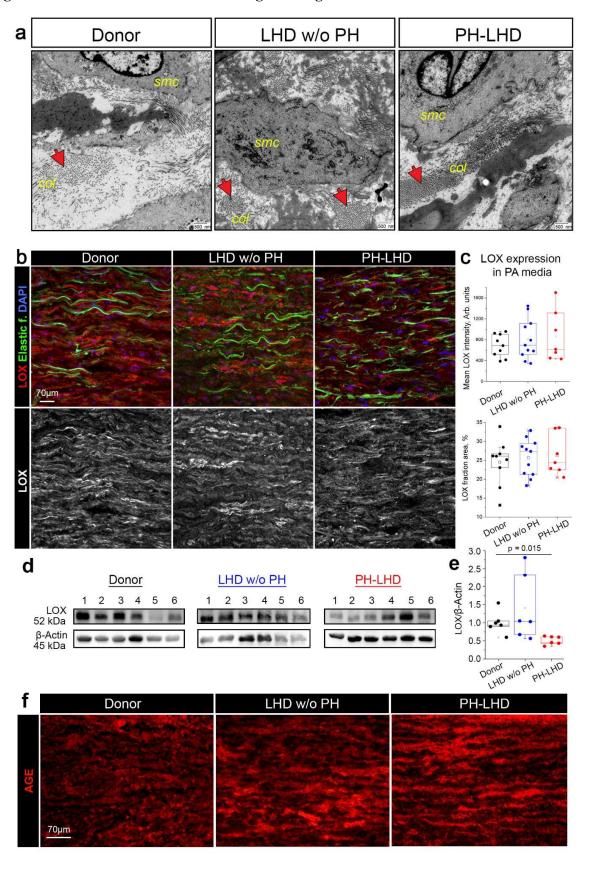
Suppl. Figure 5. Heat map shows log2-fold change in expression for differentially expressed genes coding for glycoproteins in PA samples of LHD w/o PH and PH-LHD patients relative to donor samples. *Statistics:* Please see Source Data file corresponding to Suppl. Figure 5.



Suppl. Figure 6. The heat map shows the log2-fold change in expression for differentially expressed genes coding for proteins that regulate ECM formation, composition, and degradation.

Statistics: Please see Source Data file corresponding to Suppl. Figure 6.

Suppl. Figure 7. Ultrastructure and composition of elastic fibers

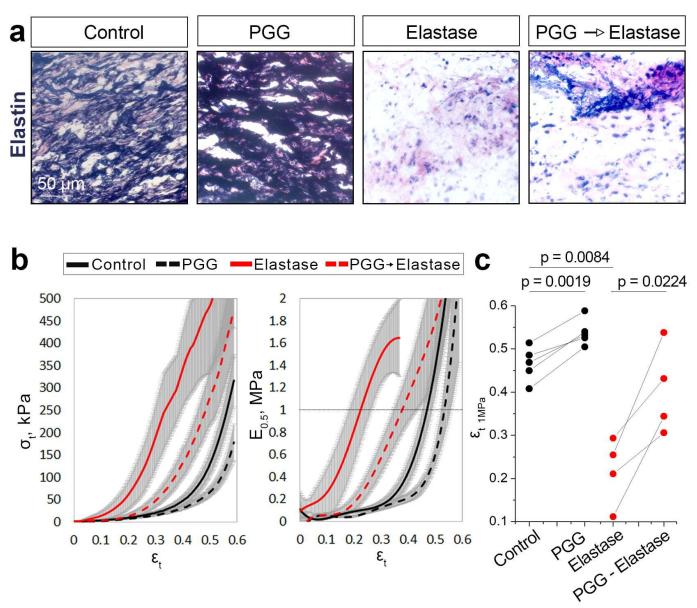


Suppl. Figure 7. a-b, TEM images show PA media in donor, an LHD w/o PH patient and a PH-LHD samples. Smc, smooth muscle cell; el, elastic fibers; arrows in blue - fragmented elastic fibers, green – attachment sites of SMCs on elastic fibers, pink - elastin core. Phenotype reproduced in n=2 biologically independent PA samples in each study group. c, Western blots and quantitative densitometric data (box-and-whisker plot) show expression of α-Elastin and Fibrillin-1 in biologically independent PA samples from donors (n=6), LHD w/o PH (n=6), or PH-LHD (n=6) patients. Box-and-whisker plots show quantitative densitometric data of Fibrillin-1 normalized to Ponceau S and of α-Elastin normalized to β-Actin. d, Western blots show levels of mature TGF-β (25 kDa dimer and 12 kDa monomer) detected in plasma of four healthy control subjects (three males aged 44, 54, and 39 years, and one 36-year-old female), one PAH patient (sample No 13, excluded from further analyses in e-i), four LHD w/o PH patients (samples No 2, 11, 14, 18), and thirteen PH-LHD patients (samples No 1, 3-10, 12, 15-17). e, Box-and-whisker plot shows mean PAP in LHD w/o PH (n=4) and PH-LHD (n=13) patients analyzed for plasma TGF-β levels in **d**. **f**, Quantitative densitometric data (box-and-whisker plots) show levels of TGF-β dimer and monomer in plasma of control (n=4), LHD w/o PH (n=4) and PH-LHD (n=13) patients normalized to the mean of the control group, g, Box-and-whisker plot shows PA stiffness parameter $E_{0.5}$ in LHD w/o PH (n=4) and PH-LHD (n=6) patients analyzed for plasma TGF-β levels (p=0.0095). Scatter plots show relationships between E_{0.5} and mean PAP (n=10 patients, r=0.86; p=0.0019). h-i, Scatter plots show relationships between mean PAP and TGF- β (n=17 patients, r=0.10; p=0.69), and between E_{0.5} and TGF- β (n=10 patients, r=0.14; p=0.59), respectively. Phenotype reproduced in n=2 biologically independent PA samples in each study group.

Box-and-whisker plots overlaid with dot plots (**c,e-g**) show individual data points, mean (rectangle), median (line within the box), lower and upper 25% quartiles (limits of the box), 1.5 IQR (whiskers) and outliers (if applicable). *Statistics:* **c,e-g,** Unpaired two-tailed Mann-Whitney U test. Spearman's coefficient of correlation Rho (r) and corresponding two-tailed statistics. Statistical analysis (**h,i**) is not adjusted for multiple comparisons.

Source data are provided as a Source Data file. Full scan blots are provided in Supplementary Figure 12.

Suppl. Figure 8. Ultrastructure and crosslinking of collagen fibers

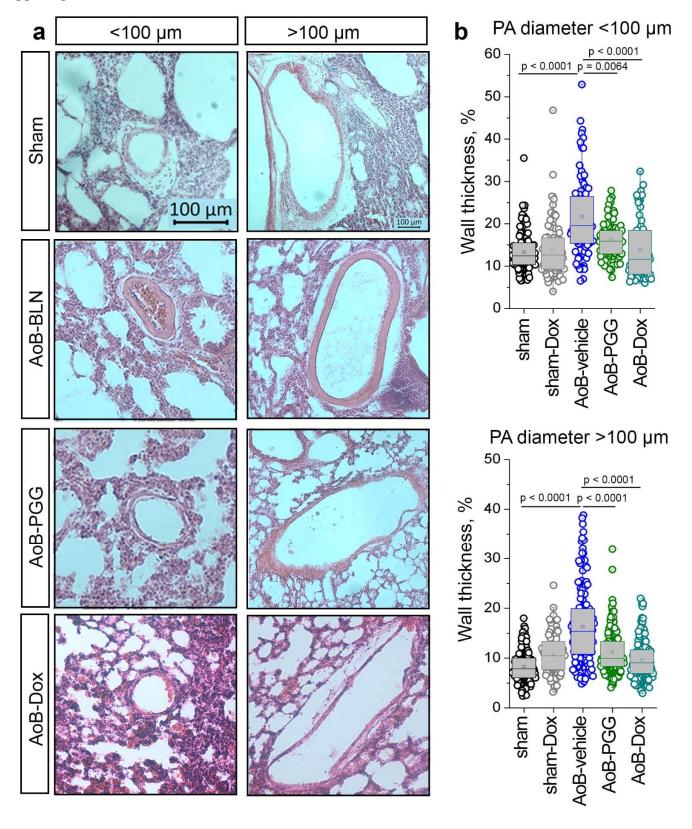


Suppl. Figure 8. a, TEM images show PA media in a sample from a donor, an LHD w/o PH patient and a PH-LHD patient. *Smc*, smooth muscle cell; *col*, collagen; red arrows show collagen fibrils clustered into fibers. Note the dense clustering of collagen fibrils in the PH-LHD sample. Phenotype reproduced in n=2 biologically independent PA samples in each study group. **b**, Representative confocal images of the PA media in samples from donors, LHD w/o PH patients and PH-LHD patients immunostained with anti-LOX (red), elastic fibers detected by autofluorescence (green) and nuclei detected by DAPI (blue). **c**, Box-and-whisker plots show the LOX intensity and LOX-positive area normalized to the image area in biologically independent PA samples from donors (n=9), LHD w/o PH (n=11), and PH-LHD (n=7) patients. **d-e**, Western blot and quantitative densitometric data (box-and-whisker plot) show LOX protein expression in biologically independent PA samples from donors (n=6), LHD w/o PH (n=6), and PH-LHD (n=6) patients. **f**, Representative images of the PA media immunostained with anti-AGE in samples from donors, LHD w/o PH and PH-LHD patients. Phenotype reproduced in biologically independent PA samples from donors (n=10), LHD w/o PH (n=8), and PH-LHD (n=8) patients.

Box-and-whisker plots overlaid with dot plots (**c,e-g**) show individual data points, mean (rectangle), median (line within the box), lower and upper 25% quartiles (limits of the box), 1.5 IQR (whiskers) and outliers (if applicable). *Statistics:* **c,e**, Unpaired two-tailed Mann-Whitney U test.

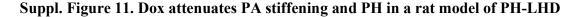
Source data are provided as a Source Data file. Full scan blots are provided in Supplementary Figure 12.

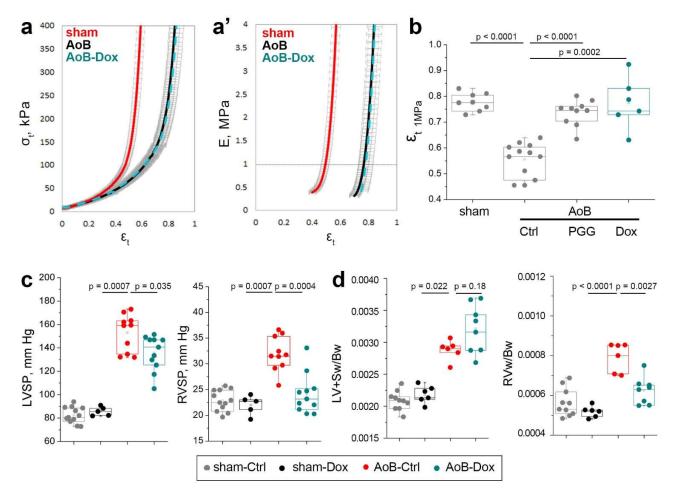
Suppl. Figure 9. Ex vivo stabilization of PA elastin by PGG



Suppl. Figure 9. a, Representative images show EVG stained human PA as naïve control, following treatment with PGG, elastase, or PGG followed by elastase. Note increased elastin content upon PGG application in naïve and elastase-treated samples. **b**, Group data show σ_t/ϵ_t and corresponding E/ϵ_t curves (mean±SEM) for untreated control (n=5), PGG-treated (n=5), elastase-treated (n=4), or PGG-followed-by-elastase treated (n=4) biologically independent donor PA samples. PGG treatment reduced PA stiffness as indicated by a right shift of both σ_t/ϵ_t and E/ϵ_t curves for both naïve and elastase-treated samples. **c**, Line graphs show significant increase in ϵ_t $_{1MPa}$ upon PGG application in naïve (n=5; p=0.0019) and elastase-treated (n=4; p=0.0224) biologically independent samples.

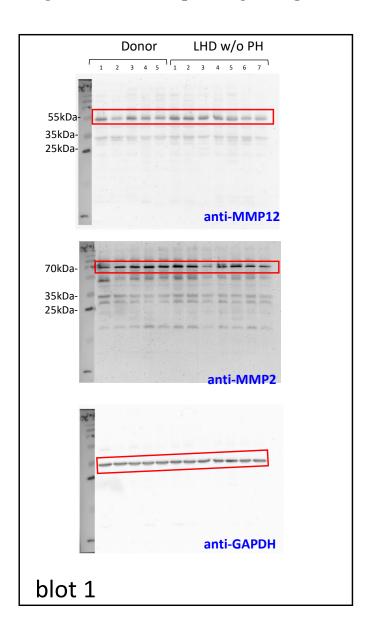
Statistics: Paired two-tailed Student's t-test.

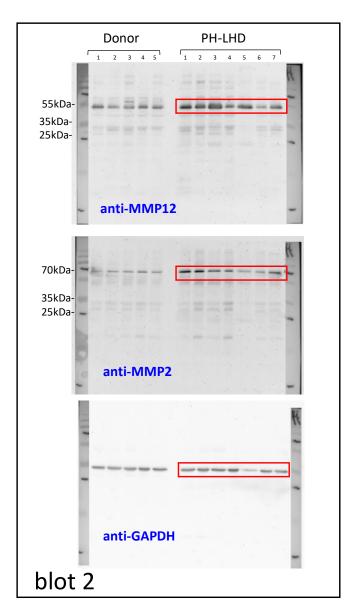

Source data are provided as a Source Data file.


Suppl. Figure 10. PGG and Dox treatment reduces thickness of PA wall in AoB rats

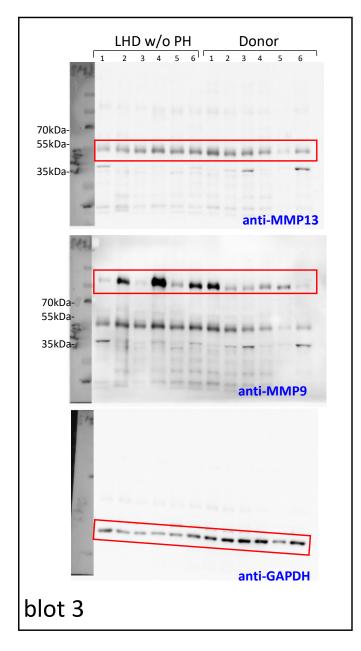
Suppl. Figure 10. a, Representative images of < 100 μm and > 100 μm diameter PAs visualized by HE staining in lungs of sham, AoB-vehicle, AoB-PGG, and AoB-Dox rats. **b**, Box-and-whisker plot shows wall thickness (quantified relative to arterial diameter in %) in PAs of < 100 μm and > 100 μm diameter. Individual dots represent individual arteries in sham (n=5), sham-Dox (n=4), AoB-vehicle (n=5), AoB-PGG (n=5), and AoB-Dox (n=4) rats. Vascular wall thickness differs between study groups as follows: in < 100 μm arteries (p<0.0001 for AoB-vehicle vs. sham, p<0.0001 for AoB-vehicle, p=0.0064 for AoB-PGG vs. AoB-vehicle) and in > 100 μm arteries (p<0.0001 for AoB-vehicle vs. sham, p<0.0001 for AoB-vehicle vs. sham, p<0.0001 for AoB-vehicle).

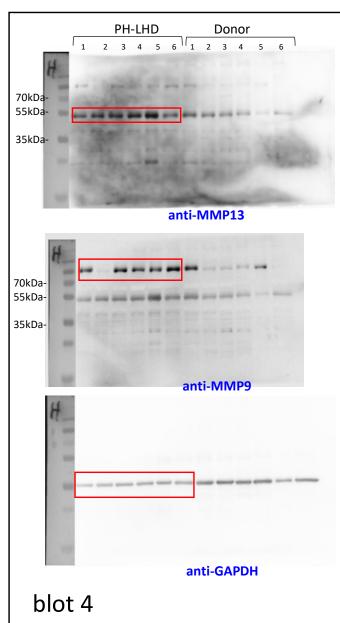
Box-and-whisker plots overlaid with dot plots (**b**) show individual data points, mean (rectangle), median (line within the box), lower and upper 25% quartiles (limits of the box), 1.5 IQR (whiskers) and outliers (if applicable). *Statistics:* Kruskal-Wallis one-way ANOVA on ranks followed by pairwise multiple comparisons (Dunn's test). Source data are provided as a Source Data file.

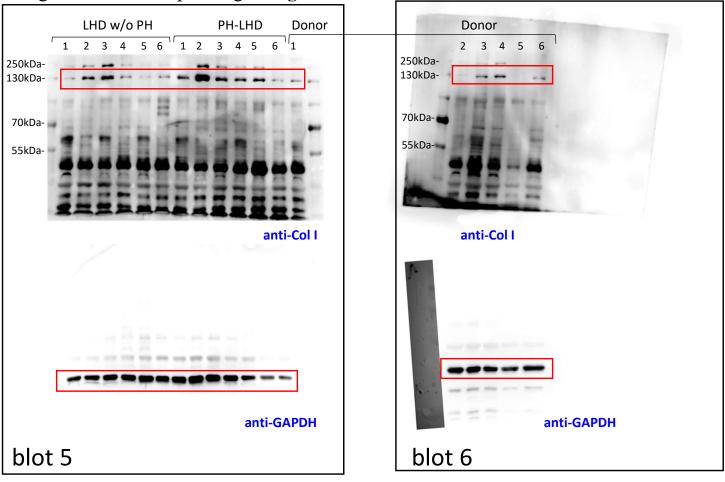

Suppl. Figure 11. a-a', Group data show σ_t/ϵ_t curves (mean±SD) and corresponding E/ ϵ_t curves (mean±SD) for PAs of sham (n=8), AoB (n=12), and AoB-Dox (n=6) rats at 5 weeks after surgery. Dashed line indicates 1 MPa stiffness for which corresponding strain (ϵ_t _{IMPa}) is reported. **b**, Box-and-whisker plot shows effect of Dox treatment on ϵ_t _{IMPa} (p=0.0002 for AoB-Dox vs AoB-Ctrl) as compared to PGG treatment (datasets for sham, AoB-Ctrl, and AoB-PGG are replicated from Figure 5f). **c**, Box-and-whisker plots show left (LVSP) and right (RVSP) ventricular systolic pressures assessed by cardiac catheterization in sham-Ctrl (n=12), sham-Dox (n=5), AoB-Ctrl (n=10), and AoB-Dox (n=11) rats. Hemodynamic parameters differ between groups as follows: LVSP (p=0.0007 for AoB-Ctrl vs. sham-Dox, p=0.035 for AoB-Dox vs. AoB-Ctrl) and RVSP (p=0.0007 for AoB-Ctrl vs. sham-Dox, p=0.0004 for AoB-Dox vs. AoB-Ctrl). **d**, Box-and-whisker plots show left (LV+Sw/Bw) and right (RVw/Bw) ventricular weights normalized to body weight in sham-Ctrl (n=10), sham-Dox (n=6), AoB-Ctrl (n=6), and AoB-Dox (n=8) rats. Cardiac weight differs between groups as follows: LV+Sw/Bw (p=0.022 for AoB-Ctrl vs. sham-Dox, p=0.18 for AoB-Dox vs. AoB-Ctrl) and RVw/Bw (p<0.0001 for AoB-Ctrl vs. sham-Dox, p=0.002 for AoB-Dox vs. AoB-Ctrl).


Statistics: Unpaired two-tailed Mann-Whitney U test.

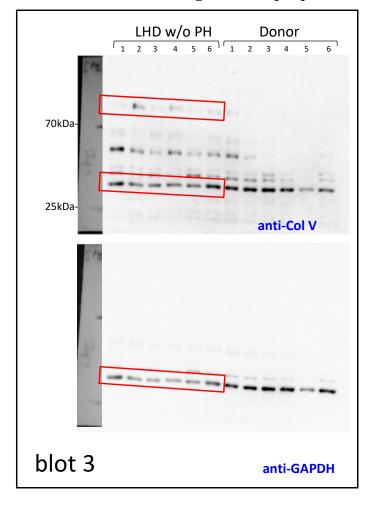
Supplementary Figure 12. Original blots presented in figures

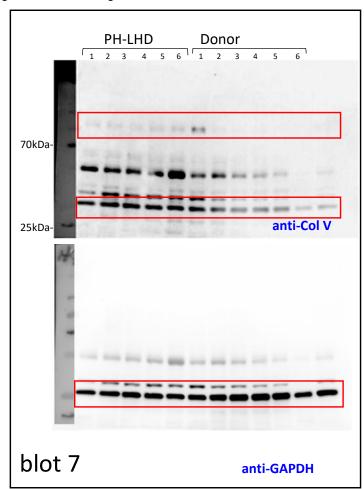

Figures to which blots correspond are indicated. Blots that were re-probed after stripping are listed under the same blot number. Red rectangles show the region presented in the respective figures.


Original blots corresponding to Figure 2d

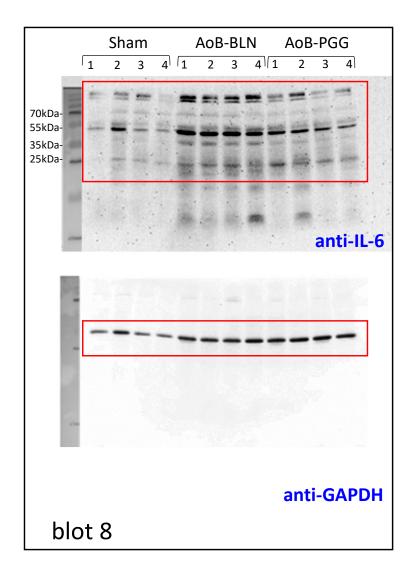


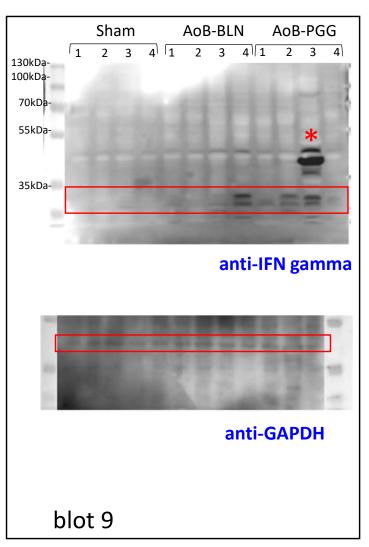
Original blots corresponding to Figure 2d

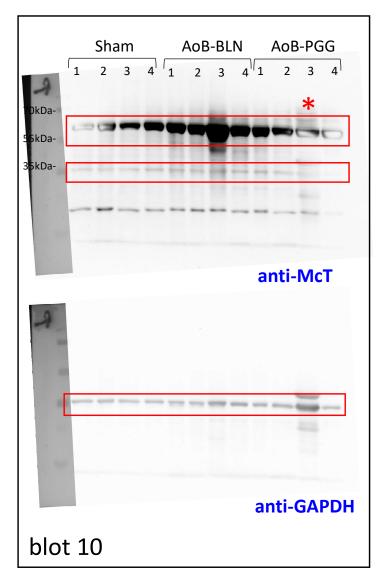


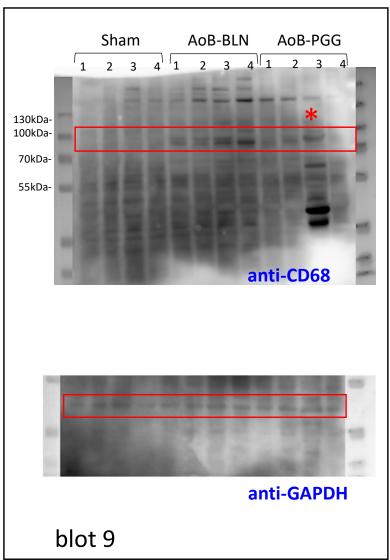


Original blots corresponding to Figure 4c'

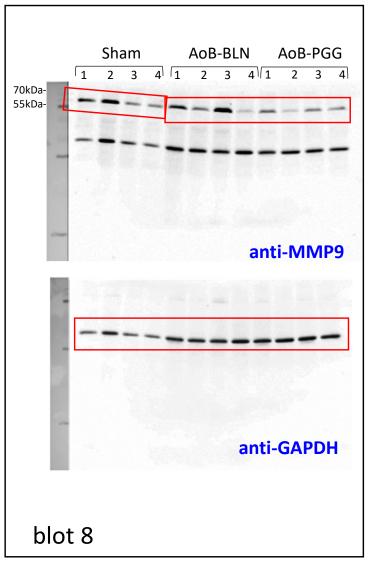


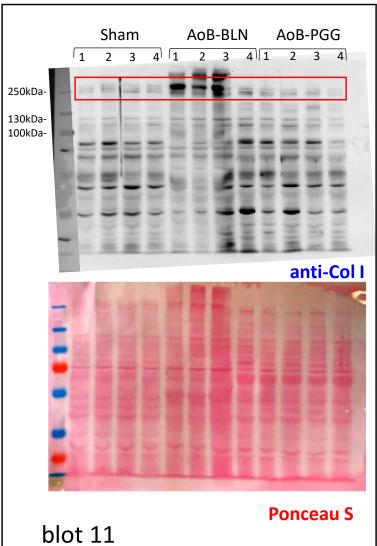

Note: these gels were prepared and processed in parallel

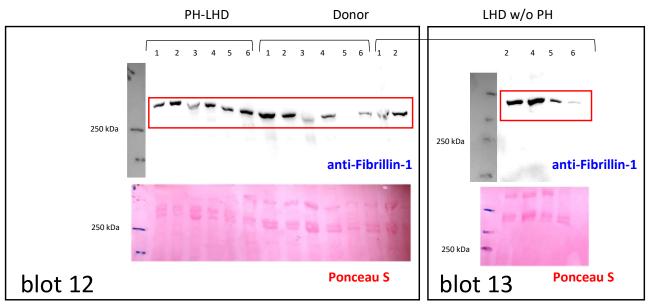

Original blots corresponding to Figure 7a



^{*}sample excluded from quantification

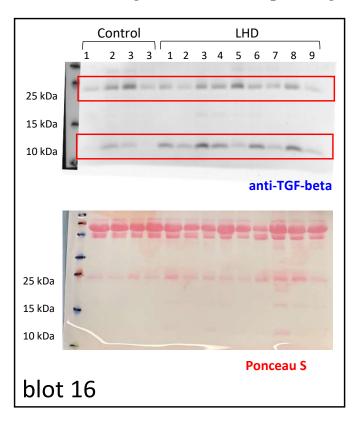

Original blots corresponding to Figure 7c

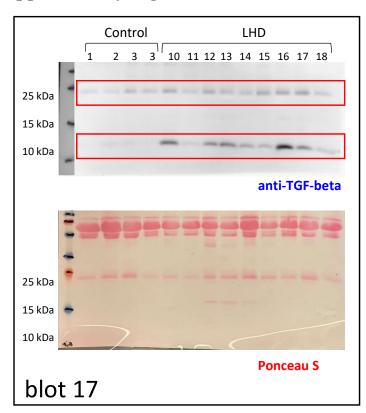


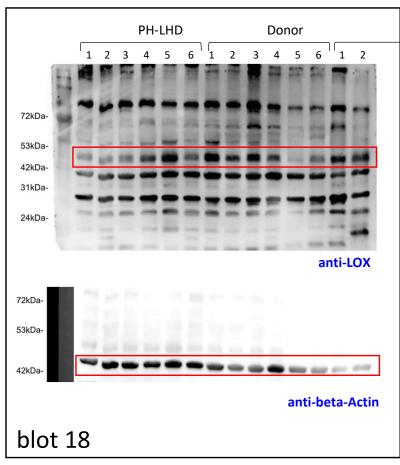

^{*}sample excluded from quantification

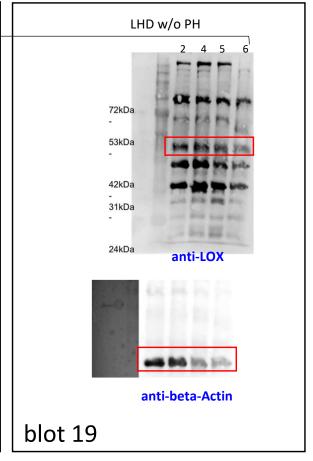
Original blots corresponding to Figure 7g Original blots corresponding to Figure 7i

Original blots corresponding to Supplementary Figure 7c




Note: gels were prepared, run and processed in parallel


Note: gels were prepared, run and processed in parallel


Original blots corresponding to Supplementary Figure 7d

Original blots corresponding to Supplementary Figure 8d

