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Anatomical pathology is undergoing its third revolution, transitioning from analogical to digital pathology and incor-
porating newartificial intelligence technologies into clinical practice. Aside fromclassification, detection, and segmen-
tation models, predictive models are gaining traction since they can impact diagnostic processes and laboratory
activity, lowering consumable usage and turnaround time. Our research aimed to create a deep-learning model to
generate synthetic Ki-67 immunohistochemistry from Haematoxylin and Eosin (H&E) stained images. We used 175
oral squamous cell carcinoma (OSCC) from the University Federico II’s Pathology Unit’s archives to train our model
to generate 4 Tissue Micro Arrays (TMAs). We sectioned one slide from each TMA, first stained with H&E and then
re-stained with anti-Ki-67 immunohistochemistry (IHC). In digitised slides, cores were disarrayed, and the matching
cores of the 2 stained were aligned to construct a dataset to train a Pix2Pix algorithm to convert H&E images to
IHC. Pathologists could recognise the synthetic images in only half of the cases in a specially designed likelihood
test. Hence, our model produced realistic synthetic images. We next used QuPath to quantify IHC positivity, achieving
remarkable levels of agreement between genuine and synthetic IHC.
Furthermore, a categorical analysis employing 3 Ki-67 positivity cut-offs (5%, 10%, and 15%) revealed high positive-
predictive values. Our model is a promising tool for collecting Ki-67 positivity information directly on H&E slides,
reducing laboratory demand and improving patient management. It is also a valuable option for smaller laboratories
to easily and quickly screen bioptic samples and prioritise them in a digital pathology workflow.
Introduction

Themajority of artificial intelligence algorithms are designed to cover a
wide range of possible applications in surgical pathology, such as cancer
grading, classification, molecular subtyping, outcome prediction, and
segmentation.1–8

AI applications for OSCC whole slide image (WSI) analysis are becom-
ing popular.9 Several AI-based feature approaches have been described in
oral and oropharyngeal lesions.10–19 Martino et al. described a machine
learning approach to demonstrate the possibility of predicting Ki-67 immu-
nohistochemistry positive on OSCC WSI.20 Aside from traditional AI tasks,
one of the hottest topics in the field of neural networks is the use of Gener-
ative Adversarial Networks (GAN), which are data-generating.21 These
model can be used for various data types, including image synthesis for
data augmentation, super-resolution, Natural Language Processing (NLP),
and music generation.22 The Pix2Pix network is one of the most interesting
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examples of generative networks since it is easily adaptable to many pur-
poses. It was first presented by Isola et al. at the Conference on Computer
Vision and Pattern Recognition (CVPR) in 2017, and several applications
have been proposed since then23 Pix2Pix network has been proposed as a
stain normalisation method, producing outstanding results,24 and can be
used to convert H&E stained slides to different stainings, as detailed by
De Haan et al.25 and Liu et al.26 in 2021.

In keeping with our prior findings, we wanted to see how well a gener-
ative network might be used to assess Ki-67 in OSCCs.

The IHC labeling index (LI) of the Ki-67 nuclear protein, as determined
by immunostaining with the MIB1 monoclonal antibody on formalin-fixed,
paraffin-embedded (FFPE) tissue sections, is one of the most commonly
used techniques in surgical pathology.27,28 Scholzer and Gerdes discovered
the Ki-67 antigen in the early 1980s, and it encodes two 345 kDa and
395 kDa isoforms.29 Ki-67 protein expression is dependent on cell prolifer-
ation, is expressed in all cell cycle phases except G0, and can be employed
ber 2023
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Fig. 2.A grid showing some representative images of tiles. Each couple is made of a
target image (Ki67 immunohistochemistry, left) and an input image (H&E, right).
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as a malignant tumour aggressiveness biomarker.30,31 As a result, patholo-
gists frequently use the Ki-67 labeling index as a proliferation marker.32 Ki-
67 has been proposed as a diagnostic biomarker in several tumours because
it is overexpressed in malignant tumour tissues compared to normal
ones,33,34 and it correlates to tissue differentiation in an inversely
proportional manner; many studies have shown a correlation between
the Ki-67/MIB-1 labeling index and human cancer grading.30,35–40

Furthermore, it correlates with the clinical tumours’ stage and occult
metastasis,41–44 and Ki-67 expression evaluation, in combination with
other histopathological characteristics, may also represent an indicator of
the risk of tumour recurrence.45,46 Ki-67 IHC labeling has been shown to
have predictive value in a variety of human solid tumours, including breast,
soft tissue, lung, prostate, cervix, and central nervous system.47–51 Different
ways to optimise the Ki-67 LI assessment by digital image analysis of Ki-67
IHC-stained glass slides have been offered. Still, none of them is focused on
predicting Ki-67 IHC positive from an H&E (haematoxylin and eosin)-
stained glass slide.52,53 We collected 175 OSCC FFPE samples from the ar-
chives of the University of Naples “Federico II” Anatomical Pathology
unit to develop a deep learning model to convert H&E stained whole slide
images to anti-Ki-67 IHC-stained whole slide images to reduce turn-
around time and laboratory consumables use, improving patient manage-
ment, and helping to prioritise samples in a digital pathology workflow.

Results

Dataset generation

To generate a dataset of images of Ki-67 immunostained tumour sam-
ples perfectly matching the corresponding H&E, in the first instance, we
generated 4 TMAs from a series of 175 OSCCs, sampling each tumour at
least in duplicate to ensure we used at least one core for each tumour
after quality control. Our TMAs, containing 349 cores, were stained with
H&E and, after a destaining procedure, immunostained with anti-Ki67 an-
tibody. Following a quality check step, the selected H&E and IHC-stained
cores were manually aligned to create a high-quality matching-images
dataset. Following a TMA dearray preprocessing, each IHC stained core
wasmanually overlaid to thematching H&E, and the images were precisely
aligned using Adobe Photoshop 2021 software. Then, the single layers
(H&E and IHC) were saved as individual images, as shown in Fig. 1.

Then, cores were subdivided into tiles, and each Ki67 tile was
concatenated to its H&E counterpart to create the actual training dataset,
with some examples shown in Fig. 2.

Finally, images were sorted into 3 datasets: training, test, and valida-
tion, as described in materials and methods, and a Pix2Pix model was
trained. As shown in Fig. 3, synthetic IHC images generated using the
trained model appeared similar to actual immunostained images.
Fig. 1. A representative image of 2 aligned cores, with the H&E in (A) and the IHC in (B). Cores have been manually annotated to a pixel level.
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Fig. 3. Three representative images of the IHC prediction procedure. From left: Input H&E, Actual IHC, Synthetic IHC.
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Synthetic images likelihood

As the proposed method generates virtual staining, the output should
appear realistic. Indeed, pathologists are used to working with actual IHC
images, so realistic images (other than accurate predictions) are mandatory
to assure pathologists’ compliance with the algorithm application. Hence,
the likelihood of synthetic images was assessed by asking 2 pathologists
to tell the synthetic image from the actual one in a side-by-side blinded
comparison. The test was performed in a dedicated Android application
with a user-friendly GUI, developed to allow a pathologist to evaluate
model results (Fig. 4).

Synthetic image likelihood was measured as the percentage of synthetic
images correctly identified as synthetic (True positives). Hence, a percent-
age of 0.5 means that the pathologist could not tell synthetic images from
actual ones, while a value of 1 means that synthetic images are always
recognisable. It resulted that out of 30 images, only 17 and 16 (Pathologist
1 and Pathologist 2) were correctly recognised as synthetic, with a mean
ratio of 0.55 (0.57 and 0.53), confirming the likelihood of the images and
the quality of the model (Table 1). Overall, these results confirm that the
3

images produced by the model appear realistic, assuring more compliance
and confidence from pathologists. Then, we quantitatively evaluated the
immunohistochemical concordance between synthetic and actual images.

Synthetic and real IHC concordance

To assess the concordance between synthetic and real immunohisto-
chemical concordance, we automatically counted the number of positive
cells per each core using QuPath “Positive Cell detection” as described in
Materials and Methods. The synthetic and real IHC comparison showed a
moderate R2 value (0.558), as shown in Fig. 5.

Moreover, the visual inspection of the digitally generated cores con-
firmed that the distribution pattern of positive cells matches the actual
one, as shown in Fig. 6.

Finally, categorical division in the most commonly used cut-off in the
assessment of Ki-67 showed a high accuracy rate. Indeed, when using a
5% positivity cut-off, we achieved an accuracy of 74.51%, with high sensi-
tivity (76.67%) and specificity (71.43%).With a higher cut-off, we had a re-
markable reduction in sensitivity, although we observed a remarkable



Fig. 4. Screenshots of the application developed to assess the likelihood of the
model’s output images.

Table 1
Out of 30 synthetic IHCs shown to Pathologist 1 and to Pathologist 2, only slightly
more than 50% were correctly recognised as “virtual” IHC. in 13/30 and 14/30
cases, respectively, the Pathologists (P1 and P2) were unable to say if the picture
they were looking at was true or synthetic.

Wrong Right % of misclassification

P1 13 17 43.33%
P2 14 16 46.67%

Fig. 5. Jointplot showing the correlation between the predicted number of share of
IHC positive cells and the actual one.
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positive-predictive value (79.31%, 77.78%, and 75.00%) (Table 2 and
Fig. 7). A detailed list of metrics is reported in supplementary data (Supple-
mentary Table S1). Although further studies are necessary to improve the
algorithms and achieve a clinically applicable accuracy level, our results
4

paved the way for a promising and reliable tool to produce immunohisto-
chemical images directly from H&E-stained slides.

Discussion

During the last 20 years, pathology underwent a radical transformation
thanks to introduction of digital pathology, an innovative approach that
merges computer science with pathology. In digital pathology, annotated
datasets are crucial for machine- and deep-learning approaches. To date,
few laboratories have gone “full digital” (i.e., employing a full digital
workflow), despite this trend constantly increasing in recent years,54,55 re-
sulting in a lack of publicly available datasets and difficulties for research
groups interested in developing new algorithms, severely limiting the de-
velopment of artificial intelligence (AI) algorithms. However, with the ex-
ponential expansion of new accessible algorithms, more and more results
are published yearly, and various applications have been proposed for
less diffuse cancers, such as oral squamous cell carcinoma. The first com-
puter science approaches proposed to surgical pathology regarded the auto-
mation of manual procedures as cell counts. However, with time, more and
more algorithms have been developed, ranging from colour normalisation
to automatic classification and segmentation of tumours. Nevertheless,
one of themost outstanding applications of AI to pathology is the prediction
of molecular or morphological characteristics through virtual staining. The
expression “virtual staining” refers to the employment of AI to obtain syn-
thetic images of a desired target staining (as IHC, Trichrome, or another
staining) from a source image (as H&E) without the need for an actual lab-
oratory activity and reducing the reagent consumption. Among the pro-
posed algorithms, the prediction of immunohistochemistry is one of the
most interesting topics because of the continuous increase in the number
of tumoural biomarkers and the consequent impact on hospital budget
and activity. Hence, we intended to develop an AI algorithm to predict
the immunohistochemical positivity of Ki-67, a well-known proliferation
marker related to a worse prognosis in several tumours.

We initially obtained 349 cores from the 175 OSCC cases selected to
construct the 4 TMAs. We harvested at least 2 cores from each tumour.
After a strict quality check phase, we selected 165 individual cores that
were disarrayed and tiled to create our training, validation, and test set.
The quality check allowed us to select the intact cores with the highest



Fig. 6.Acomparison betweenactual immunohistochemistry (left) and the respective
virtual one (right). It is clearly visible a close match in positivity and its pattern.

Table 2
Summary of model IHC concordance metrics.

Metric 5% 10% 15%

True positives 23 7 3
False positives 6 2 1
True negatives 15 33 42
False negatives 7 9 5
Sensitivity 76.67% 43.75% 37.50%
(95% CI) (57.72%–90.07%) (19.75%–70.12%) (8.52%–75.51%)
Specificity 71.43% 94.29% 97.67%
(95% CI) (47.82%–88.72%) (80.84%–99.30%) (87.71%–99.94%)
Accuracy 74.51% 78.43% 88.24%
(95% CI) (60.37%–85.67%) (64.68%–88.71%) (76.13%–95.56%)
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tumour content, excluding those affected by cutting or staining artifacts.
The workflow we conceived for constructing our model foresees a careful
processing phase in the wet lab. The tumours in the series are all oral cavity
squamous cell carcinomas, homogeneous in terms of anatomic site, mor-
phology, and biological behavior (they are all advanced infiltrating squa-
mous cell carcinomas). Most of the cores dropped by the process were
duplicates. The Dataset obtained was representative of advanced infiltrat-
ing OSCC. We trained a Pix2Pix model to achieve virtual stained cores
from H&E images. The obtained images were assessed for their likelihood
to real ones at a tile-level, while concordance between real and synthetic
Ki-67 immunohistochemical expression has been assessed at a core-level
with continuous and categorical quantification through QuPath.
5

Virtual images deceived pathologists in 45% of cases, confirming the like-
lihood of the generated images. Moreover, the synthetic and real IHC positiv-
ity, measured using QuPath algorithms, showed a highly significant
concordance (R2 = 0.56, P < .001). In some cases, risk stratification is done
by categorising the case based on the percentage of neoplastic cells positive
for the marker. Therefore, we have chosen to test the agreement metrics be-
tween real and synthetic IHC by analysing the differences across 3 percentage
cut-offs (TableS1).Ki-67 is assessedasa low-highexpression, although the cut-
off value is still not defined and usually ranges between 5% and 15% of posi-
tive cells. Hence, we assessed the concordance with 3 cut-offs (5%, 10%, and
15%) and achieved a remarkable positive-predictive value of 79.31%,
77.78%, and 75.00%, respectively, confirming the algorithm’s quality.

As heterogeneity is a well-known issue with Ki67 testing, we also tested
the model on full sections WSIs, other than TMA cores. As shown in supple-
mentary data (Fig. S1), obtained results are alignedwith our TMA findings.
We also cross-checked the reproducibility of the virtual Ki-67 expression in
cases of weak or moderate-intensity IHCs. Fig. S2 shows representative im-
ages from model output (IHC groud truths and relative predictions) sub-
jected to QuPath positive cell count script as described in the Materials
and Methods section. We also asked whether our model could be adopted
for Ki-67 assessment of other tumours, such as breast carcinoma. Supple-
mentary Fig. S3 shows the result of the Ki67-IHC prediction. As expected,
the prediction does not reach satisfactory results compared to breast
Ki67-IHC ground truth (Fig. S4). To obtain a more generalisable model,
the creation of extensive and heterogeneous datasets would be required,
which is the subject of our interest for a forthcoming publication.

Overall, our results confirm the feasibility of a valid IHC-prediction al-
gorithm, even with the limitation of our study. Indeed, we performed our
training on TMA cores, which weremadewith samples collected in a differ-
ent time period and thenwith an intrinsic variability in IHC staining. More-
over, we used a relatively small amount of OSCC cores, all coming from our
institute, so further studies are necessary to assess the generalisability of
our algorithm. In conclusion, although larger and wider studies are neces-
sary to fine-tune and improve our algorithm, our results represent a prom-
ising starting point to develop further a virtual staining protocol to reduce
the turnaround time and the material and reagents consumption to achieve
an actual digital pathology. Virtual staining protocols may result, in the
future, in a faster and more economical way to gather information about
protein expression and mutational status of patients, improving the effec-
tiveness of therapies and also in small hospitals or developing countries
as they can usually hardly access immuno-stainers, reagent supplies, and
adequate trained stuff, enabling high-level patient-care requiring only a
slide scanner, and limited computer hardware to run the algorithms.

Methods

Study population and tissue slides preparation

175OSCC FFPEOSCC tumour samples from surgical resections were re-
trieved from the Pathology Unit’s archive of the University of Naples
“Federico II”. They were used to build 4 tissue microarrays (TMAs), and
the most representative areas from each selected paraffin block were



Fig. 7. The histogram shows the concordancemetrics between synthetic IHC results compared to ground truth (GT). The cut-off groups results. Error bars show the standard
error.

Table 3
Cores and tiles distribution in train, validation, and test set. Tiles are 256 × 256
patches extracted from 4500 ×4500 cores images

Train Test Validation

Cores 95 19 51
Tiles 31 428 6109 16 560
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selected at least in duplicate. TMAs were built and stained as described in
Martino et al.,20 and 349 individual cores were obtained. H&E stained
TMA slides were scanned using a Leica Aperio AT2 scanner with a 40×
magnifier. After slide scanning, TMAs slide coverslips were removed by
soaking the slides in xylene. The slides were then rehydrated in decreasing
ethanol concentrations and then destained using a solution of HCl 0.3% for
4 min. After destaining, the slides were rinsed in tap water and immuno-
stained with the antibody anti-Ki-67. Immunohistochemical staining was
performed on a Ventana Benchmark Ultra (Ventana Medical Systems Inc.,
Tucson, AZ, USA) using the rabbit monoclonal antibody anti-Ki-67 (clone
30-9, Ventana Medical Systems Inc.) following manufacturers’ recommen-
dations. The new IHC-stained slides were then digitised.

Dataset generation

All the 349 individual cores for both H&E and IHC images were
disarrayed using QuPath,56 and the matching cores were manually aligned
to achieve a nearly perfect pixel-to-pixel correspondence. After a strict qual-
ity check phase, which led to the discharge of 184 cores, the 165 remaining
cores were sorted into 3 different datasets, training (approximately 60% of
cores), test (10%), and validation (30%). Because of the experiment’s na-
ture, the algorithm’s validation has been performed by measuring the veri-
similitude of the generated images and the concordance between real and
synthetic images. As each core is, on average, 4500 × 4500 pixels, they
have been tiled, obtaining 31 428, 6109, and 16 560 tiles for each
dataset. Validation cores were reassembled to obtain virtual cores. A sum-
mary of the datasets is illustrated in Table 3. While the scheme in Fig. 8
illustrates the laboratory workflow from the selection of patients to the
staining of histological slides up to the generation of datasets and the
model building.

Pix2Pix implementation

APix2Pixmodel has been trained on the training and test dataset to con-
vert H&E images into anti-Ki-67 immunostained images for 30 epochs
using the default settings as described by Isola et al.23 In particular, the
model consists of the discriminator and the generator. During the training,
the generator is trained to generate synthetic IHC images, while the
6

discriminator is trained to tell synthetic images from the actual ones. In
our training, we used an Adam optimiser with a learning rate of 2 ×
10−4 and a momentum of 0.5 for both generator and optimiser, while the
random initialiser has been set with a mean of 0 and a standard deviation
of 0.02. The model has been trained using 2 GPU Nvidia 2080 Ti. For
each epoch, we saved a checkpoint and restored the best generative
model at the end of the training. A validation set has been used to assess
the model efficiency in 2 ways. In the first place, we tested the ability of 2
pathologists to discern actual images from synthetic ones on a small subset
of the validation set to evaluate the likelihood of synthetic images. Then,
we counted positive cells for each core (both actual and synthetic) to eval-
uate the concordance between real Ki-67-positivity and the predicted one.

IHC quantification

Immunopositivity has been measured using QuPath 0.2.3. After setting
the image type and defining stains (H&E, DAB, and background) values, the
Simple Tissue Detector has been used to define tissue areas in the images.
Then, we used the “Positive cell detection” algorithm to detect and quantify
positive cells within the core, and the procedure was automated using a
Groovy script (Code 1). As IHC intensity is sometimes highly variable, the
positivity threshold has been manually adjusted for some cores.

//QuPath Groovy S c r i p t
// Simple Tissue Detector
run Plugin (‘qupath.imagej.detect.tissue. Simple Tissue Detection 2’,
‘{“threshold”: 220 ,
“requestedDownsample”: 50.0,
“min Area Pixels”: 100000.0,



Fig. 8. The scheme illustrates the laboratory workflow from the selection of patients to the staining of histological slides up to the generation of datasets and model building.
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“max Hole Area Pixels”: 500.0,
“darkBackground”: false,
“smoothImage”: true,
“medianCleanup”: true,
“dilate Boundaries”: false,
“smooth Coordinates”: true,
“excludeOnBoundary”: false,
“single Annotation”: true });

// Positive Cell Detection
run Plugin (‘qupath.imagej.detect.cells. Positive Cell Detection’,
‘{ “detection Image Brightfield”: “Optical density sum”,
“background Radius”: 15.0,
“medianRadius”: 6.0,
“sigma”: 6.0,
“minArea”: 10.0,
“maxArea”: 1000.0,
“threshold”: 0.1,
“maxBackground”: 2.0,
“watershed Post Process”: true,
“excludeDAB”: false,
“cell Expansion”: 0.0,
“include Nuclei”: true,
“smooth Boundaries”: true,
“makeMeasurements”: true,
“threshold Compartment”: “Nucleus: DAB OD mean”,
“threshold Positive 1”: 0.2,
“threshold Positive 2”: 0.4,
“threshold Positive 3”: 0.6000000000000001,
“single Threshold”: true }’);

Listing 1. QuPath Groovy script to perform tissue detection and cell
positivity count.

Android application

AnAndroid application has been developed to test the likelihood of syn-
thetic images. The test shows a series of coupled IHC images, A and B, and
the pathologists had to identify the synthetic one by clicking on the relative
button. On each trial, the pathologist was shown each image for 5 s, after
which the pictures disappeared, and unlimited time to respond as to
which was fake was given. Each session consisted of a brief trial to under-
stand the functioning of the application, followed by the actual survey.
The experimental setting has been adapted from the one used by Isola
7

et al.23 The application is made of 3 activities: (I) Main Activity, (II) Trial
Activity, and (III) Survey Activity.

Main activity. The Main Activity is composed of 3 buttons, namely
“Trial”, “Survey”, and “Settings”, respectively, linking to the activities and
a setting menu. The setting menu allows to activate/deactivate the hiding
of the images and a timer, along with the number of images for each ses-
sion. Setting values were saved as SharedPreferences.

Trial activity. The Trial Activity is made of a disclaimer about the sur-
vey with an explanation of the modality, the actual test, and feedback. The
trial starts by clicking the “Start” button in the disclaimer, and 3 images are
shown to test the application. At the end of the test, feedback is provided.

Survey activity. The Survey Activity is an exact copy of the trial one
but shows several images as fixed in settings. We showed 30 images to
each pathologist.

The resulting application has been installed on an Android tablet, and
the pathologist has been supported only during the trial phase.

Code and statistical analysis

All code and statistical analysis has been performed using Python 3.9
with the packages Seaborn 0.11.1, Matplotlib 3.4.2, Pandas 1.3.0, Scikit-
learn 0.241.2, OpenCv 4.5.3.56, and Tensorflow 2.6.0. The Android appli-
cation has been developed using Kotlin with Android Studio. All codes are
available upon request.
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