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Abstract

Background: Genotype imputation from low-density (LD) to high-density single nucleotide polymorphism (SNP) chips
is an important step before applying genomic selection, since denser chips tend to provide more reliable genomic
predictions. Imputation methods rely partially on linkage disequilibrium between markers to infer unobserved genotypes.
Bos indicus cattle (e.g. Nelore breed) are characterized, in general, by lower levels of linkage disequilibrium between
genetic markers at short distances, compared to taurine breeds. Thus, it is important to evaluate the accuracy of
imputation to better define which imputation method and chip are most appropriate for genomic applications in
indicine breeds.

Methods: Accuracy of genotype imputation in Nelore cattle was evaluated using different LD chips, imputation
software and sets of animals. Twelve commercial and customized LD chips with densities ranging from 7 K to 75 K were
tested. Customized LD chips were virtually designed taking into account minor allele frequency, linkage disequilibrium
and distance between markers. Software programs FImpute and BEAGLE were applied to impute genotypes. From 995
bulls and 1247 cows that were genotyped with the Illumina® BovineHD chip (HD), 793 sires composed the reference set,
and the remaining 202 younger sires and all the cows composed two separate validation sets for which genotypes were
masked except for the SNPs of the LD chip that were to be tested.

Results: Imputation accuracy increased with the SNP density of the LD chip. However, the gain in accuracy with LD
chips with more than 15 K SNPs was relatively small because accuracy was already high at this density. Commercial
and customized LD chips with equivalent densities presented similar results. FImpute outperformed BEAGLE for all LD
chips and validation sets. Regardless of the imputation software used, accuracy tended to increase as the relatedness
between imputed and reference animals increased, especially for the 7 K chip.

Conclusions: If the Illumina® BovineHD is considered as the target chip for genomic applications in the Nelore breed,
cost-effectiveness can be improved by genotyping part of the animals with a chip containing around 15 K useful SNPs
and imputing their high-density missing genotypes with FImpute.
Background
Genomic information from dense single nucleotide poly-
morphism (SNP) chips provides the opportunity to increase
the rate of genetic progress in breeding programs, if a suffi-
cient number of markers and animals with phenotypes (or
pseudo-phenotypes such as estimated breeding values,
EBV) are genotyped [1]. Because the cost of genotyping is
high, alternative methods are necessary for cost-efficient
genomic applications. A strategy that is used in dairy
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breeding programs is to genotype influential animals
using a denser chip (e.g. Illumina® BovineSNP50 v2 - 50 K;
Illumina Inc., San Diego, CA) and selection candidates and
cows using a lower-density chip (e.g. Illumina® BovineLD -
7 K) and then to impute (i.e. predict) missing genotypes
from lower to higher density before calculating genomic es-
timated breeding values (GEBV) [2]. This cost-effective
strategy provides reliabilities of GEBV that are similar to
those obtained if selection candidates were genotyped with
the higher-density chip [3,4].
The Nelore (indicine) breed is the most important beef

cattle breed in Brazil [5]. For this breed, the Illumina®
BovineHD chip (HD) is used as the “gold standard” for re-
search purposes, since a low level of linkage disequilibrium
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between adjacent markers is observed in lower-density
chips (e.g. 50 K) [6,7]. Profit margins from beef cattle oper-
ations are too low for the use of a HD chip at the commer-
cial level. Thus, lower-density chips are required to
overcome this limitation, which highlights the importance
of assessing the accuracy of imputing genotypes in the
Nelore breed.
The objective of this study was to assess the accuracy

of genotype imputation in Nelore cattle, using different
imputation methods, different commercial and custom-
ized SNP chips and sets of animals whose genotypes
were to be imputed. The importance of relatedness be-
tween validation and reference animals was also evalu-
ated for the different chips and methods.

Methods
Genotyped animals
Both sires and dams of the Nelore breed were geno-
typed. Sires that were widely used for artificial insemin-
ation were chosen as representative of the main Nelore
breeding programs in Brazil. A total of 995 sires born
between 1955 and 2008 were genotyped, spanning over
10 generations. A total of 1247 dams born between 1993
and 2008 were also genotyped. They included part of the
genomic selection reference population of a commercial
breeding program (DeltaGen) and were chosen among
the dams that had the highest EBV accuracies for weaning,
yearling and reproductive traits. Details about pedigree in-
formation of the genotyped animals are in Table 1.
To evaluate the accuracy of genotype imputation, the

animals were divided into reference and validation sets.
The reference set comprised 793 sires that were born be-
fore 2005. Two separate validation sets were considered,
including the animals most likely to have their genotypes
imputed in practice: the first with the 202 younger sires
and the second with the dams. Reference sets with differ-
ent numbers of animals were not considered because the
effect of size of the reference set on imputation accuracy
Table 1 Pedigree information of genotyped animals

Animals Number

Individuals in pedigree 9631

Sires 1536

Dams 6125

Individuals with progeny 7661

Individuals with no progeny 1970

Individuals with only known sire 17

Individuals with only known dam 1464

Individuals with known sire and dam 5067

Founders 3083

Founders with no progeny 350
is well documented in the literature e.g. [3,8]. Statistics on
genomic relationships between reference and validation
sets are in Table 2. The genomic relationship matrix (G)
was defined as G = MM′/Σ2pi(1-pi), in which M is the in-
cidence matrix of markers whose elements in the ith col-
umn are 0-2pi, 1-2pi and 2-2pi for genotypes AA, AB and
BB, respectively, and pi is the frequency of allele B at the
ith marker [9]. To compute G, only the HD markers that
passed quality control (described later) were used. As
shown in Table 2, young sires were, compared to dams,
more related (on average) to the reference sires, based on
the maximum (Maxr) or the average of the top 10
(Mean10) genomic relationships of a given animal in the
validation set with all animals in the reference set.

SNP chips
All sires and dams were genotyped with the HD chip,
which contains approximately 777 K SNPs. Animals
from the validation set had their HD genotypes masked,
except for the genotypes of markers present on the LD
chip under evaluation, thus mimicking a situation in
which these animals were genotyped with LD chips.
Imputation from commercial LD panels to the HD

chip was simulated by assuming that genotypes of ani-
mals from the validation set were available only for
markers that were present on the HD and the following
commercial chips: Illumina® BovineLD (7 K), Illumina®
BovineSNP50 v2 (50 K) and GeneSeek® Genomic Profiler
20 K and 75 K for indicine breeds (GGP20Ki and
GGP75Ki, respectively).
Eight customized (mimicked) 15 K LD chips were also

tested, with varying densities and SNP selection criteria.
Testing customized LD chips with less than 15 K SNPs
was not relevant because their cost-effectiveness would
not be attractive (Illumina®, personal communication).
Using markers of the HD chip that passed quality con-
trol (see below), four 15 K chips were simulated based
on selection of one marker from each window of 29 sub-
sequent markers, according to the UMD v3.1 assembly.
For the first 15 K chip (15 K_e), SNPs were evenly
spaced by selecting the last marker from each window.
For the second 15 K chip (15 K_em), the SNP with the
highest minor allele frequency (MAF) was selected from
each window, and for the third chip (15 K_el), the SNP
with the highest average linkage disequilibrium with
other SNPs from the same window was selected from each
window. The r2 [10] was adopted as the measure of link-
age disequilibrium. In the fourth 15 K chip (15K_eml), the
SNP with the highest value for the product between its
MAF and its average r2 with other SNPs from the same
window was selected from each window.
The remaining four customized LD chips were devel-

oped based on the add-on concept offered by Illumina®,
where additional SNPs can be added to an existing



Table 2 Genomic relationship statistics between reference and validation sets

Reference/Validation sets1 Statistic2 Minimum Maximum Mean Median

Sire/sire (793; 202) Maxr 0.0661 0.6241 0.4353 0.4677

Mean10 0.0513 0.3795 0.2017 0.1970

Sire/dam (793; 1247) Maxr 0.0392 0.6316 0.2813 0.2744

Mean10 0.0333 0.3877 0.1351 0.1271
1Sire/sire: validation set composed of the 202 younger sires; sire/dam: validation set composed of 1247 dams; the same reference set of 793 sires was used in
both cases; 2Maxr: maximum genomic relationship between each animal in the validation set and all the animals in the reference set; Mean10: average of the top
10 genomic relationships between each animal in the validation set and all the animals in the reference set.
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commercial chip in a cost-effective way. The Illumina®
Bovine LD chip (7 K) was used as the base chip. Add-
itional SNPs were selected using the same criteria as used
for the 15K_eml chip. Windows containing 39, 25, 16 and
9 subsequent markers were used to compose chips with
densities around 18 K (11a7 K), 24 K (17a7 K), 34 K
(27a7 K) and 55 K (48a7 K) markers.
Quality control of the genotypes
Quality control was performed for HD genotypes of the
reference set, using the following criteria for excluding
SNPs: (1) SNPs that were located in non-autosomal re-
gions; (2) SNPs that had the same genomic coordinates,
i.e. mapped to the same positions (just the replicates
were removed); (3) SNPs with a p-value in the Hardy-
Weinberg equilibrium z-test [11] less than or equal to
10−5; (4) SNPs with a MAF less than 0.02; and (5) SNPs
with a call rate per SNP less than 0.98 (genotypes with a
GenCall score less than 0.70 were considered missing
when computing this statistic). After these edits, 439 595
SNPs remained. All samples from the reference set had
a call rate per individual greater than 0.9 for SNPs pass-
ing quality control and were kept for the analyses.
SNPs excluded from the reference set were also dis-

carded from the validation sets, in addition to masking
subsets of HD SNPs as previously described. For each
LD chip, the numbers of SNPs that were shared with the
HD chip before and after quality control are in Table 3.
Imputation methods
Imputation of genotypes from the LD chips to the HD
chip was performed using the software packages BEAGLE
v.3.3 [12] and FImpute v.2.2 [13]. BEAGLE is a commonly
used population-based imputation program (i.e. it does
not rely on pedigree information) that adopts a stochastic
procedure based on a Hidden Markov Monte-Carlo
process to infer the probabilities of each haplotype/
genotype. We used the most likely genotype as the pre-
dicted genotype. FImpute uses a family and population-
based algorithm, or only the population-based algorithm,
if pedigree information is not available, to deterministic-
ally phase the haplotypes and impute the missing
genotypes. To evaluate the performance when considering
family information in FImpute, we used both approaches,
i.e. with or without pedigree information. Both programs
were run with default parameters [12,13].
Imputation scenarios
Considering the two sets of animals to be imputed
(young sires and dams), the 12 SNP chips to be tested
(7 K, 50 K, GGP20Ki, GGP75Ki, 15K_e, 15K_em, 15K_el,
15K_eml, 11a7 K, 17a7 K, 27a7 K, 48a7 K), and the three
methods (BEAGLE and FImpute considering or ignoring
pedigree), a complete factorial comparison would require
72 imputation analyses. As illustrated in Figure 1, only a
subset of these analyses was carried out.
Analyses 1 to 12 were used to compare SNP chips. Re-

sults from analyses 13 to 16 were compared to those of
their counterpart analyses (1, 2, 8 and 9, respectively) to
evaluate the gain in accuracy when considering family
information with FImpute. Results from analyses 17 to
23 were compared to those from analyses 1 to 4, 8, 9
and 12, to evaluate imputation accuracy when using
different sets of animals to be imputed. Finally, analyses
24 to 29 and 30 to 35 were performed to infer accuracy
of the imputed genotypes of Nelore young sires and
dams using BEAGLE and different LD chips.
Imputation accuracy
Two criteria were used to assess imputation accuracy.
The first was the percentage of correctly imputed geno-
types (PERC). For incorrectly imputed genotypes, either
one or both alleles can be imputed incorrectly. To dis-
tinguish between these two cases, the Pearson’s correl-
ation (CORR) between imputed and observed genotypes
(coded as 0, 1 or 2 copies of the B allele) was also com-
puted, as in Hickey et al. [14]. Both PERC and CORR
were calculated by individual and by SNP, for imputed
SNPs only. Since both BEAGLE and FImpute imputed
all missing genotypes, statistics on the proportion of im-
puted SNPs were not needed.
The impact of genetic relatedness between validation

and reference animals on imputation accuracy was
assessed by regressing CORR on the average of the top 10



Table 3 Number (Nb) of SNPs shared with the HD chip, for different SNP chips

SNP chip1 Label Nb common SNPs with HD Nb common SNPs after QC2

Illumina® BovineHD HD 777962 439595

Illumina® BovineLD 7 K 6637 4086

Illumina® Bovine SNP50 v2 50 K 49345 21014

GeneSeek® Genomic Profiler 20 K - Indicine GGP20Ki 19493 13450

GeneSeek® Genomic Profiler 75 K - Indicine GGP75Ki 73941 56169

Customized 15K_e 15K_e 15144 15144

Customized 15K_em 15K_em 15173 15173

Customized 15K_el 15K_el 15173 15173

Customized 15K_eml 15K_eml 15173 15173

Customized 11K_eml add-on 7 K 11a7 K 17841 15290

Customized 17 K_eml add-on 7 K 17a7 K 24121 21570

Customized 27 K_eml add-on 7 K 27a7 K 33942 31391

Customized 48K_eml add-on 7 K 48a7 K 55141 52590
1As described in the section “SNP chips” of “Methods”; 2QC: quality control of the genotypes.
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genomic relationships between each animal in the valid-
ation set with all the animals in the reference set [15].

Results
Comparison of lower-density SNP chips
Results for CORR and PERC obtained with the different
LD chips (analyses 1 to 12) are in Table 4. Values for
PERC were proportionally smaller than the correspond-
ing values for CORR since the penalty for one incor-
rectly imputed allele is relatively higher for PERC than
for CORR. Since both measures provided comparable
Figure 1 Study design of the imputation analyses using FImpute and
young sires (sire:sire) or 1247 dams (sire:dam), with (Ped) or without (Ped0)
brackets correspond to the number given to the analysis.
results, imputation accuracy will be presented and dis-
cussed in terms of CORR.
Imputation accuracy was greater than 0.97 for all chips

except for the 7 K chip. Considering the proportion of
SNPs to be imputed (99.1%), the imputation accuracy
was high even for the 7 K chip. As documented in the
literature [4,16], imputation accuracy increases with a
decreasing proportion of SNPs to be imputed. However,
the gain in accuracy from the 11a7 K to the 48a7 K chip,
for example, was small (0.0108) because the accuracy
obtained with the 11a7 K chip was already high.
BEAGLE. A reference set of 793 sires and a validation set with 202
pedigree information and different lower-density chips; numbers in



Table 4 Average (standard deviation) imputation accuracy, for different imputation analyses using FImpute

Analysis1 SNP chip2 Nb (%) SNPs to be imputed CORR3 PERC4

1 7 K 435509 (99.1) 0.9257 (0.0346) 90.56 (4.09)

2 50 K 418581 (95.2) 0.9783 (0.0136) 97.14 (1.76)

3 GGP20Ki 426145 (96.9) 0.9771 (0.0143) 96.96 (1.87)

4 GGP75Ki 383426 (87.2) 0.9922 (0.0056) 98.93 (0.76)

5 15K_e 424451 (96.6) 0.9784 (0.0135) 97.15 (1.75)

6 15K_em 424422 (96.5) 0.9820 (0.0120) 97.58 (1.61)

7 15K_el 424422 (96.5) 0.9763 (0.0138) 96.87 (1.77)

8 15K_eml 424422 (96.5) 0.9840 (0.0107) 97.85 (1.43)

9 11a7 K 424305 (96.5) 0.9823 (0.0117) 97.63 (1.54)

10 17a7 K 418025 (95.1) 0.9864 (0.0093) 98.17 (1.24)

11 27a7 K 408204 (92.9) 0.9897 (0.0072) 98.60 (0.97)

12 48a7 K 387005 (88.0) 0.9931 (0.0049) 99.05 (0.67)
1Imputation analyses using FImpute (considering family information) and 202 young sires as the validation set; the numbers of each analysis refer to those in
brackets from Figure 1; 2as described in the section “SNP chips” of “Methods”; 3CORR: Pearson’s correlation between imputed and observed genotypes;
4PERC: percentage of correctly imputed genotypes.
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Among the commercial chips, imputation accuracies
with the 50 K and GGP20Ki chips were similar and out-
performed that of the 7 K chip, while the GGP75Ki chip
had the best accuracy. Among the virtual 15 K chips,
selecting SNPs based on MAF (15K_em) rather than on
linkage disequilibrium (15K_el), in addition of being evenly
spaced, tended to result in slightly higher imputation ac-
curacies. The highest accuracy was observed when both
criteria and even spacing were combined to define the
SNP content of a virtual chip (15K_eml). However, the in-
crease in accuracy was nominal compared to the 15K_e
evenly spaced chip. Imputation accuracy of the 11a7 K
chip was comparable to that of 15K_eml, with the poten-
tial benefit of the former being cheaper to be manufac-
tured/acquired by adding SNPs on the existing 7 K chip.
Although commercial and customized chips resulted

in similar imputation accuracies, the customized chips
that had the highest accuracies outperformed commer-
cial chips with a similar density (after quality control).
For instance, the average accuracy of the 15K_eml chip
Table 5 Average (standard deviation) imputation
accuracy, using FImpute with or without pedigree (Ped)
information

Analyses1 SNP chip2 With Ped Without Ped

1 and 13 7 K 0.9257 (0.0346) 0.9164 (0.0351)

2 and 14 50 K 0.9783 (0.0136) 0.9781 (0.0132)

8 and 15 15K_eml 0.9840 (0.0107) 0.9832 (0.0113)

9 and 16 11a7 K 0.9823 (0.0117) 0.9819 (0.0120)
1Imputation analyses using FImpute software and 202 younger sires as the
validation set; the numbers of each analysis refer to those in brackets from
Figure 1; the first and the second numbers refer to analyses with and without
pedigree information, respectively; 2as described in the section “SNP chips”
of “Methods”.
was 0.6% and 0.7% higher than those of the 50 K and
GGP20Ki chips, respectively.

Importance of pedigree information
Results of FImpute analyses with and without pedigree
information are in Table 5. For the 50 K, 15K_eml and
11a7 K chips, there was no benefit from using pedigree
information and for the 7 K chip, the gain in accuracy
was marginal (+1%). These low gains in accuracy are in
part due to the low quality of the available pedigree in-
formation, since the sire was unknown for a proportion
(38%) of the genotyped animals from the validation set,
but also because FImpute assumes that all animals are to
some degree related when performing population imput-
ation, by searching for common haplotypes shared by in-
dividuals [13].

Comparison of validation sets
Imputation accuracy was lower for dams than for young
sires, especially for lower density chips (Table 6). For in-
stance, the difference in accuracy between young sires
and dams was 5.0% for the 7 K chip and 0.7% for the
48a7 K chip. As a consequence, the increase in accuracy
for dams was more pronounced as the proportion of
SNPs to be imputed decreased. This result is due to the
fact that the young sires were, on average, more related
to the reference sires than the dams (Table 2). This ef-
fect of relatedness on imputation accuracy will be dis-
cussed in more detail below.

Comparison of imputation methods
FImpute outperformed BEAGLE for the different chips
and validation sets in terms of average accuracy (Table 7).
The greatest difference was observed for the validation



Table 6 Average (standard deviation) imputation
accuracy, using dams or young sires as validation set

Analyses1 SNP chip2 Dams Young sires

17 and 1 7 K 0.8791 (0.0474) 0.9257 (0.0346)

18 and 2 50 K 0.9603 (0.0190) 0.9783 (0.0136)

19 and 3 GGP20Ki 0.9566 (0.0211) 0.9771 (0.0143)

20 and 4 GGP75Ki 0.9846 (0.0082) 0.9922 (0.0056)

21 and 8 15K_eml 0.9680 (0.0164) 0.9840 (0.0107)

22 and 9 11a7 K 0.9658 (0.0173) 0.9823 (0.0117)

23 and 12 48a7 K 0.9864 (0.0070) 0.9931 (0.0049)
1Imputation analyses using FImpute (considering family information) and
different validation sets; the numbers of each analysis refer to those in
brackets from Figure 1; the first and the second numbers refer to analyses
using dams or young sires as validation set, respectively; 2as described in the
section “SNP chips” of “Methods”.
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set of dams and the 7 K chip, for which the average accur-
acy of FImpute was 3.4% higher than that of BEAGLE.
The average differences in accuracy between FImpute and
BEAGLE were more pronounced for dams (1.5 to 3.4%)
than for young sires (0.7 to 3.1%). For both validation sets,
differences between imputation methods tended to be
higher at lower densities. BEAGLE also presented, for all
chips, minimum accuracy values that were lower than
those of FImpute. The minimum accuracies obtained with
BEAGLE were on average 4.6% and 4.7% lower for young
sires and dams, respectively, than the minimum accuracies
for the corresponding FImpute analyses.
Importance of genomic relatedness for imputation
accuracy
The impact of relatedness between validation and refer-
ence animals on imputation accuracy is illustrated in
Table 7 Summary statistics of imputation accuracy, using BEA

BEAGLE (FImp

Anal.1 Validation set SNP chip2 Minimum

24 (1) Young sire 7 K 0.7525 (0.8003)

25 (3) Young sire GGP20Ki 0.8603 (0.8988)

26 (4) Young sire GGP75Ki 0.9142 (0.9568)

27 (8) Young sire 15K_eml 0.8788 (0.9211)

28 (9) Young sire 11a7 K 0.8773 (0.9163)

29 (12) Young sire 48a7 K 0.9214 (0.9628)

30 (17) Dam 7 K 0.6969 (0.7096)

31 (19) Dam GGP20Ki 0.8124 (0.8357)

32 (20) Dam GGP75Ki 0.8645 (0.9291)

33 (21) Dam 15K_eml 0.8296 (0.8711)

34 (22) Dam 11a7K 0.8249 (0.8640)

35 (23) Dam 48a7K 0.8677 (0.9363)
1Results of imputation analyses using BEAGLE or FImpute (between brackets) and d
refer to those from Figure 1; 2as described in the section “SNP chips” of “Methods”;
Figure 2. For the purpose of clarity, only results of four
representative analyses (17 and 30; 23 and 35) are pre-
sented. The impact of relatedness to the reference set on
accuracy was more evident for lower (7 K) than for
higher density (48a7 K) chips. Imputation accuracies
tended to be higher as the relatedness between imputed
and reference animals increased. This tendency was
stronger for FImpute than for BEAGLE with the 7 K
chip and was similar, on average, between both software
in the 48a7 K chip. For below average levels of related-
ness, the dispersion of imputation accuracies was higher
for BEAGLE than for FImpute, notably for the 48a7 K
chip.

SNP-wise imputation accuracy
Although imputation accuracy was in general high, SNP-
wise imputation accuracy is relevant also. For brevity, only
the result of analysis 9 for bovine autosome 1 is presented
in Figure 3. As previously reported in the literature for
other cattle breeds [17,18], some regions of the genome
had very low imputation accuracy (CORR < 0.60). A more
careful analysis revealed that these regions had markers
with very low levels of linkage disequilibrium with
neighboring markers (Figure 3), which suggests poten-
tial mapping or assembly issues in the reference gen-
ome. Comparatively, BEAGLE and FImpute had low
imputation accuracy for the same genomic regions
(data not shown). Markers of these regions were re-
moved in an attempt to increase imputation accuracy
of the markers from the surrounding regions, but no
improvements on imputation accuracy were obtained,
possibly because the proportion of discarded markers
was small and the imputation accuracies were already
high in the neighboring regions (data not shown).
GLE and FImpute

ute)

Maximum Mean SD

0.9717 (0.9845) 0.8982 (0.9257) 0.0392 (0.0346)

0.9951 (0.9963) 0.9614 (0.9771) 0.0225 (0.0143)

0.9986 (0.9990) 0.9842 (0.9922) 0.0120 (0.0056)

0.9976 (0.9981) 0.9714 (0.9840) 0.0183 (0.0107)

0.9979 (0.9975) 0.9697 (0.9823) 0.0190 (0.0117)

0.9989 (0.9992) 0.9860 (0.9931) 0.0111 (0.0049)

0.9576 (0.9656) 0.8501 (0.8791) 0.0441 (0.0474)

0.9874 (0.9923) 0.9321 (0.9566) 0.0288 (0.0211)

0.9946 (0.9976) 0.9692 (0.9846) 0.0198 (0.0082)

0.9904 (0.9954) 0.9456 (0.9680) 0.0254 (0.0164)

0.9893 (0.9951) 0.9430 (0.9658) 0.0260 (0.0173)

0.9954 (0.9980) 0.9715 (0.9864) 0.0193 (0.0073)

ifferent validation sets (young sires and dams); the numbers of each analysis
SD = standard deviation.



Figure 2 Accuracy of imputation (CORR) as a function of genomic relatedness (Mean10), using BEAGLE and FImpute. Figure 2 shows the
results from the imputation analyses using dams as the validation set and the 7 K (top) or 48a7 K (bottom) chip. Solid lines refer to second order
polynomial (top) and linear (bottom) regressions.
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Discussion
Imputation methods rely partially on linkage disequilib-
rium between markers to infer unobserved genotypes.
The Nelore breed has lower levels of linkage disequilib-
rium at short distances than taurine breeds [6,7]. Never-
theless, the imputation accuracies obtained in this study
are comparable to accuracies reported in the literature
for taurine breeds [17-19]. For instance, Ma et al. [19]
imputed genotypes from the 50 K to the HD chip in a
population of Swedish and Finnish Red cattle and found
similar accuracies (around 0.97) to those reported here.
As documented in the literature e.g. [3,8,16], imputation
accuracy increased with increasing density of the LD
chip. Increasing the density of the LD chip from 7 K to
15 K resulted in a greater increase in imputation accur-
acy than an increase in density from 15 K to 75 K, be-
cause imputation accuracy was already high (>0.97) for
the 15 K chip. This result is consistent, for example, with
those of Khatkar et al. [3] who reported on the imput-
ation of 50 K genotypes of Australian Holstein-Friesian
cattle and observed a relatively greater increase in
imputation accuracy when the density of the LD chip in-
creased from 3 K to 7 K than from 7 K to 10 K.
Imputation accuracy has a large influence on the reli-

ability of genomic predictions [3,4,20]. Mulder et al. [4]
derived a deterministic equation to predict the accuracy
of GEBV based on imputation accuracy (measured as a
correlation) and observed that it increased linearly with
increasing imputation correlation. Daetwyler et al. [21]
suggested that the decline in accuracy of GEBV was ac-
tually slightly lower than the decline in accuracy of im-
putation. In a scenario with low-density genotypes (14
SNPs/Morgan), these authors observed that 87.8% of
missing genotypes were correctly imputed but 95% of
the accuracy of GEBV obtained with high-density SNP
genotypes (1500 SNPs/Morgan) was achieved. Although
reliability of GEBV was not evaluated in the present
study, it is plausible to assume that the reliability of
GEBV of Nelore cattle based on imputed genotypes
from a chip with approximately 15 K SNPs, for which
the imputation accuracy was around 0.98, would be
similar to that of GEBV obtained with the HD chip.



Figure 3 (See legend on next page.)
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Figure 3 Variation of SNP-wise imputation accuracy* and linkage disequilibrium along bovine chromosome 1. Top: SNP-wise correlation
between imputed and observed genotypes (CORR) is plotted against the genomic coordinates (in Mb) for SNPs located on chromosome 1, which
was divided in windows of about 50 subsequent markers; windows with the lowest (a) and highest (b) average imputation accuracies are
highlighted. Middle: Heatmap representing the extent of linkage disequilibrium (r2) in window A (51 markers located between 44.71 and
44.91 Mb; averages for accuracy, MAF and r2 were 0.390, 0.195 and 0.103, respectively). Bottom: Heatmap representing the extent of r2 in window B (48
markers located between 69.40 and 69.49 Mb; averages for accuracy, MAF and r2 were 1.000, 0.270 and 0.321, respectively). *In order to exemplify the
amount of variation verified for SNP-wise imputation accuracy on a single chromosome, the results obtained from Analysis 9 (Figure 1) are presented
(i.e. using the 11a7k chip and FImpute considering pedigree information to impute genotypes of young sires).
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Nevertheless, a more thorough analysis on this subject is
needed.
Different (mimicked) customized LD chips were tested

in order to evaluate changes in imputation accuracy when
criteria for SNP selection were modified. As in Mulder
et al. [4], selecting SNPs based on MAF (15K_em) and even
spacing across the genome had little impact on imputation
accuracy compared to selecting SNPs based only on even
spacing. A small favorable difference was observed when
SNPs were selected based on MAF (15K_em) rather than
on linkage disequilibrium (15K_el), in addition to being
evenly spaced. A slightly better accuracy was observed
when both criteria (MAF and linkage disequilibrium), in
addition to even spacing, were combined to select the SNPs
for the chip (15K_eml). Increasing SNP density in the telo-
mere regions of the chromosomes is expected to further in-
crease the imputation performance of the customized chips
[22]. We did not use refined algorithms to optimize the im-
putation accuracy of the customized chips since the devel-
opment of an LD chip was outside the scope of our study.
Results obtained with the 11a7 K chip suggests that if a
new optimized LD chip was to be developed, adding SNPs
to the existing commercial 7 K chip would be a good strat-
egy since this would be less costly and provide an imput-
ation accuracy that is comparable to that of a completely
customized chip with similar density.
The customized chips that showed the highest imput-

ation accuracy slightly outperformed the commercial
chips with an equivalent density. It is important to men-
tion that commercial and customized chips cannot be
properly compared, since the design of the customized
chips used information on genotypes from the same popu-
lation than that to be imputed. However, it does highlight
the importance of using population-specific information
to design LD chips.
Imputation accuracy was not as much affected by

pedigree information as by using different imputation
methods. FImpute resulted in higher imputation accuracies
for the different chips and validation sets than BEAGLE.
Ma et al. [19] found that FImpute slightly outperformed
BEAGLE when imputing Swedish and Finnish Red cattle
genotypes from 50 K to HD, but BEAGLE outperformed
FImpute when imputing from 3 K to 50 K. Sun et al. [23]
also observed a slightly better imputation performance of
BEAGLE compared to FImpute when imputing Angus ge-
notypes from 7 K to 50 K. These results indicate that the
choice of the imputation method depends on the chip and
population, i.e. there is no single method that provides
higher imputation accuracy for all scenarios. However, an
outstanding advantage of FImpute over BEAGLE is its
computational efficiency. As reported by Ma et al. [19], pro-
cessing time of the analysis with FImpute was much shorter
than with BEAGLE (data not shown).
Another factor that influenced imputation accuracy

was the level of relatedness between imputed and reference
animals. In agreement with the literature [14,19,24,25], im-
putation accuracy tended to increase as the relatedness be-
tween imputed and reference animals increased for both
imputation methods. The influence of relatedness on im-
putation accuracy decreased with increasing SNP density of
the LD chip. For the Nelore cattle population, using the
denser LD chips (GGP75Ki and 48a7 K) resulted in high
accuracies (>0.90) with FImpute even for animals that were
poorly related to the reference set.
For some genomic applications (e.g. genome-wide as-

sociation (GWA) studies), SNP-wise imputation accur-
acy is relevant to prevent the propagation of genotyping
errors. As in Erbe et al. [17] and VanRaden et al. [18],
some regions of the genome contained markers that pre-
sented an erratic pattern of linkage disequilibrium,
which suggests potential mapping and reference genome
assembly problems. These regions had a negligible effect
on imputation accuracy by individual but can potentially
affect GWA studies. While the origin of this erratic link-
age disequilibrium pattern is unknown, a precautious
strategy would be to exclude markers from these regions
as a quality control criterion for GWA studies. To facili-
tate this, a supplementary table [See Additional file 1:
Table S1] summarizes all the observed regions that pre-
sented poor imputation performance.
Finally, it is not clear if the Illumina® BovineHD chip

should be considered as the target high-density chip for
genomic applications in the Nelore breed. Recent gen-
omic prediction results (not published) have revealed
that the 50 K and HD chips share similar predictive abil-
ities for different traits in Nelore cattle. At present, it is
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not clear to what extent the size and composition of the
reference population influence these results. As reported
by VanRaden et al. [20], the benefit of using denser chips
for genomic prediction becomes more evident as the ref-
erence population increases. Denser chips are also pre-
ferred for genomic applications that aim at identifying
and subsequently using information from causal muta-
tions [26,27]. Except for the most valuable breeding
stock (e.g. influential sires and potential donor cows),
genotyping the animals with dense chips is prohibitive
for most beef cattle operations. Thus, genotyping strat-
egies need to be further investigated to allow the incorp-
oration of genomic information in beef cattle breeding
programs in a cost-effective way. The results presented
here show that a strategy of genotyping dams and young
sire candidates with LD chips to predict missing HD ge-
notypes by imputation is feasible. Future studies are
needed to better identify the proper densities of geno-
typing chips to be used for each category of animals and
in which proportion they should be genotyped for each
application.

Conclusions
Our results indicate that if the HD chip is considered as
the target chip for genomic applications in the Nelore
breed, cost-effectiveness can be improved by genotyping
part of the economically marginal animals with an LD
chip that contains around 15 K useful SNPs and imput-
ing the missing HD genotypes. A denser LD chip (50 K
useful SNPs) is recommended for animals that are
poorly related to the reference population. For the
current Nelore population, FImpute is preferred over
BEAGLE for imputation of missing genotypes.

Additional file

Additional file 1: Observed autosome regions presenting an average
imputation accuracy (CORR) lower than 0.7. BTA refers to the bovine
(Bos taurus) autosome for which the window was mapped; min.win is the
position in base pairs (according to Illumina® map) of the first SNP of the
window; max.win is the position in base pairs (according to Illumina®
map) of the last SNP of the window; CORR(sdCORR) is the average (SD)
of the correlation between observed and imputed genotypes, considering
the SNP within the window; PERC(sdPERC) is the average (SD) of the
percentage of correctly imputed genotypes, considering the SNP within the
window; mMAF(sMAF) is the average (SD) of MAF, considering the SNP
within the window; mr2(sr2) is the average (SD) of LD (r2) between all pairs
of SNPs located in the same window; medr2 is the median of LD (r2)
between all pairs of SNP located in the same window; win is the window
index (consecutive numbers on the same chromosome indicate contiguous
windows); Nsnp is the number of markers in the window; avg_dist is the
average gap between adjacent markers within the same window (in kb).
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