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Abstract Based on observations of markers for DNA lesions, such as phosphorylated histone

H2AX (gH2AX) and open DNA ends, it has been suggested that post-meiotic DNA double-strand

breaks (PM-DSBs) enable chromatin remodeling during animal spermiogenesis. However, the

existence of PM-DSBs is unconfirmed, and the mechanism responsible for their formation is unclear.

Here, we report the first direct observation of programmed PM-DSBs via the electrophoretic

separation of DSB-generated DNA fragments in the ciliate Tetrahymena thermophila. These PM-

DSBs are accompanied by switching from a heterochromatic to euchromatic chromatin structure in

the haploid pronucleus. Both a topoisomerase II paralog with exclusive pronuclear expression and

Spo11 are prerequisites for PM-DSB induction. Reduced PM-DSB induction blocks euchromatin

formation, characterized by histone H3K56 acetylation, leading to a failure in gametic nuclei

production. We propose that PM-DSBs are responsible for histone replacement during the

reprogramming of generative to undifferentiated progeny nuclei.

DOI: 10.7554/eLife.26176.001

Introduction
DNA double-strand breaks (DSBs) represent one of the greatest threats to genome integrity. Never-

theless, deliberate DSB induction is necessary for reshuffling genes or DNA sequences. The most

common example in eukaryotes is the induction of meiotic DSBs (Keeney et al., 1997), and others

include the somatic recombination of immunoglobulin genes (Stavnezer et al., 2008), mating-type

switching in yeast (Haber, 2012), and inducing antigenic variation in Trypanosoma

(McCulloch et al., 2015). Post-meiotic DSBs (PM-DSBs) are a novel type of programmed DSBs that

are claimed to occur during spermiogenesis in animals, including humans (Marcon and Boisson-

neault, 2004) and Drosophila (Rathke et al., 2007). Markers of DNA lesions such as phosphorylated

histone H2AX (gH2AX) foci and terminal deoxynucleotidyl transferase dUTP nick end-labeling

(TUNEL)-positive signals are found in the nuclei of elongating spermatids (Marcon and Boisson-

neault, 2004; Meyer-Ficca et al., 2005; Leduc et al., 2008). Moreover, both poly ADP-ribose (PAR)

formation, a known DNA damage response (Meyer-Ficca et al., 2005) and DNA polymerase activity,

characteristic of DNA repair synthesis, have been detected in these cells (Leduc et al., 2008). PM-

DSBs have been implicated in eliminating free DNA supercoils formed during canonical histone with-

drawal to ensure protamine deposition onto untangled DNA (Marcon and Boissonneault, 2004;

Laberge and Boissonneault, 2005; Rathke et al., 2014). However, the nature of these lesions

Akematsu et al. eLife 2017;6:e26176. DOI: 10.7554/eLife.26176 1 of 26

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.26176.001
http://dx.doi.org/10.7554/eLife.26176
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


(whether DSBs or single-strand nicks) and the mechanism by which they are formed have not been

fully elucidated.

As the TUNEL signal is greatly diminished in rabbit spermatids in the presence of the type II topo-

isomerase (Top2) inhibitor, etoposide (Laberge and Boissonneault, 2005), which forms a ternary

complex with DNA and Top2 (Pommier et al., 2010), the catalytic activities of Top2-related proteins

have been considered responsible for inducing post-meiotic DNA lesions. Vertebrates encode two

closely related TOP2 genes termed a and b, which are differentially regulated during cell growth

and cannot substitute for each other (Roca, 2009). Top2a is only expressed in proliferating cells,

where it is involved in mitosis-related events such as DNA replication, chromosome condensation

and decondensation, and sister chromatid segregation (Woessner et al., 1991; Grue et al., 1998).

In contrast, Top2b is mainly expressed in terminally differentiated cells and is therefore thought to

have a non-mitotic function (Austin and Marsh, 1998; Linka et al., 2007). In cultured human cells,

Ju et al. (2006) uncovered a role for Top2b in catalyzing site-specific DSB formation within some

gene promoters, leading to local changes in chromatin architecture and transcriptional activation. In

mouse spermiogenesis, Leduc et al. (2008) demonstrated that Top2b was exclusively expressed in

elongating spermatids, where it colocalized with gH2AX foci. Moreover, these authors showed that

tyrosyl-DNA phosphodiesterase 1 (Tdp1), known to dissociate the covalent bonds between Top2

and DNA (Nitiss et al., 2006; Murai et al., 2012), was expressed in the same cells. These findings

strongly suggest that Top2b produces transient DSBs in haploid chromosomes to support chromatin

remodeling.

In addition to Top2b, Spo11, the predominant meiotic DSB inducer (Keeney, 2008), has recently

been implicated in PM-DSB formation. Gouraud et al. (2013) reported that the elongating sperma-

tids of mice express much higher levels of SPO11 transcripts compared with TOP2b transcripts.

Since Spo11 has a similar structure to prokaryotic Top2 (also called Top6) and produces DSBs in the

same manner as Top2 by forming phosphotyrosine linkages to 50 strand termini on both sides of a

DSB (Neale et al., 2005), Spo11 may also be involved in inducing PM-DSBs.

Using the unicellular ciliated protist Tetrahymena thermophila (hereafter referred to as Tetrahy-

mena) as a model biological system, we demonstrate that PM-DSBs are formed in non-metazoan

organisms and report the first compelling genetic evidence for the mechanism of PM-DSB induction.

The availability of gene manipulation methods (Chalker, 2012), sequenced genomes (Eisen et al.,

2006; Hamilton et al., 2016), and gene expression data (Miao et al., 2009) make Tetrahymena an

ideal model for studying fundamental cellular and molecular processes. A remarkable and virtually

unique feature of ciliates (including Tetrahymena) is that they stably maintain spatially and function-

ally differentiated germline and somatic nuclear genomes within a single cytoplasm (Orias et al.,

2011). The transcriptionally inert diploid germline genome, housed within the micronucleus (MIC),

stores the genetic information for sexual progeny, while the polyploid somatic genome, housed

within the macronucleus (MAC), is involved in active transcription. Both types of nuclei derive from a

single zygotic nucleus during sexual reproduction. The MAC anlagen then undergo large-scale

genome rearrangement and amplification processes that remove the internal eliminated sequences,

representing about 40% of the genome (Mochizuki, 2010, 2012; Noto et al., 2015). The MAC

genotype governs the phenotypes of both the MAC and MIC (Orias et al., 2011). Owing to its

nuclear dualism, Tetrahymena is an ideal tool to address questions about genes that have important

post-meiotic functions but are not manipulable in other model systems because they are essential

for germline cell homeostasis.

In this study, we investigate the functions of Tetrahymena TOP2b and SPO11 orthologs in haploid

MICs (pronuclei) after completing meiosis and show their involvement in PM-DSB formation. We also

provide evidence that DNA repair is concomitant with the incorporation of newly synthesized histone

H3 into pronuclei. Our data suggest that Tetrahymena undergoes a spermiogenesis-like post-meiotic

stage, in which Top2-related proteins induce transient DSBs followed by a dynamic change in the

chromatin structure of gametic nuclei prior to fertilization.
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Results

Novel gH2AX localization in pronuclei
Figure 1 illustrates the process of Tetrahymena cell mating (known as conjugation; described in

Cole and Sugai, 2012). Mating is initiated by the interaction of cells of different mating types, fol-

lowed by meiotic prophase in both mating partners, during which MICs stretch out to form bivalent

chromosomes without synaptonemal complex formation (Loidl et al., 2012). Finally, two consecutive

meiotic divisions (anaphase I and II) take place to form four identical haploid pronuclei: one of these

(the selected pronucleus) undergoes an additional mitosis event (gametogenic mitosis) to produce

gametic nuclei, whereas the other three (unselected) pronuclei eventually undergo autophagic deg-

radation (Liu and Yao, 2012). After they are reciprocally exchanged between mating partners, each

gametic nucleus forms a zygotic nucleus by karyogamy, corresponding to fertilization in metazoa.

Soon thereafter, the zygotic nucleus undergoes two consecutive mitotic divisions (post-zygotic mito-

ses) to produce four identical anlagen. Two of these are distributed to the anterior region of the

cytoplasm, whereby they differentiate into the progeny MACs; the remaining two posterior anlagen

become progeny MICs. Once the progeny MACs begin to develop, the parental MAC (pMAC)

becomes transcriptionally inactive and is selectively eliminated from the cytoplasm via autophagy

(Akematsu et al., 2010, Akematsu et al., 2012, 2014). Mating is terminated once the progeny

MACs develop. One of the progeny MICs is resorbed, while the remaining MIC undergoes replica-

tion prior to the first cell division. The progeny MACs are then distributed to the daughter cells.

Finally, four progeny cells are produced from a mating cell pair (Figure 1).

We discovered H2AX phosphorylation in post-meiotic pronuclei by gH2AX immunostaining

(Figure 2A). The post-meiotic stage is distinct from the other two meiotic stages in which gH2AX

foci are known to be formed, namely (1) during DSB formation in the elongating meiotic prophase

MIC (Mochizuki et al., 2008; Papazyan et al., 2014) and (2) during DNA elimination in the

Figure 1. Nuclear events during wild-type Tetrahymena mating. When starved cells of different mating types are mixed, they start mating and meiosis,

and produce sexual progeny. MAC-macronucleus; MIC-micronucleus; $-progeny macronuclear anlagen; *-progeny MICs; pMAC-degrading parental

macronucleus. Time (h) after mixing of cells is indicated.

DOI: 10.7554/eLife.26176.002
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developing MAC anlagen (Figure 2A) (Song et al., 2007). Western blotting of mating cell proteins

from different time points showed a consistent result: a single band of about 15 kDa (the size of

H2AX) that transiently appeared at 2 hr (meiotic prophase), 6 hr (post-meiotic stage), and 8 hr (MAC

development stage) after induction of meiosis (Figure 2B). Moreover, a parentally expressed H2AX

(encoded by TTHERM_00790790)-GFP fusion protein localized to the MIC at meiotic prophase and

to post-meiotic pronuclei (Figure 2—figure supplement 1), confirming that pronuclear gH2AX

immunostaining was not due to disappearance of H2AX.

In one of the four pronuclei, gH2AX fluorescence disappeared after about 30 min (Figure 3A/a/

A0); only this nucleus underwent gametogenic mitosis (Figure 3B/b/B0). In contrast, the gH2AX signal

persisted in the unselected pronuclei, which relocated to the posterior region of the cell were
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Figure 2. gH2AX foci formation, indicating histone H2AX phosphorylation, in Tetrahymena mating. (A) gH2AX foci appear at three distinct time

points—in elongating micronuclei at meiotic prophase—in pronuclei at the post-meiotic stage; and in the developing anlagen—but do not appear in

parental MACs throughout mating. Cartoons illustrate the corresponding stages from Figure 1. Scale bar denotes 10 mm. MAC-macronucleus; MIC-

micronucleus; #-differentiating zygotic nuclei; $-progeny macronuclear anlagen; *-progeny micronuclei; pMAC-degrading parental macronuclei. (B)

Western blot analysis of gH2AX from different time points during mating. b-actin was the loading control. See also Figure 2—figure supplement 1.

DOI: 10.7554/eLife.26176.003

The following figure supplement is available for figure 2:

Figure supplement 1. Subcellular localization of C-terminally GFP-tagged H2AX during the pre-zygotic stages.

DOI: 10.7554/eLife.26176.004

Akematsu et al. eLife 2017;6:e26176. DOI: 10.7554/eLife.26176 4 of 26

Research article Cell Biology Genes and Chromosomes

http://dx.doi.org/10.7554/eLife.26176.003
http://dx.doi.org/10.7554/eLife.26176.004
http://dx.doi.org/10.7554/eLife.26176


degraded (Figure 3C/c/C0). Since H2AX dephosphorylation is an established marker of repaired

DNA (Chowdhury et al., 2005; Keogh et al., 2006), the post-meiotic stage might involve DNA

damage formation in all pronuclei, followed by DNA repair only in the selected pronucleus. Indeed,

DNA repair markers such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs, a factor

involved in DNA repair by non-homologous end joining [NHEJ]) and Rad51 (a protein involved in

recombinational repair) are expressed in the selected pronucleus (Figure 3—figure supplements 1

and 2).

Top2 and its relation to post-meiotic gH2AX formation
Ciliates including Tetrahymena encode multiple TOP2 genes (Figure 4A). We found that Tetrahy-

mena has two closely related Top2 isoforms (encoded by TTHERM_00456750 and

TTHERM_00825440; Figure 4A), both of which contain domains characteristic of mammalian Top2a
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Figure 3. Post-meiotic gH2AX and its relation to gametogenic mitosis. (A/a/A0) gH2AX is formed in all four

pronuclei after completion of meiosis. (B/b/B0) A pronucleus (red arrowheads) becomes immunonegative for

gH2AX. (C/c/C0) Soon thereafter, the pronucleus without gH2AX (red arrowheads) is selected to undergo

gametogenic mitosis. (D/d/D0) The unselected pronuclei, in which gH2AX (†) persists, are degraded at the

posterior region of the cytoplasm and eventually disappear by the karyogamy stage. #-zygotic nuclei. Scale bar

denotes 10 mm. See also Figure 3—figure supplements 1 and 2.

DOI: 10.7554/eLife.26176.005

The following figure supplements are available for figure 3:

Figure supplement 1. Possible involvement of NHEJ in PM-DSB repair.

DOI: 10.7554/eLife.26176.006

Figure supplement 2. Possible involvement of recombination protein Rad51 in PM-DSB repair.

DOI: 10.7554/eLife.26176.007
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Figure 4 continued on next page
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and b: an ATPase domain, a Toprim (topoisomerase–primase) domain, and an N-terminal Top2 A

subunit domain (Figure 4B). However, both lack the DTHCT domain found in the C-termini of DNA

gyrase B, topoisomerase IV (Top4), and H+-ATPase proteins (Figure 4B) (Staub et al., 2004). C-ter-

minal GFP tagging of these Tetrahymena Top2 isoforms revealed distinct nuclear localization pat-

terns: TTHERM_00456750p was expressed exclusively in the MAC and TTHERM_00825440p in MIC

and MIC-derived pronuclei (Figure 4C). Hence, it is reasonable to assume that TTHERM_00825440p

is the sole Tetrahymena functional homolog of mammalian Top2b to be exclusively expressed in

spermatids (Leduc et al., 2008). Furthermore, the common ancestor of ciliates might have acquired

multiple TOP2 genes to manage its nuclear dualism. Hereafter, we will refer to TTHERM_00825440p

as Top2G (Germline Top2) and TTHERM_00456750p as Top2S (Somatic Top2).

To investigate the post-meiotic function of Top2G, we made RNA interference (RNAi) strains to

knock down gene expression (Figure 5A). Western blotting showed that Top2G-GFP, which was

most abundant at post-meiosis (i.e. 4 hr and later after meiosis induction), was completely depleted

by RNAi expression (TOP2gi; Figure 5B), demonstrating that TOP2 knockdown was effective. Acetic

orcein staining of chromosomes showed that Top2G depletion did not affect meiosis: four normal

pronuclei were generated, as in the wild-type cross (Figure 5C). However, gametogenic mitosis

failed in the TOP2gi cross: all pronuclei migrated to the posterior region of the cytoplasm, similar to

unselected pronuclei in the wild-type (Figure 5C). These pronuclei had vanished by 10 hr, probably

via autophagy (Figure 5C) (Liu and Yao, 2012), rendering about 70–80% of the TOP2gi crosses ami-

cronucleate (Figure 5D and Figure 5—source data 1). Mating was eventually aborted in amicronu-

cleate cells, without the formation of progeny nuclei (Figure 5C).

To see whether Top2G depletion affects gH2AX formation in the pronuclei, gH2AX was immunos-

tained in the TOP2gi cross. Similar to the effect of Top2b chemical inhibition on animal spermiogen-

esis (Laberge and Boissonneault, 2005), loss of Top2G activity in Tetrahymena suppressed H2AX

phosphorylation in the pronuclei (Figure 5E,F and Figure 5—source data 2). However, gH2AX for-

mation at meiotic prophase was not affected (Figure 5E). This result suggests that Top2G may be

required to form post-meiotic DNA lesions but not meiotic DSBs.

Possible involvement of Spo11 in post-meiosis
Spo11 induces practically all meiotic DSBs needed for bivalent formation and genetic exchange by

homologous recombination (Keeney, 2008). Gouraud et al. (2013) suggested that Spo11 has an

additional function as a PM-DSB inducer based on microarray data (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE2736) showing that SPO11 transcription remains high in elongating sper-

matids in mice. Similarly, RT-PCR showed that SPO11 is transcribed from meiotic prophase (~3 hr)

until the post-meiotic stage (6 hr) in Tetrahymena (Figure 6C), suggesting that Spo11 functions in

post-meiotic processes.

The meiotic role of Tetrahymena Spo11 in DSB formation and nuclear elongation was elucidated

using somatic knockout (DSPO11) and knockdown (SPO11i) lines (Mochizuki et al., 2008; Loidl and

Mochizuki, 2009; Howard-Till et al., 2013). Here, the post-meiotic phenotypes of these mutants

were assessed by acetic orcein staining. Both mutants displayed indistinguishable phenotypes at

meiotic prophase: neither DSBs nor gH2AX were formed in the meiotic MIC and nuclear elongation

did not take place. Nevertheless, meiotic anaphases I and II were not affected, and four pronuclei

were formed as in the wild-type crosses (Figure 6A). However, similar to the TOP2gi crosses

(Figure 5C), the DSPO11 mutant did not undergo gametogenic mitosis, and only amicronucleate sin-

gle cells were present by 10 hr after meiosis induction (Figure 6A,B and Figure 6—source data 1).

These results suggest a role for Spo11 not only in meiotic prophase but also at the post-meiotic

stage. Interestingly, the post-meiotic defect was less severe in SPO11i crosses: progeny nuclei devel-

oped following gametogenic mitosis in 40–70% of these cells (Figure 6A,B and Figure 6—source

data 1). Attenuation of the mutant phenotype suggests that SPO11 expression recovers from RNAi-

Figure 4 continued

on their localization, TTHERM_00456750p and TTHERM_00825440p were designated Top2S (Top2 in the somatic nucleus) and Top2G (Top2 in germline

nucleus), respectively. In mating pairs, Top2G-GFP expressed in one of the mating partners (right) migrates to the pronucleus of the untagged cell (left),

causing a weak signal. MAC-macronucleus, MIC-micronucleus. Scale bars denote 10 mm.

DOI: 10.7554/eLife.26176.008
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Figure 5. Role of Top2G in the post-meiotic stage. (A) Schematic representation of the pTOP2Gi-NEO5 knockdown vector used for Top2G RNAi.
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Figure 5 continued on next page
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mediated knockdown after meiotic prophase. To measure Spo11 protein expression, we created

C-terminally FZZ-tagged (Lee and Collins, 2007) Spo11-expressing strains. By Western blotting,

Spo11-FZZ expression was first seen in wild-type crosses at meiotic prophase (2 hr), reached a maxi-

mum during anaphase I to II (~3–4 hr), and remained at that level until post-meiosis (6 hr;

Figure 6D). In the presence of SPO11 RNAi, Spo11-FZZ was not expressed during meiotic prophase

(~2–3 hr) but was expressed at later stages (~4–6 hr), including the post-meiotic stage (Figure 6D).

This result indicates that the RNAi interferes with SPO11 expression at meiotic prophase, but its

effect is gradually lost at later stages.

gH2AX immunostaining was performed to determine whether SPO11 expression at the post-mei-

otic stage correlates with pronuclear H2AX phosphorylation. As demonstrated previously

(Mochizuki et al., 2008; Loidl and Mochizuki, 2009; Howard-Till et al., 2013), neither the DSPO11

nor SPO11i crosses expressed gH2AX in the meiotic MIC (Figure 6E). Moreover, none of the

DSPO11 crosses and only 40–70% of the SPO11i crosses showed gH2AX immunostaining in the pro-

nuclei (Figure 6E,F and Figure 6—source data 2). These results suggest that Spo11 plays an addi-

tional role in inducing DNA lesions at the post-meiotic stage, together with Top2G (Figure 5).

Direct evidence for post-meiotic DSB
Since gH2AX formation is an indirect marker of DSBs, we carried out pulsed-field gel electrophoresis

(PFGE) to detect chromosome fragmentation, which is diagnostic of DSBs (Lukaszewicz et al.,

2013). DNA was electrophoresed for 72 hr to separate fragment sizes of 0.01–5.7 Mb. Intact MIC

chromosomes (n = 5,~25.0–35.0 Mb) (Hamilton et al., 2016) do not enter the gel under these condi-

tions, and gel staining showed only the MAC minichromosomes (Figure 7A). The smallest band rep-

resents ribosomal DNA (rDNA; Figure 7A, red arrow) of size ~0.02 Mb (Løvlie et al., 1988), which

was used as the loading control.

To distinguish MIC chromosome fragments from the MAC minichromosomes, MIC DNA was

detected by Southern blotting with a 32P-labeled Tlr sequence, which is specific to the MIC genome

(Wuitschick et al., 2002). On Southern blots of mating cells, four different DNA patterns could be

distinguished (Figure 7B). For control cells at t = 0 hr, no DNA complementary to the Tlr probe

entered the gel, indicating the presence of intact MIC chromosomes. Mating cells at t = 2–4 hr dis-

played a prominent smear between 2.2 and 4.6 Mb (Figure 7B, blue box). This signal represents

meiotic DSBs induced by Spo11, because it was absent in both the DSPO11 and SPO11i crosses but

present in TOP2gi crosses (Figure 7B). At the post-meiotic stage (t = 6–7 hr), a smear of shorter

DNA fragments appeared in all cell lines (Figure 7B, green box). This DNA signal probably origi-

nates from the autophagic degradation of unselected pronuclei (Liu and Yao, 2012). In addition, a

class of somewhat larger fragments was present at t = 6–7 hr in the wild-type and SPO11i crosses,

but absent in the TOP2gi and DSPO11 crosses (Figure 7B, red box). The absence of this subset of

DNA fragments corresponds with the absence of pronuclear gH2AX formation in the TOP2gi and

DSPO11 crosses (Figures 5E and 6E). Hence, these fragments are probably created by PM-DSBs.

Figure 5 continued

took place in the wild-type crosses but was not observed in the TOP2gi crosses. Wild-type crosses underwent progeny nuclear development by 10 hr,

whereas TOP2gi crosses became amicronucleate and did not produce progeny nuclei. MAC-macronucleus; MIC-micronucleus; †-unselected pronuclei;

#-differentiating zygotic nuclei; $-progeny macronuclear anlagen; *-progeny micronuclei; pMAC-degrading parental macronuclei. Time (h) after mixing

starved cells of different mating types is indicated. (D) Percentage of wild-type and TOP2gi cells with progeny nuclei and amicronucleate cells at 10 hr.

Columns and error bars represent the means and standard deviations (p<0.01 as calculated by Tukey HSD test) of four measurements. See also

Figure 5–sourse data 1 for wild-type and TOP2gi crosses data. (E) Post-meiotic gH2AX formation is inhibited in TOP2gi crosses (compare with wild-

type crosses in Figure 1A). Unselected pronuclei (†) assemble in the posterior region of the cytoplasm and are degraded. Scale bar denotes 10 mm. (F)

Percentage of wild-type and TOP2gi post-meiotic cells with gH2AX formation in the pronuclei. Columns and error bars represent means and standard

deviations (p<0.01, as calculated by Tukey’s HSD test) of four measurements. See also Figure 5–sourse data 2 for wild-type and TOP2gi crosses data.

DOI: 10.7554/eLife.26176.009

The following source data is available for figure 5:

Source data 1. Normal development is significantly reduced in TOP2gi crosses.

DOI: 10.7554/eLife.26176.010

Source data 2. Post-meiotic gH2AX formation is significantly reduced in TOP2gi crosses.

DOI: 10.7554/eLife.26176.011
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Figure 6. Spo11 is required for the correct execution of post-meiotic events. (A) Acetic orcein staining of wild-type (top), DSPO11 (middle), and SPO11i

(bottom) crosses. Although DSPO11 crosses display the same post-meiotic phenotype as TOP2gi crosses (cells become amicronucleate and do not

undergo gametogenesis; see Figure 4C), some SPO11i crosses behave in the same way as wild-type crosses by producing normal progeny nuclei via

gametogenic mitosis (black arrowheads). MAC-macronucleus; MIC-micronucleus; †-unselected pronuclei; #-zygotic nuclei being differentiated; $-

Figure 6 continued on next page
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Since autophagy of unselected pronuclei overlaps temporally with post-meiotic transformation of

the selected pronucleus, it is still possible that the DNA smear seen at t = 6–7 in the wild-type and

SPO11i crosses results entirely from DNA degradation in unselected pronuclei. To eliminate

Figure 6 continued

progeny macronuclear anlagen; *-progeny MICs; pMACs-degrading parental macronuclei. (B) Percentage of cells with progeny nuclei and

amicronucleate cells at 10 hr. Columns and error bars represent means and standard deviations (p<0.01 as calculated by Tukey’s HSD test) of four

measurements. See also Figure 6–sourse data 1 for data on wild-type, DSPO11, and SPO11i crosses. (C) RT-PCR quantitation of SPO11 transcription in

wild-type, DSPO11, and SPO11i crosses. HSP70 was the loading control. Time (h) after mixing cells is indicated. (D) Western blotting of C-terminally

FZZ-tagged Spo11 in wild-type and SPO11i crosses shows the impact of RNAi on SPO11-FZZ expression during the pre-zygotic period of mating. b-

actin was the loading control. Time (h) after mixing cells is indicated. (E) SPO11 is involved in both meiotic and post-meiotic gH2AX formation. Although

gH2AX foci are not seen at the meiotic or post-meiotic stages in DSPO11 crosses, post-meiotic gH2AX is formed normally in a subset of SPO11i crosses

in which Spo11 is expressed at the post-meiotic stage (see Figure 5D). Red arrowheads indicate the selected pronuclei in gametogenic mitosis from

which gH2AX has been lost. Scale bar denotes 10 mm. (F) Percentage of post-meiotic cells with gH2AX in the pronuclei. Columns and error bars

represent means and standard deviations (p<0.01 as calculated by Tukey’s HSD test) of four measurements. See also Figure 6—source data 2 for data

on wild-type, DSPO11, and SPO11i crosses.

DOI: 10.7554/eLife.26176.012

The following source data is available for figure 6:

Source data 1. Normal development is significantly reduced in DSPO11 and SPO11i crosses.

DOI: 10.7554/eLife.26176.013

Source data 2. Post-meiotic gH2AX formation is significantly reduced in DSPO11 and SPO11i crosses.

DOI: 10.7554/eLife.26176.014
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background autophagic DNA fragments, we created somatic knockout strains for the autophagy-

related 8 isoform 2 gene (ATG8-2), which encodes a central component of the Tetrahymena auto-

phagosome (Figure 8A; Liu and Yao, 2012), using the co-Deletion technique (described in

Hayashi and Mochizuki, 2015). Diagnostic PCR for the DATG8-2 strains of different mating types

showed that ATG8-2 genomic loci were completely deleted (Figure 8B). The DATG8-2 crosses

underwent mating, including normal meiosis and gH2AX formation in the pronuclei (Figure 8C), but

were defective in eliminating unselected pronuclei; therefore, post-meiotic cells contained extra

nuclei (Figure 8D). PFGE detection of DNA fragments revealed normal meiotic DSBs plus a promi-

nent post-meiotic (6–7 hr) DSB signal, which is unlikely to result from autophagy (Figure 8E). Next,

we tested TOP2gi::DATG8-2, DSPO11::DATG8-2, and SPO11i::DATG8-2 double mutants in the

same assay. In the TOP2gi::DATG8-2 mutant, meiotic DSB-dependent fragmentation was normal but

post-meiotic fragmentation was virtually absent. In the DSPO11::DATG8-2 mutant, meiotic DSB-

dependent fragmentation was absent and post-meiotic fragmentation was strongly reduced. Finally,

in the SPO11i::DATG8-2 mutant, the meiotic signal was absent and the post-meiotic signal was

partly retained (Figure 8E). The post-meiotic signal in this mutant was completely absent in a triple

mutant (TOP2gi::SPO11i::DATG8-2; Figure 8E). These results show that programmed PM-DSBs are

present in Tetrahymena, suggesting that PM-DSB formation requires both Top2g and Spo11.

The selected pronucleus undergoes chromatin remodeling
DNA repair factors DNA-PKcs and Rad51 were expressed (Figure 3—figure supplements 1 and

2), and gH2AX immunoreactivity was lost in the selected pronucleus prior to gametogenic mitosis

(Figure 3C,D), suggesting that DNA repair had been accomplished. However, since gH2AX dephos-

phorylation is only an indirect mark of repair (Chowdhury et al., 2005; Keogh et al., 2006), we

looked for additional evidence that repair occurs in the selected pronucleus. Canonical histones

around DNA lesions are often removed by chromatin remodelers to allow access by the repair

machinery (Altaf et al., 2007; Osley et al., 2007). Newly synthesized histone H3 acetylated at lysine

56 (H3K56ac) is then deposited onto the repaired DNA (Chen et al., 2008; Shi and Oberdoerffer,

2012). Therefore, H3K56ac immunostaining was performed in mating wild-type cells to confirm that

this process occurs in Tetrahymena. Consistent with their euchromatic state, wild-type MACs were

positive for H3K56ac staining (Figure 9A). In contrast, owing to their heterochromatic state, MICs

did not undergo acetylation in either vegetative or meiotic cells (Figure 9A) (Garg et al., 2013).

However, we found that the selected pronucleus became H3K56 acetylated as it started to undergo

gametogenic mitosis, while the three unselected pronuclei did not become acetylated and were

degraded (Figure 9A). Double immunostaining for H3K56ac and gH2AX confirmed that acetylation

and dephosphorylation occurred in the same pronucleus (Figure 9B), indicating that the selected

pronucleus specifically undergoes DNA repair and histone H3 transfer. In the DATG8-2 crosses,

H3K56 acetylation and H2AX dephosphorylation occurred in the selected pronucleus just as in the

wild type (Figure 9C). The remaining unselected pronuclei also showed a decline in gH2AX staining

after post-meiotic mitosis; however, neither H3K56 acetylation nor gametogenic mitosis occurred in

these nuclei (Figure 9C). These results indicate that DNA repair and histone H3 modification are not

merely the consequence of a nucleus escaping autophagy.

H3K56 acetylation upon DNA repair is catalyzed by the histone acetyltransferase Rtt109

(Chen et al., 2008), and the histone chaperone anti-silencing factor 1 (Asf1) is essential for Rtt109

stimulation and H3K56ac assembly at repaired DNA lesions (Recht et al., 2006; Tsubota et al.,

2007; Berndsen et al., 2008; Shi and Oberdoerffer, 2012). Tetrahymena Asf1 is expressed in both

the MAC and MIC during vegetative growth (Garg et al., 2013). We used a GFP-tagged Asf1-

expressing strain to investigate changes in protein localization during mating. Asf1 was retained in

the elongating MIC at meiotic prophase but lost during anaphase I and II (Figure 10A). After com-

pletion of meiosis, Asf1 reappeared only in the pronucleus selected to undergo gametogenic mitosis

(Figure 10A). Double immunostaining demonstrated Asf1-GFP and H3K56ac colocalization in the

selected pronucleus (Figure 10B), strongly suggesting that histone chaperone-mediated nucleo-

some assembly precedes gametogenic mitosis. Importantly, H3K56 acetylation potentially mediated

by Asf1 was only induced in the selected pronucleus in response to PM-DSBs, as neither Asf1-GFP

nor H3K56ac was observed when PM-DSBs were suppressed by TOP2g RNAi or SPO11 deletion

(Figure 10B,C and Figure 10—source data 1).
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primer set is indicated by arrows. (B) Only fragments from the deleted ATG8-2 genomic locus were amplified in DATG8-2 strains of two different mating

types, while only fragments from the intact ATG8-2 genomic locus were amplified from the wild-type strain. (C) Post-meiotic gH2AX formation was not

affected in the DATG8-2 crosses: gametogenic mitosis (red arrowheads) took place as in wild-type crosses (see Figure 2C/c/C0 ). Scale bar denotes 10

mm. (D) Acetic orcein staining of the DATG8-2 crosses shows that unselected pronuclei (†) are retained beyond gametogenic mitosis (black arrowheads)

owing to attenuated autophagy. #-differentiating zygotic nuclei; $-progeny macronuclear anlagen; *-progeny MICs; pMACs-degrading parental

macronuclei. (E) Southern hybridization of DATG8-2, TOP2gi::DATG8-2, DSPO11::DATG8-2, SPO11i::DATG8-2, and TOP2gi::SPO11i::DATG8-2 strains.

The SPO11i::DATG8-2 strain (in which both meiotic and autophagic DSBs are eliminated) retains only the signal resulting from PM-DSBs. rDNA was the

loading control. Time (h) after mixing cells is indicated. § indicates a SPO11i::DATG8-2 7 hr sample as the as the positive control for the DATG8-2::

TOP2gi::SPO11i blot. See also Figure 8—figure supplement 1.

DOI: 10.7554/eLife.26176.016

The following figure supplement is available for figure 8:

Figure supplement 1. 5-Ethynyl-20-deoxyuridine (EdU) incorporation assay.

DOI: 10.7554/eLife.26176.017
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Figure 9. Histone H3 acetylation at lysine 56 (H3K56ac) is concomitant with H2AX dephosphorylation in the selected pronucleus. (A) H3K56ac in the

pre-zygotic period in the wild-type. The MAC was always H3K56ac positive, while the MIC only became H3K56ac positive as the pronucleus underwent

gametogenic mitosis (yellow arrowheads). MAC-macronucleus; MIC-micronucleus, †-unselected pronuclei. (B) H3K56ac formation and H2AX

dephosphorylation are coincident at the post-meiotic stage. The selected pronuclei undergoing gametogenic mitosis (yellow arrowheads) are H3K56ac-

positive but gH2AX-negative. (C) H3K56 acetylation does not occur in persisting unselected nuclei in the DATG8-2 mutant, whereas gH2AX is reduced

in some of the persistent unselected pronuclei (yellow †) in the post-zygotic period. In the selected pronucleus, H3K56ac formation and H2AX

dephosphorylation are normal (yellow arrowheads). White †-unselected pronuclei with persistent gH2AX; #-differentiating zygotic nuclei. Scale bars

denote 10 mm. See also Figure 9—figure supplement 1.

DOI: 10.7554/eLife.26176.018

The following figure supplement is available for figure 9:

Figure supplement 1. Histone H3 acetylation at sites other than H3K56 is coincident with H2AX dephosphorylation in the selected pronucleus.

DOI: 10.7554/eLife.26176.019
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Figure 10. Histone chaperone Asf1 is specifically expressed in the selected pronucleus. (A) Subcellular localization of C-terminally GFP-tagged Asf1 in

the pre-zygotic mating stage in wild-type cells. Asf1 disappears from the MIC after meiotic prophase and reappears in the selected pronuclei

undergoing gametogenic mitosis (yellow arrowheads). MAC-macronucleus; MIC-micronucleus; †-unselected pronuclei. (B) Asf1 and H3K56ac co-

expression in the selected pronuclei is PM-DSB dependent. In wild-type crosses (top), selected pronuclei undergoing gametogenic mitosis (yellow

arrowheads) are positive for both ASF1-GFP and H3K56ac. In contrast, both signals are absent in the TOP2gi (middle) and DSPO11 crosses (bottom),

which do not form PM-DSBs (see Figure 6B and Figure 7E). Scale bars denote 10 mm. (C) Percentage of post-meiotic cells with H3K56ac and Asf1-GFP

in the selected pronucleus. Columns and error bars represent the means and standard deviations (p<0.01 as calculated by Tukey’s HSD test) of four

measurements. See also Figure 10—source data 1 for wild-type, TOP2gi, and DSPO11 crosses.

DOI: 10.7554/eLife.26176.020

Figure 10 continued on next page
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Discussion

PM-DSBs are deliberately induced
DSBs caused by external and internal agents are dangerous lesions, so it is important to understand

why they should be deliberately induced. In fact, self-inflicted DSBs are essential for a wide range of

processes, such as TOP2-dependent DNA disentangling (Champoux, 2001), V(D)J recombination

(Stavnezer et al., 2008), chromatin diminution (Wang and Davis, 2014), Saccharomyces cerevisiae

mating-type switching (Haber, 2012), antigenic variation in Trypanosoma (McCulloch et al., 2015),

and, most prominently, meiosis (Keeney et al., 1997). They may also be essential for chromatin

remodeling.

In metazoans, the products of male meiosis undergo chromatin remodeling so that genetic mate-

rial can be densely packed into small sperm (Miller et al., 2010; Rathke et al., 2014). Accordingly,

it has been claimed that PM-DSBs are neccessary to support chromatin remodeling during spermio-

genesis (Marcon and Boissonneault, 2004; Leduc et al., 2008; Rathke et al., 2014). After fertiliza-

tion, male chromatin unpacking and epigenetic reprogramming (McLay and Clarke, 2003;

Seisenberger et al., 2013) are also accompanied by DNA repair (Schuermann et al., 2016). Little is

known, however, about post-meiotic chromatin changes in other contexts. Here, we show that PM-

DSBs are induced in the pronuclei of Tetrahymena and that the Top2-related proteins, Top2G and

Spo11, are essential for inducing these DSBs. Our data suggest that PM-DSBs play an indispensable

role in producing gametic nuclei by converting their chromatin from a heterochromatic to a euchro-

matic state.

Top2b, which is exclusively expressed in elongating spermatids, is a candidate for inducing tran-

sient DNA lesions during animal spermiogenesis (Leduc et al., 2008). In the green algae Chara vul-

garis, the topoisomerase inhibitor etoposide interferes with post-meiotic gH2AX formation and

spermatogenesis (Agnieszka and Wojtczak, 2014). This observation was interpreted as demonstrat-

ing a need for transient Top2-induced DSBs to exchange nucleoproteins. By depleting Top2G (the

Tetrahymena ortholog of mammalian Top2b) by RNAi (Figure 4A,B), we provide the first direct evi-

dence that PM-DSB formation is Top2 dependent (Figure 8E). Moreover, we demonstrate that

Spo11 is expressed after meiosis (Figure 6C,D) and is required for inducing PM-DSBs (Figure 8E).

In principle, either Top2g or Spo11 should be able to induce DSBs; it is therefore surprising that

both proteins are required for PM-DSB formation. It is unclear whether these two proteins cooperate

within a complex and which of them is directly involved in DNA cleavage. In reciprocal co-immuno-

precipitation experiments with Spo11-FZZ as the bait and Top2g-GFP as the prey (and vice versa),

we could not confirm that these two proteins interact.

Possible PM-DSB repair mechanisms
As spermatids are haploid G1 cells, in which recombinational repair is impossible, NHEJ was consid-

ered the only possible repair pathway for putative mouse PM-DSBs (Leduc et al., 2008). The discov-

ery of Ku70 and Mre11, both core NHEJ factors (Chiruvella et al., 2013), in the extracts of mouse

and grasshopper spermatids (Goedecke et al., 1999; Hamer et al., 2003; Cabrero et al., 2007)

supports this hypothesis. Since NHEJ is inherently error prone, PM-DSBs are considered substrates

for male-driven de novo mutations (Grégoire et al., 2013).

In contrast to other organisms, Tetrahymena pronuclei are in the G2 phase of the cell cycle

(Cole and Sugai, 2012). 5-Ethynyl-20-deoxyuridine (EdU) incorporation indicated that DNA synthesis

is not impeded in either the TOP2gi or DSPO11 crosses (Figure 8—figure supplement 1), strongly

suggesting that PM-DSBs are formed after DNA synthesis. Therefore, it is possible that Tetrahymena

repairs PM-DSBs by recombinational repair using the sister chromatid as the template. Indeed, we

found the recombination protein Rad51 in the selected pronucleus (Figure 3—figure supplement

2). However, its function in PM-DSB repair is difficult to confirm experimentally because its depletion

Figure 10 continued

The following source data is available for figure 10:

Source data 1. Appearance of H3K56ac and Asf1-GFP is significantly reduced in TOP2gi and DSPO11 crosses.

DOI: 10.7554/eLife.26176.021
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arrests meiotic prophase (Howard-Till et al., 2011). On the other hand, we also found DNA-PKcs in

the selected pronucleus (Figure 3—figure supplement 1), suggesting that NHEJ may also be

involved in the repair of Tetrahymena PM-DSBs. Based on these data, it is unclear whether Tetrahy-

mena PM-DSBs are repaired by NHEJ, sister-dependent recombinational repair, or both of these

pathways.

Post-meiotic DSBs trigger chromatin remodeling
In Tetrahymena, Asf1 appears in the selected pronucleus in a DSB-dependent manner (Figure 10B).

This conserved histone H3 chaperone is involved in histone H3 K56 acetylation and H3K56ac transfer

onto nascent DNA, which leads to euchromatin formation (Chen et al., 2008). In humans, disassem-

bly of histone H3 during DNA repair is a local event, and NHEJ and recombinational repair remove

histones within regions of about 0.75 kb and 7 kb from the break sites, respectively

(Goldstein et al., 2013; Li and Tyler, 2016). PFGE showed that in Tetrahymena the size of PM-DSB-

dependent DNA fragments ranges from ~1.0 to 4.6 Mb (Figure 8E). If we assume an average frag-

ment size of 2.2 Mb, we estimate that ~140 DSBs are distributed across the two 157 Mb genomes of

haploid pronuclei in G2. If the influence of PM-DSB on chromatin remodeling is has a similar range in

Tetrahymena as in humans, then histone H3 should be removed from only ~1 Mb of the entire

genome. However, it is possible that PM-DSBs trigger global euchromatin formation via as yet

unidentified chromatin remodelers. Alternatively, local histone replacement may be sufficient to pro-

ceed to gametogenic mitosis.

Garg et al. (2013) found that Tetrahymena Asf1 interacts with an importin b isoform and another

protein similar to human nuclear autoantigenic sperm protein (NASP), both of which are involved in

histone transport pathways (Jäkel et al., 1999; Mühlhäusser et al., 2001; Bowman et al., 2016).

Garg et al. (2013) identified another Asf1-interacting partner protein containing a BRCA1 C-termi-

nal (BRCT) domain, which is found predominantly in proteins involved in cell cycle checkpoint func-

tions that respond to DNA damage (Bork et al., 1997; Yu and Chen, 2004). Our experiments

showed that the selected pronucleus also undergoes acetylation at sites other than at H3K56; for

example, H3K18ac and H3K27ac (Figure 9—figure supplement 1) are strongly enriched in euchro-

matin (Wang et al., 2008; Tie et al., 2009). Further, a protein containing a high mobility group

(HMG) box domain, which decreases the compactness of the chromatin fiber (Agresti and Bianchi,

2003; Catez et al., 2004), is abundantly expressed in the selected pronucleus (Xu et al., 2013).

Together, these findings suggest that repair of programmed PM-DSBs in the haploid germline

allows changes in the epigenetic landscape required to produce mature gametes (Figure 11).

In mammalian post-meiotic development, the male genome undergoes several waves of epige-

netic modification. The first is chromatin remodeling, which facilitates sperm packaging by substitut-

ing the histone-based nucleosome structure with a protamine-based structure (Rathke et al., 2014).

This process is believed to be DSB dependent (Marcon and Boissonneault, 2004; Rathke et al.,

2007, 2014). The second is histone replacement of protamines upon fertilization (Rousseaux et al.,

2008). The third is erasure of parental epigenome marks in the zygote. During this process, methyl-

ated cytosines are replaced by unmodified cytosines via base excision repair (BER) (Wu and Zhang,

2014). Interestingly, when BER is compromised, gH2AX foci are formed, suggesting that DSBs are

induced, which are repaired after G1 (Wossidlo et al., 2010; Ladstätter and Tachibana-Konwalski,

2016). Thus, while mammals require karyogamy to induce the epigenetic modifications necessary for

embryonic developmental programming (Zhou and Dean, 2015), Tetrahymena gametic nuclei can

differentiate into MACs and MICs without karyogamy (Fukuda et al., 2015). Therefore, chromatin

remodeling in Tetrahymena pronuclei might resemble zygote reprogramming rather than mamma-

lian male pronuclear chromatin remodeling, in that the differentiated germline pronucleus is re-set

to a dedifferentiated progenitor of new somatic and germline nuclei. Since dedifferentiated human

cells such as cancer and embryonic stem cells display more H3K56ac compared with differentiated

somatic cells (Das et al., 2009), it is possible that enhanced histone acetylation in Tetrahymena simi-

larly promotes nuclear dedifferentiation via a similar mechanism.
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Materials and methods

Culture methods and the induction of cell mating (conjugation)
Wild-type Tetrahymena strains CU428.2 (mating type VII, RRID:TSC_SD00178), B2086 (mating type

II, RRID:TSC_SD01627), and SB210 (mating type VI, RRID:TSC_SD00703) were obtained from the

Tetrahymena Stock Center, Cornell University (https://tetrahymena.vet.cornell.edu/). DSPO11

(Mochizuki et al., 2008), SPO11i (Howard-Till et al., 2013), and Asf1-GFP (Garg et al., 2013)

strains were constructed previously. Cells were grown at 30˚C in SPP medium containing 1% prote-

ose peptone (Becton Dickinson, Sparks, MD, USA), 0.1% yeast extract (Becton Dickinson), 0.2% glu-

cose (Sigma-Aldrich, St. Louis, MO), and 0.003% EDTA-Fe (Sigma-Aldrich). To make them

competent for mating, cells at mid-log phase (approximately 106/ml) were washed with 10 mM Tris-

HCl (pH 7.4), resuspended in 10 mM Tris-HCl (pH 7.4), and starved at 30˚C for ~18 hr to starve. To

induce mating, equal numbers of cells of two different mating types were mixed together and incu-

bated at 30˚C.

Figure 11. Model of post-meiotic events in Tetrahymena. After completion of meiosis, PM-DSBs induced in pronuclei haploid chromosomes by Top2G

and Spo11 trigger H2AX phosphorylation. H2AX dephosphorylation, probably indicating DNA repair, takes place together with the Asf1 localization

and H3K56ac formation in the pronucleus that is selected for gametogenic mitosis via an unknown mechanism. In the selected pronucleus, the

chromatin structure changes from heterochromatic to euchromatic prior to gametogenic mitosis. The unselected pronuclei (†) retaining gH2AX are

eventually eliminated via autophagy.

DOI: 10.7554/eLife.26176.022
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Indirect immunofluorescence
Cells were fixed with 0.34% Schaudinn’s fixative (2:1 ration of saturated HgCl2 [Sigma-Aldrich]: etha-

nol) and membrane-permeabilized with cold methanol on ice for 10 min. Cells were then spread

onto slides coated with poly-l-lysine (Sigma-Aldrich) and air dried. After rehydration in PBS (4.3 mM

Na2HPO4, 1.47 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4), cells were incubated for 2 hr at

room temperature with primary antibody: anti-gH2AX (1:500; BioLegend, San Diego, CA, RRID:AB_

315794), anti-GFP (1:500; mouse monoclonal; Sigma-Aldrich, RRID:AB_390913), or anti-H3K56

(1:500; rabbit polyclonal; Active Motif, Carlsbad, CA, RRID:AB_2661786) antibody. After washing

with PBS, cells were incubated with FITC-labeled goat anti-mouse (1:500; Merck Millipore, Temecula,

CA, RRID:AB_92634) or Rhodamine-labeled goat anti-rabbit (1:2000; Merck Millipore, RRID:AB_

90296) secondary antibody for 1 hr at room temperature in the dark. After washing with PBS, cells

were stained with 1 mg/ml 40,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) and observed under

fluorescence microscopy.

Western blotting
Cells were fixed with 10% (w/v) trichloroacetic acid (TCA; Sigma-Aldrich) to prevent proteolysis and

incubated on ice for 30 min. After removal of TCA by centrifugation at 9000 g for 1 min, cell pellets

were lysed in PAGE sample buffer (2% SDS ([Sigma-Aldrich], 2.5% 2-mercaptoethanol [Sigma-

Aldrich], 10% glycerol [Sigma-Aldrich], and 50 mM Tris-HCl, pH 6.8) and boiled at 98˚C for 2 min; 10

mg total protein was loaded into each lane of a 12% polyacrylamide-SDS gel, separated by SDS-

PAGE, and transferred onto polyvinylidene fluoride membrane (Merck Millipore). Membranes were

washed in blocking buffer (5% dry skimmed milk powder [Sigma-Aldrich] in PBS) and incubated over-

night at 4˚C with anti-gH2AX (1:1000), anti-FLAG antibody (1:5000; Sigma-Aldrich, RRID:AB_

259529), or anti-b-actin antibody (1:1000; GenScript, Piscataway, NJ, RRID:AB_914102). After wash-

ing in PBS-T (0.05% Tween 20 [Sigma-Aldrich] in PBS), membranes were incubated in PBS-T contain-

ing horseradish peroxidase-conjugated goat anti-mouse IgG antibody (1:5000; Thermo Fisher

Scientific, Waltham, MA, RRID:AB_228307) for 1 hr at room temperature. Membranes were washed

with PBS-T and developed using Clarity Western ECL (Bio-Rad, Hercules, CA).

Acetic orcein staining
Cell suspension (30 ml) was pipetted onto a glass slide and air dried. The glass slide was then fixed in

3:1 methanol: acetic acid for 5 min, incubated in 5 N HCl for 5 min to degrade RNA, and then rinsed

in distilled water for 10 s. Acetic orcein solution (5% orcein powder [Sigma-Aldrich] dissolved in

4.5:5.5 acetic acid: distilled water) was applied to the sample and stained nuclei were observed

under light microscopy.

Phylogenetic analysis
Tetrahymena orthologs of mouse Top2a and Top2b proteins were identified by their gene descrip-

tions in the Tetrahymena genome database (http://www.ciliate.org). Orthologous protein sequences

in other organisms were obtained from GenBank or dedicated databases for each species by per-

forming BLASTp searches against mouse Top2a and Top2b. Complete amino acid sequences were

used for multiple alignments with Clustal Omega (ver. 1.1.0) (Sievers et al., 2011). All gap regions

appearing after alignment were eliminated from the sequences, and a phylogenetic tree was con-

structed for the resulting 996 amino acids Treefinder (Jobb et al., 2004) equipped with Aminosan

software (Tanabe, 2011), which provided LG+I+G+F as the best evolutionary model for this data

set. The phylogenetic tree was finally constructed using the maximum likelihood method in RAxML

(Ver. 7.3.0) (Stamatakis, 2006). Confidence in the phylogeny was estimated using the bootstrap

method in 100 replications.

Construction of C-terminal epitope-tagged vectors
Approximately 1 kb of the ORFs (50) and downstream UTRs (30) of the TOP2s, TOP2g, and SPO11

genomic loci were amplified from SB210 genomic DNA using PrimeSTAR Max DNA Polymerase

(Takara, Kusatsu, Japan) and the following primers: TOP2s 50 forward – AGTCGAGCTCACGCTAAG-

GAGCAGACCTCG, reverse – AGTCGGATCCGAAATAGCATTCATCCGATGATTC; TOP2s 30 forward

– AGTCCTCGAGCATGCATTCATTCAATCAATCAATC, reverse – AGTCGGTACCGGTCTTGGCAA
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TTAACTCTCTCAC; TOP2g 50 forward – AGTCGAGCTCCAGGTAAAGGGTTTACATAGAATG,

reverse – AGTCGGATCCATCATCCTCATCCTCATCAAATAA; TOP2g 30 forward – AGTCCTCGAGA-

CAGTGATGTCAGAATGTTAAATC, reverse – AGTCGGTACCCTTAAAGGCAGAAAATTAAGAGGT;

SPO11 50 forward – AGTCGAGCTCGATTACTGGGAAAGGGTA, reverse – AGTCGGATCCTAAATA

TTTGTTTGATTAGATTTTA; and SPO11 30 forward – AGTCCTCGAGTAATTTCTTATTTTTC

TTTTTTGCT, reverse – AGTCGGTACCAATTTCTTCCATACAAAAAGCATCA). The 50 ORF sequences

do not contain a stop codon. Amplified PCR products were purified with a PCR Clean-up kit (Prom-

ega, Madison, WI), then 50 sequences were digested with SacI plus BamHI (New England BioLabs,

Ipswich, MA) and 30 sequences with XhoI plus KpnI (New England BioLabs). These fragments were

sequentially integrated into the backbone vector pEGFP-NEO4 or pFZZ-NEO4 (Kataoka et al.,

2010) using T4 DNA ligase (New England BioLabs). The resulting vectors (pTOP2S-EGFP-NEO4,

pTOP2G-EGFP-NEO4, and pSPO11-FZZ-NEO4) were linearized with SacI plus KpnI before biolistic

transformation into Tetrahymena (Cassidy-Hanley et al., 1997).

TOP2g RNAi vector construction and gene knockdown
The backbone plasmid pBNMB1-EGFP (a gift from Dr Kazufumi Mochizuki, Institute of Human

Genetics, Montpellier, France) contains the MTT1 cadmium-inducible promoter, a NEO5 drug-resis-

tant marker, and the 50 and 30 portions of the BTU1 genomic locus for homologous recombination.

Target sequences used in hairpin constructs (approximately 700 b of the TOP2g ORF) were ampli-

fied from SB210 genomic DNA with PrimeSTAR Max DNA Polymerase (TaKaRa) using the following

primers: TOP2gi 50 forward – AGTCGTTTAAACCAGGTAAAGGGTTTACATAGAATGG, reverse – AG

TCCCCGGGATTGCTCTTAGAAGGCATCATAACA; and TOP2gi 30 forward – AGTCCTCGAGATTGC

TCTTAGAAGGCATCATAACA, reverse – AGTCGGGCCCCAGGTAAAGGGTTTACATAGAATGG.

Amplified forward and reverse target fragments were cloned into the PmeI-XmaI and XhoI-ApaI

sites, respectively, of the pREC8hpCYH vector (a gift from Dr Rachel Howard-Till, University of

Vienna, Austria) (Howard-Till et al., 2013) to create the hairpin cassette. The GFP cassette of the

pBNMB1-EGFP plasmid was removed and replaced with the hairpin cassette digested with PmeI

plus ApaI (New England BioLabs). The resulting vector (pTOP2Gi-NEO5) was linearized with SacI-

KpnI before biolistic transformation into Tetrahymena. RNAi was induced in cells carrying the hairpin

construct by adding 0.075 mg/ml CdCl2 (Sigma-Aldrich) to promote dsRNA expression from the

MTT1 promoter.

ATG8-2 gene disruption
Approximately 0.6 kb of the ATG8-2 ORF was amplified from SB210 genomic DNA using PrimeSTAR

Max DNA Polymerase (TaKaRa) and the following primers: ATG8-2 coDel forward – CTTTATTGTTA

TCATCTTATGACCGCGGACGCTCAAAATTATAAACCCTTC, reverse – CTCATCAAGTTGTAATGC

TAAAATGCGCAAACACTACTGCATTTTCGCTAA. The amplified fragment was integrated into the

backbone vector pMcoDel (Hayashi and Mochizuki, 2015) using Gibson Assembly Master Mix (New

England BioLabs). The resulting vector (pMcoDel-ATG8-2) was used for biolistic transformation with-

out linearization. Deletion of the target locus from the MAC was confirmed using a diagnostic primer

set: Check ATG8-2 forward – GAATAGAAAGTGCATCTCCTGATC, reverse – CTGGCAAACAA-

GAAGCACATTG.

Replacement of paromomycin resistance markers with a puromycin
resistant marker
To transfect the SPO11 disruption (pDSPO11-NEO4; Mochizuki et al., 2008), pTOP2Gi-NEO5, and

C-terminally GFP-tagged Asf1 expression (pASF1-GFP-NEO2; Garg et al., 2013) vectors into paro-

momycin-resistant mutant strains, we replaced the NEO-based drug resistance markers in the vec-

tors with a puromycin resistance marker (PAC; Iwamoto et al., 2014). NEO cassettes were removed

from the vectors by digesting with SalI plus XmaI (New England BioLabs). The pBP2MB1-linker (a

gift from Dr. Kensuke Kataoka, National Institute for Basic Biology, Japan) carries PAC under the

control of the MTT2 copper-inducible promoter (Boldrin et al., 2008) between SalI and XmaI sites.

The MTT2-PAC cassette was excised from the vector and integrated into backbone vectors using T4

DNA ligase (New England BioLabs). The resulting vectors (pDSPO11-PAC, pTOP2Gi-PAC, and
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pASF1-GFP-PAC) were linearized with SacI plus KpnI before biolistic transformation into

Tetrahymena.

RT-PCR analysis
Total RNA was extracted from approximately 1 � 106 cells using RNAiso Blood (TaKaRa) and 0.5 mg

was reverse transcribed using ProtoScript II Reverse Transcriptase (New England BioLabs). An

SPO11-specific amplicon of ~700 bp was produced using the following primers: RT-SPO11 forward –

TGTTTAAATATTATTGCTTCAGC, reverse – ATAAACTCAGCATTTTCAATCC. The loading control

was an HSP70-specific PCR product of ~500 bp, produced using the following primers: RT-HSP70

forward – ATCTCTTGGGTAAGTTCAACC, reverse – TTGAAGACTTCTTCCAAAG.

Pulsed-field gel electrophoresis
DNA plugs were made from 107 cells (~10 ml cultured cells). A centrifuged cell pellet (100 ml) was

resuspended in 250 ml 1% Low-Melt Agarose (Bio-Rad) at 42˚C, and 80 ml was quickly loaded into

each plug mold (Bio-Rad) on ice. After the agarose had solidified, plugs were transferred to a tube

containing 400 ml LET buffer (0.5 M Na2EDTA, 10 mM Tris-HCl, pH7.4) and kept on ice until samples

had been collected for all time points. NDC solution (400 ml; LET buffer with 2% N-lauroylsarcosine

[Sigma-Aldrich] containing 4 mg/ml proteinase K [Panreac AppliChem, Darmstadt, Germany]) was

then added and the tubes were incubated overnight at 50˚C. Plugs were then washed three times

for 30 min with 1 M Tris-HCl (pH7.4) followed by three times for 30 min with TE buffer (1 mM

Na2EDTA, 10 mM Tris-HCl, pH7.4). PFGE was performed using a contour-clamped homogeneous

electric field apparatus (CHEF-DR III System, Bio-Rad). Samples were separated at 2 V, 14˚C in

0.85% Certified Megabase agarose (Bio-Rad) with 1� TAE buffer (40 mM Tris, 40 mM acetic acid, 1

mM EDTA) for 74 hr: at a 96˚ angle for 24 hr with 1200 s pulses, a 100˚ angle for 24 hr with 1500 s

pulses, and a 106˚ angle for 24 hr with 1800 s pulses. The CHEF DNA size markers (Schizosaccharo-

myces pombe and S. cerevisiae chromosomes, Bio-Rad) and Quick-Load 1 Kb Extend DNA Ladder

(New England BioLabs) were used to size the DNA fragments. The gel was stained for 30 min in

10,000-fold diluted GelRed Nucleic Acid Gel Stain (Biotium, Fremont, CA) in distilled water and

destained for 30 min in distilled water.

Southern blotting and hybridization
DNA was transferred from pulsed-field gels onto Hybond N+ membrane (GE Healthcare, Little Chal-

font, UK) with 20� SSPE (3M NaCl, 20 mM EDTA, 154.8 mM Na2HPO4, 45.2 mM H6NaO6P, pH 7.4).

The pMBR2 vector (NCBI: AF451863) carrying an 8.5 Kb fragment of the conserved internal region

of Tlr elements (Wuitschick et al., 2002) was a gift from Dr Kathleen Karrer (Marquette University,

USA). The Tlr sequence was excised from the vector with BamHI plus PstI (New England BioLabs)

digestion, gel isolated, radioactively labeled by random priming using 32P-dATP (Hartmann Analytic,

Braunschweig, Germany), and hybridized to germline DNA on the membrane. The signal was

detected using Imaging Screen K (Bio-Rad) and scanned with a Typhoon 9200 image analyzer (GE

Healthcare).

Acknowledgements
We thank Kazufumi Mochizuki, Kensuke Kataoka, and Rachel Howard-Till for providing transforma-

tion vectors optimized for Tetrahymena; Kathleen Karrer for providing the pMBR2 vector; and Joel S

Shore and Anura Shodhan for their technical help with PFGE. We would like to acknowledge

Masaaki Iwamoto, Miao Tian, and Ali Emine Ibriam for their support. The research was funded by a

Mahlke-Obermann Stiftung grant and the European Union’s Seventh Framework Programme for

research, technological development and demonstration (grant no. 609431) to TA; Grant-in-Aid

funding from the Ministry of Education, Science, Sport and Culture (KAKENHI, 15K18475) to YF;

grants from the Natural Sciences and Engineering Research Council of Canada (539509) and the

Canadian Institutes for Health Research (MOP13347) to REP; and an Austrian Science Fund grant

(P27313-B20) to JL.

Akematsu et al. eLife 2017;6:e26176. DOI: 10.7554/eLife.26176 21 of 26

Research article Cell Biology Genes and Chromosomes

http://dx.doi.org/10.7554/eLife.26176


Additional information

Funding

Funder Grant reference number Author

Seventh Framework Pro-
gramme

609431 Takahiko Akematsu

Japan Society for the Promo-
tion of Science

15K18475 Yasuhiro Fukuda

Canadian Institutes of Health
Research

MOP13347 Ronald E Pearlman

Austrian Science Fund P27313-B20 Josef Loidl

Natural Sciences and Engi-
neering Research Council of
Canada

539509 Ronald E Pearlman

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

TA, Conceptualization, Data curation, Formal analysis, Methodology, Writing—original draft; YF,

Data curation, Formal analysis, Methodology; JG, Resources, Formal analysis; JSF, Resources, Formal

analysis, Writing—review and editing; REP, Supervision, Writing—review and editing; JL, Resources,

Supervision, Methodology, Writing—review and editing

Author ORCIDs

Takahiko Akematsu, http://orcid.org/0000-0001-9396-0243

Additional files

Major datasets

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Griswold lab/Center
for Reproductive
Biology

2006 Microarray expression from
isolated germ cell types

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE2736

Publicly available at
the NCBI Gene
Expression Omnibus
(accession no:
GSE2736)

References
Agnieszka W, Wojtczak A. 2014. Etoposide interferes with the process of chromatin condensation during alga
Chara vulgaris spermiogenesis. Micron 65:45–50. doi: 10.1016/j.micron.2014.03.015, PMID: 25041830

Agresti A, Bianchi ME. 2003. HMGB proteins and gene expression. Current Opinion in Genetics & Development
13:170–178. doi: 10.1016/S0959-437X(03)00023-6, PMID: 12672494

Akematsu T, Pearlman RE, Endoh H. 2010. Gigantic macroautophagy in programmed nuclear death of
Tetrahymena thermophila. Autophagy 6:901–911. doi: 10.4161/auto.6.7.13287, PMID: 20798592

Akematsu T, Kobayashi T, Osada E, Fukuda Y, Endoh H, Pearlman RE. 2012. Programmed nuclear death and its
relation to apoptosis and autophagy during sexual reproduction in Tetrahymena thermophila. Jpn J Protozool
45:1–12. doi: 10.18980/jjprotozool.45.1-2_1

Akematsu T, Fukuda Y, Attiq R, Pearlman RE. 2014. Role of class III phosphatidylinositol 3-kinase during
programmed nuclear death of Tetrahymena thermophila. Autophagy 10:209–225. doi: 10.4161/auto.26929,
PMID: 24280724
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