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Abstract

Primordial germ cells (PGCs) are precursors of eggs and sperm. Although PGCs are unipo-

tent cells in vivo, they are reprogrammed into pluripotent stem cells (PSCs), also known as

embryonic germ cells (EGCs), in the presence of leukemia inhibitory factor and basic fibro-

blast growth factor (bFGF) in vitro. However, the molecular mechanisms responsible for

their reprogramming are not fully understood. Here we show identification of transcription

factors that mediate PGC reprogramming. We selected genes encoding transcription fac-

tors or epigenetic regulatory factors whose expression was significantly different between

PGCs and PSCs with in silico analysis and RT-qPCR. Among the candidate genes, over-

expression (OE) of Bcl3 or Klf9 significantly enhanced PGC reprogramming. Notably, EGC

formation was stimulated by Klf9-OE even without bFGF. G-protein-coupled receptor signal-

ing-related pathways, which are involved in PGC reprogramming, were enriched among

genes down-regulated by Klf9-OE, and forskolin which activate adenylate cyclase, rescued

repressed EGC formation by knock-down of Klf9, suggesting a molecular linkage between

KLF9 and such signaling.

Introduction

Cellular reprogramming to establish pluripotent stem cells (PSCs) is a topic in basic research

and may have medical applications. Various types of differentiated somatic cells can be repro-

grammed into induced pluripotent stem cells (iPSCs) by forced expression of pluripotency-

associated genes such as Oct4,Klf4, Sox2, and cMyc, which are known as the Yamanaka factors

[1,2]. For several decades prior to identification of the Yamanaka factors, classical genetic stud-

ies in mice suggested that germ cells in mouse embryos can be converted into PSCs that

develop into a teratoma, which consists of various tissues and cells that differentiated from

PSCs. Teratomas develop in the gonads of mice on specific genetic backgrounds such as the
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129/Sv strain and/or by mutations of genes including Dead-end 1 (Dnd1) [3,4]. More recently,

analysis of Dnd1 functions has revealed the molecular mechanisms of conversion of germ cells

into pluripotent early teratoma cells in embryos, including control of genes involved in

enhancement of the cell cycle in germ cells [5,6]. In addition, reprogramming of germ cells

into PSCs is recapitulated in culture when primordial germ cells (PGCs) or spermatogonial

stem cells are cultured with specific cytokines [7–9], indicating that extra-cellular stimuli are

sufficient to induce reprogramming of germ cells.

In initial studies, reprogramming of mouse PGCs to pluripotent embryonic germ cells

(EGCs) was induced by addition of leukemia inhibitory factor (LIF) and basic fibroblast

growth factor (bFGF) with serum on feeder cells expressing membrane-bound Steel factor also

known as stem cell factor and kit ligand. Subsequent studies revealed that bFGF can be

replaced by retinoic acid (RA) or forskolin (FK: an activator of adenylate cyclase) [10], Tri-

chostatin A (an inhibitor of histone deacetylase) [11], inhibitors of mitogen-activated protein

kinase signaling and an inhibitor of glycogen synthase kinase 3 (2i) [12], or an inhibitor of

transforming growth factor beta receptor [13]. EGCs can also be established in the presence of

2i, LIF, bFGF, stem cell factor, RA, and FK on fibronectin-coated culture dishes without serum

and feeder cells [14]. In addition, activation of Akt, a critical intra-cellular signaling molecule,

enhances the efficiency of EGC formation from PGCs and partially replaces LIF or bFGF

[15,16]. The results together indicate that a specific intra-cellular signaling status is crucial for

reprogramming of PGCs, although the detailed molecular mechanisms are not fully

understood.

In addition to intra-cellular signaling, the importance of transcriptional regulation includ-

ing repression of the transcription factor, BLIMP1 playing a role on PGC specification [17],

for PGC reprogramming has also been suggested. Blimp1 is down-regulated shortly after PGC

reprogramming begins [11]. In addition, deletion of Blimp1 enhances PGC reprogramming,

and BLIMP1 represses the pluripotency network in embryonic stem cells (ESCs), together sug-

gesting that BLIMP1 functions as a pluripotency gatekeeper in PGCs [18]. However, additional

transcriptional regulation involved in PGC reprogramming is currently unclear. To address

this issue, we searched for transcription or epigenetic regulatory factors that are crucial for

PGC reprogramming and found that KLF9 and BCL3 play a role in PGC reprogramming.

Materials and methods

Animals

MCH and C57BL/6 mice were purchased from CLEA Japan and Japan SLC, respectively. The

Oct4-deltaPE-GFP [19] transgenic mice were maintained in a C57BL/6J genetic background.

For collecting PGCs, female MCH mice were mated with male Oct4-deltaPE-GFP mice. Noon

on the day of the plug was defined as E0.5. The mice were kept and bred in an environmentally

controlled and specific pathogen-free facility, the Animal Unit of the Institute of Development,

Aging and Cancer (Tohoku University), according to the guidelines for experimental animals

defined by the facility. Animal protocols were reviewed and approved by the Tohoku Univer-

sity Animal Studies Committee.

Flow cytometry

E12.5 or E13.5 Oct4-deltaPE-GFP transgenic embryos were collected and dissected in Dulbec-

co’s modified Eagle medium (DMEM, Gibco) containing 10% fetal bovine serum (FBS). The

genital ridges of male and female embryos were dissected. Tissue samples containing PGCs,

were incubated with 1.2 mg/ml collagenase (SIGMA) in PBS containing 10% FBS for 1h at

37˚C. To prepare single-cell suspensions for flow cytometry, tissues were dissociated by
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pipetting, and were filtered through a nylon mesh (40 μm pore size, BD falcon). A Bio-Rad S3e

cell sorter was used to sort and collect PGCs with intense GFP expression.

ESC culture

Vasa-RFP (VR15) ESCs [20] were cultured in KnockOut DMEM (Gibco) supplemented with

15% FBS, 4 mM L-glutamine (Gibco), 0.01 mM nonessential amino acids (Gibco), 0.1 mM

β-mercaptoethanol (SIGMA), 1,000 U/ml LIF (ESGRO Millipore) on mouse embryonic fibro-

blasts inactivated with mitomycin C (SIGMA). Blimp1-mVenus-Stella-ECFP (BVSC) ESC

[21], which were kindly provided from Dr. Mitinori Saitou, were cultured in 2i (PD0325901,

CHIR99021) + LIF, feeder-free culture conditions [22].

RNA preparation and reverse transcription real-time PCR

Total RNA samples were purified using RNeasy Micro Kit (QIAGEN) according to the manu-

facturer’s instruction. RNAs were reverse-transcribed using SuperScript III (Invitrogen) and

random primers (Promega). Expression levels of genes were quantified using the SYBR Green

Master Mix (Applied Biosystems) with the primers shown in S1 Table. PCR signals were

detected using CFX Connect (Bio-Rad). Transcript levels were normalized relative to those of

Arbp.

Transcriptome analysis

RNA-seq libraries were prepared from 500 ng of total RNA purified from Klf9-OE E13.5 PGCs

and control PGCs cultured for 1 days, with TruSeq RNA sample prep kit v2 (Illumina). The

libraries were clonally amplified on a flow cell and sequenced on HiSeq2500 (HiSeq Control

Software v2.2.58, Illumina) with 51-mer single-end sequence. Image analysis and base calling

were performed using Real-Time Analysis Software (v1.18.64, Illumina). For gene expression

analysis, reads were mapped to the mouse genome (UCSC mm10 genome assembly and NCBI

RefSeq database) using TopHat2 and Bowtie. Cufflinks was used to estimate gene expression

levels based on reads per kilobase of exon per million mapped reads (RPKM) normalization.

Differentially expressed genes (DEGs) were extracted from the Cuffdiff results. The PAN-

THER (Protein ANalysis THrough Evolutionary Relationships) Classification System ver13.0

(http://pantherdb.org/) was used for pathway analysis, and Venny 2.1 (http://bioinfogp.cnb.

csic.es/tools/venny/) was used for Ven diagrams. The microarray data of PGCs, ESCs and

1-day cultured PGCs in previous studies; GEO:assession: GSE30056 (E9.5 PGC and ESC) [22],

GSE67616 (E11.5 PGC, 1-day cultured PGCs and ESC) [18], GSE45181 (E13.5 PGC and ESC)

[23], were analyzed by using GeneSpring (Agilent).

Vector construction and production of lentivirus particles

For over-expression (OE) vectors, coding regions of Bcl3, Klf9, Nupr1, Psrc1, Tbx3, and Tead4
were amplified from VR15 ESC cDNA using the primer sets shown in S1 Table and sub-cloned

into EcoR I/Not I site of CSII-EF-MCS lentivirus vector by using In-Fusion HD Cloning Kit

(Takara Bio) according to the manufacturer’s instructions. For Bnc1-, Isl2-, p53-, and Klf9-
knock-down (KD) vectors, pairs of oligonucleotides shown in S1 Table were annealed and

sub-cloned into Age I/ EcoR I site of pLKO.1 lentivirus vector. Lentivirus particles were pro-

duced as described previously [24]. Briefly, CSII-EF- or pLKO.1- lentivirus vector,

pCMV-VSV-G-RSV-Rev and pCAG-HIVgp were co-transfected into HEK293T cells by the

calcium phosphate method. For titration of lentiviruses, a Lenti-X qRT-PCR Titration Kit

(Takara Bio) was used according to the manufacturer’s instructions. Virus particles were
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collected by centrifuging the cultured medium at 2,330 × g for 30 minutes at 4˚C after incubat-

ing with PEG6000 solution [final 2.5% PEG6000 (Wako), 100 mM NaCl, 10 mM HEPES (pH

7.4)] overnight at 4˚C, and they were re-suspended in EG medium [StemPro34 SFM (Gibco)

containing StemPro34 Nutrient, 100 μg/ml transferrin (SIGMA), 2 mM L-glutamine, 25 μg/ml

insulin (SIGMA), 50 μM β-mercaptoethanol, 20 ng/ml EGF (SIGMA), 10% knockout serum

replacement (KSR, Gibco), 100 U/ml penicillin-streptomycin (SIGMA), 25 ng/ml human

bFGF (SIGMA), and 1,000 U/ml LIF] [16] and stored at -80˚C until they were used. In some

experiments, they were re-suspended in EG medium without LIF or bFGF. CSII-EF-MCS,

CSII-EF-mcherry, or pLKO.1-empty vectors were used as control.

PGC culture

PGC culture for reprogramming was carried out as described previously [16,25] with some

modifications. The sorted E12.5 PGCs were cultured on a feeder layer of Sl/Sl4-m220 cells [25]

inactivated with mitomycin C in 24-well tissue culture dishes with EG medium (see above).

After 6–7 days in culture, EGC colonies were identified by staining for alkaline phosphatase

activity as described previously [16,25]. The efficiency of EGC formation was determined as

ratios of EGC colony number in every 100 seeded PGCs in a culture well. Infection of the lenti-

virus vectors to PGC were carried out as described previously [26] with some modifications.

After seeding PGCs with lentivirus, 24-well tissue culture dishes were centrifuged at 1,650 × g

for 1 h at 30˚C. The multiplicities of infection (MOI) were adjusted to 5 or 0.2. For real-time

qPCR and RNA-seq, sorted PGCs at E12.5 and E13.5, respectively were cultured on gelatin-

coated 24 well-plates for 1 or 2 days. In some experiments, PGC were cultured with EG

medium containing 10μM forskolin (SIGMA).

Statistical analysis

Statistical analysis was performed using the Student’s t-test. P values < 0.05 were considered to

be statistically significant.

Results

Candidate genes that regulate PGC reprogramming into EGCs

To identify candidate genes that control PGC reprogramming into EGCs, we re-analyzed pub-

lished microarray data [18,22,23] and selected genes that encode transcription factors or epige-

netic regulatory factors and whose expression is different between ESCs and PGCs at E9.5,

11.5, and 13.5 from which EGCs can be established. Following this analysis, we selected 25

genes that encode transcription factors (76 probes) and 14 genes that encode epigenetic regula-

tory factors (63 probes) (Fig 1A and S2 Table).

Next, we confirmed whether the expression of the 39 candidate genes was significantly dif-

ferent between ESCs and PGCs with RT-qPCR. We selected six and two genes whose expres-

sion was more than 10 times higher or lower, respectively, in PGCs from E12.5 embryos than

in two different ESCs (Vasa-RFP: VR15, Blimp1-mVenus-Stella-ECFP: BVSC) as possibly

important genes for PGC reprogramming (Fig 1B and 1C, and S1 Fig).

Functional evaluation of the candidate PGC reprogramming factor genes

To evaluate roles of the candidate genes in PGC reprogramming, we tested enhancement of

EGC formation by over-expression (OE) or knock-down (KD) of the candidate genes whose

expression was up- or down-regulated, respectively, in ESCs compared with PGCs. For OE or

KD, we infected E12.5 PGCs with lentivirus vectors and cultured the cells in conditions
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Fig 1. Candidate genes selected by their differential expression in ESCs and PGCs. (A) Venn diagram showing

transcription factor genes (left) and epigenetic regulatory factor genes whose expression is different between ESCs and

PGCs at E9.5 (red circle), E11.5 (blue circle), and E13.5 (green circle). GEO:assession: GSE30056 (E9.5 PGC and ESC)[22],

GSE67616 (E11.5 PGC and ESC)[18], GSE45181 (E13.5 PGC and ESC)[23]. (B, C) Confirmation of differential expression

of candidate genes by RT-qPCR. Relative expression levels in VR15-ESCs and BVSC-ESCs compared with those in E12.5

PGCs. Genes whose expression is more than 10 times higher (B) or lower (C) in ESCs than in PGCs are shown. The

expression of the remaining genes is shown in S1 Fig. Error bars show the SE of three independent experiments. �p< 0.05,
��p<0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pone.0205004.g001
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required for EGC formation. p53-KD, which enhances PGC reprogramming by suppressing

apoptosis [26], was included as a positive control. Among the candidates, we found that Bcl3-

OE and Klf9-OE significantly enhanced EGC formation (Fig 2A). We confirmed their OE with

RT-qPCR (S2A Fig). The remaining genes did not show significant enhancement of EGC for-

mation (S3 Fig).

The expression levels of Bcl3 and Klf9 in ESCs were 30~150 folds higher than those in PGCs

(Fig 1B), but OE resulted in much higher expression of Bcl3 and Klf9 (13,000~25,000 folds

compared with control; S2A Fig), when we infected the virus vectors at the multiplicities of

infection (MOI) 5. We tested lower MOI, and found that MOI 0.2 resulted in 10~25 folds

higher expression (S2B Fig). Even in this condition, EGC formation was still significantly

enhanced by Klf9-OE (S2C Fig). The enhancement of EGC formation by Bcl3-OE at MOI 0.2

was not statistically significant (S2C Fig), which may be due to unstable upregulation of Bcl3 at

low levels in this condition (S2B Fig).

We also tested possible additional effects of Bcl3-OE and Klf9-OE, but concomitant OE of

those two genes did not significantly enhance EGC formation compared with Bcl3-OE or Klf9-

OE alone (S2D Fig). It suggest that BCL3 and KLF9 share common downstream pathways.

To examine whether LIF and bFGF, which are essential cytokines for EGC formation,

induce the expression of Bcl3 and Klf9, we tested the expression of Bcl3 or Klf9 in E12.5 PGCs

cultured with or without LIF and bFGF for 1 day. Bcl3was highly up-regulated by LIF alone,

but bFGF showed no obvious effect on Bcl3 expression. Klf9 was up-regulated only when both

LIF and bFGF were added (Fig 2B). The results suggest that Bcl3 is up-regulated in response to

LIF signaling, whereas up-regulation of Klf9 requires both LIF and bFGF signaling.

Next, we examined whether Klf9-OE or Bcl3-OE can replace bFGF and/or LIF during EGC

induction. In the presence of bFGF alone (−LIF in Fig 2C), EGCs were rarely formed with

Bcl3-OE or Klf9-OE. However, Klf9-OE but not Bcl3-OE increased the efficiency of EGC for-

mation from 0.05 ± 0.01% in the control to 0.62 ± 0.22% with LIF alone (−bFGF in Fig 2C),

although the efficiency was lower than in the presence of both LIF and bFGF without OE (rou-

tinely about 1.5%). These data suggest that bFGF is involved in multiple signaling pathways for

PGC reprogramming. Because previous studies indicated the importance of Blimp1 down-reg-

ulation shortly after PGC reprogramming begins [11,18], we tested whether Klf9-OE influ-

enced Blimp1 expression. Blimp1 in PGCs was significantly down-regulated after 1 day in

culture with Klf9-OE (Fig 2D), suggesting that KLF9 is involved in an initial step of PGC

reprogramming. Because the enhancement of EGC formation by Klf9-OE without bFGF was

remarkable compared with that by Bcl3-OE with or without LIF and bFGF, we focused on Klf9
and further examined its possible downstream pathways in this study.

The cAMP pathway functions downstream of KLF9 during EGC induction

To investigate downstream pathways of KLF9 during EGC induction, we carried out RNA

sequencing analysis to select genes that were up- or down-regulated by Klf9-OE in E13.5 PGCs

cultured for 1 day in the conditions for EGC induction but without bFGF (the DDBJ/Gen-

Bank/EMBL; DRA006497). We identified 781 and 959 differentially expressed genes with two

times higher or lower expression, respectively, in Klf9-OE PGCs compared with control PGCs

(S3 and S4 Tables). Because a previous study indicated that the presence of bFGF during the

first day in culture is critical for EGC formation [27], and we found that KLF9 replaced bFGF

at least to some extent (Fig 2C), we hypothesized that important genes downstream of KLF9

likely changed their expression during the first day of EGC formation. Based on this idea, we

analyzed published data (GSE67616) [18], and selected genes that were up- or down-regulated

in PGCs after 1 day in culture with LIF and bFGF compared with those before culture. We
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then extracted genes that changed their expression with Klf9-OE and in the 1-day culture

(Fig 3A) and further selected candidate genes downstream of KLF9 using pathway analysis.

Although pathway enrichment was not found among the commonly up-regulated genes, we

found significant enrichment of G-protein-coupled receptor (GPCR) signaling-related

Fig 2. Enhancement of EGC formation by over-expression of Bcl3 and Klf9. (A) Relative efficiency of EGC formation by Bcl3-OE or Klf9-OE

(MOI 5) in PGCs compared with that of control (left). EGC colonies are identified by alkaline phosphatase staining. p53-KD is a positive control.

The efficiency of EGC formation by OE or KD of the remaining candidate genes is shown in S3 Fig. Error bars show the SE of three (top) and

four (bottom) independent experiments. Representative pictures of stained EGC colonies are shown (right). (B) The expression of Bcl3 and Klf9
in PGCs cultured for 1 day with (+) or without (−) bFGF and/or LIF. Error bars show the SE of three independent experiments. The expression

in PGCs cultured without LIF and bFGF was set as 1.0. (C) Efficiency of EGC formation by Bcl3-OE or Klf9-OE in PGCs in the presence of bFGF

alone (−LIF) or LIF alone (−bFGF). Error bars show the SE of two (−LIF) or four (−bFGF) independent experiments. (D) The relative expression

of Blimp1 in Klf9-OE PGCs cultured for 1 day with LIF alone compared with control PGCs. Error bars show the SE of four independent

experiments. The expression was determined by RT-qPCR. �p< 0.05, ���p< 0.001.

https://doi.org/10.1371/journal.pone.0205004.g002
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pathways such as GPCR ligand binding and G alpha (i) signaling events among genes that

were commonly down-regulated by Klf9-OE and after 1-day culture (S5 Table).

Considering that bFGF can be replaced by a combination of RA and FK, and FK stimulates

cAMP signaling during EGC induction [10], we further examined the possible relationship

between KLF9 and GPCR/cAMP signaling and tested the effect of FK with or without Klf9-KD

in the conditions for EGC induction. As expected, FK alone stimulated and Klf9-KD alone

repressed EGC formation (Fig 3B, left panel). FK also enhanced EGC formation in the Klf9-

KD condition, and this enhancement was significantly greater than that without Klf9-KD (Fig

3B, right panel). These observations suggest that FK rescues the suppressive effect of Klf9-KD

during EGC induction, which supports the idea that cAMP signaling may function down-

stream of KLF9.

Discussion

In this study, we reported that KLF9 and BCL3, both of which show higher expression in ESCs

than in PGCs, enhanced PGC reprogramming to EGCs. BCL3 is a member of the IκB family

Fig 3. cAMP signaling functions downstream of KLF9. (A) Venn diagrams show the overlap between genes that

were up-regulated (left) or down-regulated (right) in Klf9-OE PGCs and 1-day cultured PGCs (GSE67616) [18]. (B)

The effect of FK on EGC formation from Klf9-KD PGCs. Relative efficiency of EGC formation in each condition

compared with that in the control culture (Control/DMSO) is shown (left). EGCs were identified by alkaline

phosphatase staining. Fold changes in the efficiency of EGC formation by FK with or without Kfl9-KD over control

(DMSO) are shown (right). Error bars show the SE of five independent experiments. ��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pone.0205004.g003
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and interacts with NF-κB to control its functions [28]. In ESCs, Bcl3 is induced by LIF and

plays a role in the maintenance of pluripotency via induction of Oct4 [29], which is consistent

with the up-regulation of Bcl3 by LIF in PGCs (Fig 2B). Because BCL3 stimulates cell-cycle

progression in a breast cancer cell line [30,31], and cell-cycle enhancement stimulates EGC

formation [5, 6], BCL3 likely enhances PGC reprogramming via cell-cycle control. Even

though LIF induces Bcl3 expression in PGCs, Bcl3 expression cannot replace LIF for PGCs

(Fig 2B and 2C). These observations suggest that additional factors down-stream of LIF other

than BCL3 are required for reprogramming of PGCs. More specifically, BCL3 may be unstable

only in the presence of either LIF or bFGF. BCL3 is degraded through the proteasome pathway

after glycogen synthase kinase 3β-mediated phosphorylation, which is inhibited by Akt [32].

PGC reprogramming is enhanced by Akt, and both LIF and bFGF may be involved in Akt acti-

vation. Therefore, not only bFGF but also LIF are likely required for fully activated Akt to pre-

vent BCL3 degradation.

KLF9 is a member of the Krüppel-like factor family of transcription factors. Among KLFs,

KLF2, 4, and 5 belong to group 2 of the KLF family and are involved in pluripotency transcrip-

tion networks in ESCs and iPSCs [1,2,33,34]. KLF9 is a member of group 3 based on its N-ter-

minal structure [34]. The functions of KLF9 in PSCs are unknown. Although Klf9-OE

enhanced PGC reprogramming in the absence of bFGF, the efficiency of EGC colony forma-

tion by Klf9-OE without bFGF was lower than that with LIF and bFGF (Fig 2C). In addition,

the expression of Klf9 was not induced by bFGF alone. The results suggest that KLF9 partially

replaced bFGF functions for PGC reprogramming, and different signaling molecules other

than KLF9 may function downstream of bFGF.

We also found that GPCR signaling-related pathways including a repressive G alpha (i)

pathway were enriched among genes commonly down-regulated by Klf9-OE and after 1-day

culture of PGCs in reprogramming conditions (S5 Table). These data suggest that KLF9

enhances cAMP signaling via repression of G alpha (i)-related genes (highlighted in S4 Table).

Previous studies indicated that FK, which increases intra-cellular cAMP, enhances PGC

growth and survival as well as their reprogramming [10,35,36]. Our results suggest that FK

partially rescues decreased EGC formation by Klf9-KD. Therefore, activation of cAMP signal-

ing may be involved in enhancement of EGC formation by Klf9-OE. The detailed molecular

mechanisms of cAMP-dependent enhancement of PGC reprogramming remain to be deter-

mined in future studies.

Supporting information

S1 Fig. The expression of candidate genes in PGCs and ESCs. The expression of candidate

genes was determined with RT-qPCR, and relative expression levels in VR15-ESCs and

BVSC-ESCs compared with those in E12.5 PGCs are shown. Genes whose expression is less

than 10 times higher (A) or lower (B) in ESCs compared to PGCs are shown. Error bars show

the SE of three independent experiments. �p<0.05, ��p<0.01, ���p<0.001.

(TIF)

S2 Fig. The expression levels of Bcl3 or Klf9 induced by infection with lentivirus vectors

with different MOI, and their influences for EGC formation. (A, B) Induction of Bcl3 or

Klf9 expression in Bcl3-OE or Klf9-OE PGCs by infecting the lenti-virus vectors at MOI 5 (A)

and MOI 0.2 (B) after culturing for 2 days. The expression was determined by RT-qPCR. (C,

D) Relative efficiency of EGC formation by Bcl3-OE or Klf9-OE (MOI 0.2) (C) or by Bcl3-OE

and/or Klf9-OE (MOI 5) (D) in PGCs compared with that of control. EGC colonies are identi-

fied by alkaline phosphatase staining. Error bars show the SE of four (A, C, D), two (B)

KLF9 and BCL3 functions in PGC reprogramming

PLOS ONE | https://doi.org/10.1371/journal.pone.0205004 October 4, 2018 9 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205004.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0205004.s002
https://doi.org/10.1371/journal.pone.0205004


independent experiment. �p< 0.05, ��p< 0.01, ���p< 0.001.

(TIF)

S3 Fig. The effect of KD or OE of the candidate genes on EGC formation. Relative efficiency

of EGC formation by Bnc1-KD, Isl2-KD, Nupr1-OE, Psrc1-OE, Tead4-OE, and Tbx3-OE

PGCs compared with control is shown. Error bars show the SE of three independent experi-

ment. �p< 0.05. ��p< 0.01.

(TIF)

S1 Table. List of primers used in this study.

(XLSX)

S2 Table. Transcription factor genes and epigenetic regulatory factor genes whose expres-

sion is different between ESCs and PGCs at E9.5, E11.5, and E13.5).

(XLSX)

S3 Table. A list of up-regulated genes by Klf9-OE in PGCs.

(XLSX)

S4 Table. A list of down-regulated genes by Klf9-OE in PGCs. Genes highlighted in gray are

G alpha (i)-related genes.

(XLSX)

S5 Table. Pathway analysis of genes commonly down-regulated by Klf9-OE and 1-day cul-

ture of PGCs.

(XLSX)
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