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Abstract: Mukaiyama aldol, Mannich, and Michael reactions are arguably amongst the most impor-
tant C–C bond formation processes and enable access to highly relevant building blocks of various
natural products. Their vinylogous extensions display equally high potential in the formation of
important key intermediates featuring even higher functionalization possibilities through an addi-
tional conjugated C–C double bond. Hence, it is much desired to develop highly selective vinylogous
methods in order to enable unconventional, more efficient asymmetric syntheses of biologically
active compounds. In this regard, silyl-dienolates were discovered to display high regioselectivities
due to their tendency toward γ-additions. The control of the enantio- and diastereoinduction of these
processes have been for a long time dominated by transition metal catalysis, but it received serious
competition by the application of organocatalytic approaches since the beginning of this century. In
this review, the organocatalytic applications of silyl-dienolates in asymmetric vinylogous C–C bond
formations are summarized, focusing on their scope, characteristics, and limitations.
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1. Introduction

The principle of vinylogy, demonstrated by Fuson in 1935, explains that the integration
of conjugated C=C-double bonds next to functional groups allows moving their intrinsic
reactive site to a more distant point within the molecule [1]. Applying this concept to basic
reaction types enables various new pathways to relevant structural motifs. Arguably, the
most explored vinylogous versions are reported for relatively simple C–C bond formations,
especially for aldol, Mannich, and Michael reactions [2–6]. In contrast to the usual observed
α-additions to the respective electrophiles in these reactions, the vinylogous extension
gives rise to the competing, often favored γ-additions (Scheme 1). Hence, due to elongated
carbon chains and the assured presence of α,β-unsaturated carbonyl-moieties, this method
allows for the formation of more complex and versatile products.

The application of vinylogy to regular C–C bond formations has provided impor-
tant and synthetically less tedious pathways to structural motifs that commonly occur in
natural products. Among these, one of the most commonly investigated moieties is the
butenolide, which is formed by the γ-addition of furan-based dienolates to the correspond-
ing electrophiles. These γ-butenolides represent important subunits in various natural
compounds with essential biological activities (e.g., avenolides (antibiotic), kalloides (anti-
inflammatory) or Arglabins (anti-tumor)) [7–11]. The application of acyclic dienolates is of
similar significance, as it gives rise to analog linear functionalities. Hence, the employment
in vinylogous aldol reactions gives access to extended polyol- or polyketide-subunits,
furnishing elegant alternatives to common enzymatic approaches [6]. Vinylogous Mannich
reactions instead provide the simple formation of δ-amino-β-ketoesters, which are used
as building blocks in the synthesis of different alkaloids [12]. Finally, the utilization of
acyclic dienolates in vinylogous Michael reactions allows for the formation of 1,7-dioxo-
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compounds, which also feature valuable key intermediates in pathways toward natural or
medicinal products [13].
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Scheme 1. Vinylogous extension of common Mukaiyama aldol, Mannich, and Michael C–C bond
formation reactions.

To fulfill their purpose of providing building blocks and intermediates for the syn-
thesis of natural compounds, highly selective methods are required. As stated earlier,
the vinylogous extension enables an additional reaction site, thus giving rise to two dif-
ferent regioisomers. Remarkably, investigating the nature of the employed dienolates
led to the discovery of differences in regioselectivity [14]. Hence, metal-based dienolates
favor α-additions, while silyl-protected nucleophiles tend to favor γ-additions (Figure 1).
This phenomenon can further be underlined by computational calculations of the frontier
molecular orbital density [15]. Since the corresponding γ-addition products are often more
desirable than their α-analogs, the silyl-dienolates emerged as the superior nucleophile
species in vinylogous reactions.
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Figure 1. Intrinsic reactivity of different types of dienolates.

Another essential aspect is the ability to control the diastereo- and enantioselectivity
within the addition products. Since most of the concerned reactions already proceed better
in the presence of reactivity-enhancing catalysts, this principle was expanded to asymmetric
catalysis in order to obtain the desired chiral products. Although first approaches in
this matter exclusively featured the employment of metalorganic catalysts, asymmetric
vinylogous C–C bond formation reactions were progressively taken over by organocatalytic
applications since the beginning of this century [16–20].
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This review summarizes the development of asymmetric organocatalyzed C–C bond
formations, namely Mukaiyama aldol, Mannich, and Michael reactions, focusing on the
addition of both cyclic and acyclic silyl-dienolates. The related organocatalytic (hetero)-
Diels–Alder reactions with silyl-dienolates have previously been extensively reviewed and
therefore are not included here [21–23].

In contrast to earlier overviews in this field, this work presents the first review that
exclusively focuses on organocatalytic applications and the employment of silyl-protected
dienolate nucleophiles. Thus, a specific outline is provided, reflecting the detailed develop-
ment of the featured methods since their pioneering work.

2. Vinylogous Mukaiyama Aldol Reactions

The earlier mentioned motifs of polyols and polyketides represent important building
blocks due to their biological activity. In nature, these functions are formed by perfectly
adjusted enzymatic processes, providing high efficiency and selectivity. According to this,
the challenge for the non-enzymatic synthetic formation of these motifs arises, as compara-
ble product purity is required. The aldol reaction was found to be one of the most suitable
methods for this requirement, since it allows the highly selective formation of 1,3-diol
relationships and thus supports the synthesis of the desired polyol/polyketide-structures.
The extension to vinylogous aldol reactions further expands the versatility of the obtained
products. It provides δ-hydroxy-β-ketoesters and δ-hydroxy-α,β-unsaturated carbonyls,
which further enable desirable derivatization through various follow-up reactions. Nev-
ertheless, the challenging induction of high regio-, diastereo-, and enantioselectivities to
aldol reactions still features wide interest, especially embracing catalytic approaches [24].

The first vinylogous Mukaiyama aldol reaction (VMAR) was published in 1975 by
Mukaiyama and Ishida, who presented the addition of the crotonaldehyde-based silyl-
dienolate 2 to cinnamaldehyde dimethyl acetal (1) in the presence of super-stoichiometric
amounts of TiCl4 (Scheme 2a) [25]. This finding was the beginning of a very promising
reaction type in organic chemistry and has since then found many applications in important
syntheses [16–19,24,26,27]. Although the first examples featured only racemic reactions,
the potential for asymmetric applications was already at hand, given the tunable catalytic
reaction mechanism. Thus, the first enantioselective approach was published by Kaneko
et al. in 1994, in which they presented the reaction between the cyclic silyl-dienolate 4 and
different aldehydes 5, which were catalyzed by chiral borane complexes 6 (Scheme 2b) [28].
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More than 10 years later, when the field of organocatalysis had found broad recognition
in synthetic organic chemistry, Rawal et al. pioneered the organocatalyzed application
of silyl-dienolates in asymmetric VMARs (Scheme 3) [29]. They utilized similar cyclic
dienolates 8 as in the earlier work of Kaneko et al. and subsequently investigated its reaction
with various aldehydes 5. In this regard, chiral alkaloid- or diol-based organocatalysts were
utilized to induce high enantioselectivities. It was found that the best results were obtained
with α,α,α’,α’-tetraaryl-2,2-disubstituted 1,3-dioxolane-4,5-dimethanols (TADDOLs) 9 at
low temperatures (−60 to −80 ◦C), which resulted in the products 10 in up to 90% ee under
otherwise optimized conditions. Interestingly, the reaction with glyoxalates (products 10b
and 10c) was assisted by the addition of Hünig’s base (N,N-diisopropylethylamine) in
order to slow down the racemic background reaction by trapping water or other acidic
compounds being formed during the process. A further advantage of the reaction is
featured by its excellent regioselectivity, since the formed products exclusively show γ-
addition of the nucleophiles.
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Scheme 3. First asymmetric organocatalyzed VMAR pioneered by Rawal et al. [29].

Employing the same catalyst type, the group of Scettri investigated the reaction
behavior of Chan’s diene (11) in an organocatalyzed asymmetric VMAR (Scheme 4) [30].
Although this group earlier utilized a chiral phosphoramide/SiCl4 catalyst system [31,32],
in 2009, they introduced this particular dienolate to several electron-rich and electro-neutral
benzaldehydes 12 in the presence of different H-bond-donor catalysts 13 and observed
the exclusive formation of the aldol product 14 in moderate yields and ees (Scheme 4a).
Interestingly, the reaction with electron-poor benzaldehydes 15 yielded a mixture of the
expected aldol-product 14 and a cyclized dihydro-pyrone 16 in overall good yields and
moderate enantioselectivities up to 56% ee and 60% ee, respectively (Scheme 4b). The
formation of the unexpected side product was traced back to a hetero-Diels–Alder reaction
(HDA), giving rise to the formation of an alternative pyrone regio-isomer compared to the
one usually obtained by the reaction of Brassard’s diene with aldehydes [33].

In 2007, Mukaiyama et al. presented the first employment of a chiral Lewis base
organocatalyst 18 in a VMAR (Scheme 5) [34]. Their research showed that the reaction of
4-substituted 2-(trimethylsiloxy)furans 17 with different aldehydes 5 at low temperatures
(−78 ◦C) provided good yields (up to 97%) and enantioselectivities (up to 97% ee), while
the diastereoselectivity was moderate with just a few exceptions.

Subsequently, the group of Deng addressed open challenges of this method, namely
the limited investigation of functional group tolerance concerning both substrates and a
missing anti-selective procedure of this reaction. In this regard, they applied bifunctional
cinchona alkaloid-based catalysts 21 in the presence of carboxylic acids (Scheme 6) [35].
They proposed an activation mechanism, in which the silyl dienolate is activated by the
protonated quinuclidine, while the thiourea moiety activates the aldehyde by H-bond
lowest unoccupied molecular orbital (LUMO) lowering. By employing this optimized
new catalyst, they obtained excellent yields and selectivities in the reactions between
2-(trimethylsilyloxy)furan (20) and different aldehydes 5. It is worth mentioning that both
aromatic and aliphatic substitutions were well tolerated.
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Scheme 4. Asymmetric organocatalyzed VMAR reaction between Chan’s diene and electron-rich
and poor aldehydes by Scettri et al. [30,33].
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Scheme 6. Cinchona alkaloid carboxylate organocatalyzed asymmetric VMAR presented by
Deng et al. [35].

At the same time, Wang et al. investigated the reaction of 2-(trimethylsilyloxy)furan
(20) with several aromatic aldehydes 22 in the presence of neutral bifunctional thiourea
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organocatalyst 23a–e (Scheme 7) [36]. Under optimized reaction conditions, they were able
to achieve high yields (72–90%), diastereomeric ratios (up to 9:1 toward the syn-product)
and enantioselectivities (82–91% ee) in the corresponding aldol products 24. The reaction
proceeded well either with electron-rich and electron-poor aldehydes, displaying a broad
scope and functional group tolerance.
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Scheme 7. Asymmetric VMAR between 2-(trimethylsilyloxy)furan and aromatic aldehydes organocat-
alyzed by bifunctional thioureas by Wang et al. [36].

In 2011, List et al. presented a VMAR between aromatic aldehydes 5 and acyclic silyl-
dienolates 25 in the presence of their earlier developed disulfonimide organocatalyst 26
(Scheme 8) [37]. It was discovered that neither the E/Z-composition nor the silyl-protecting
group of the dienolate had a large influence on the reaction. In contrast, ester moieties
with higher steric demand (e.g., iPr or tBu) and substitution in the β-position lowered
the yield significantly, while substitution in the α-position gave inferior enantioselectivity.
Furthermore, electro-neutral and electron-rich aromatic aldehydes were more suitable than
aliphatic substrates in terms of both yield (up to 96%) and enantioselectivity outcome (up
to 96% ee). It is worth mentioning that most of the received aldol products 27 showed
excellent α/γ-ratios of up to >40:1.
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The group was able to expand this method to a bis-vinylogous Mukaiyama aldol
reaction, featuring silyl-protected trienolates 28 and different aldehydes 5 (Scheme 9). In
contrast to the earlier presented study, the obtained regioselectivities (mixture of ε- and
α-adducts) were only moderate. Nevertheless, good yields (up to 75%) and excellent
enantioselectivities (up to 90% ee) in the aldol-products 29 were achieved for a broad range
of substrates. It was shown that again, electro-neutral and electron-rich aromatic aldehy-
des provided the best results, while electron-deficient and especially aliphatic substrates
suffered from bad yields and enantioselectivities. In general, it was examined that this bis-
vinylogous Mukaiyama aldol reaction yielded inferior results than its regular vinylogous
version under the same conditions, but it still bears potential for future investigations.

Molecules 2021, 26, x FOR PEER REVIEW 7 of 22 
 

 

contrast to the earlier presented study, the obtained regioselectivities (mixture of ε- and 
α-adducts) were only moderate. Nevertheless, good yields (up to 75%) and excellent en-
antioselectivities (up to 90% ee) in the aldol-products 29 were achieved for a broad range 
of substrates. It was shown that again, electro-neutral and electron-rich aromatic alde-
hydes provided the best results, while electron-deficient and especially aliphatic sub-
strates suffered from bad yields and enantioselectivities. In general, it was examined that 
this bis-vinylogous Mukaiyama aldol reaction yielded inferior results than its regular vi-
nylogous version under the same conditions, but it still bears potential for future investi-
gations. 

 
Scheme 9. First organocatalyzed enantioselective bis-vinylogous Mukaiyama aldol reaction. 

Furthermore, List et al. also investigated the closely related alkynylogous Mukai-
yama aldol reaction between silyl alkynyl ketene acetals 30 and different aldehydes 5 
(Scheme 10) [38]. They employed the earlier displayed disulfonimide catalyst class 31 to 
generate tetra-substituted allenes 32 with excellent yields (up to 92%), diastereoselectivi-
ties (up to 27:1), and enantioselectivities (up to 97% ee). 

 
Scheme 10. First enantioselective alkynylogous Mukaiyama aldol reaction organocatalyzed by di-
sulfonimides presented by List et al. [38]. 

More recently, the group of Alemán investigated the organocatalyzed VMAR of isa-
tins 33 with the linear crotonaldehyde derived dienolate 2 in the presence of chiral bifunc-
tional thioureas and squaramides (34–37) (Scheme 11) [39]. After detailed optimization 
studies featuring different catalysts, solvents, isatin-N-substitutions, and the addition of 
H2O, the corresponding aldol products 38 were obtained in good yields (up to 82%) and 
excellent enantioselectivities (up to 98% ee). Then, a broad scope of different substitutions 
in the aromatic moiety revealed that both electron-donating and electron-withdrawing 
groups were well tolerated. The only exception was found for steric hindered 7-substi-
tuted substrates that disturb an efficient coordination of the catalyst, leading to dimin-
ished enantioselectivities. 

R1 H

O

OR3

OTBS

Et2O, -78 °C, 72 h
up to 75% yield

27 (5 mol%)

5
(1.5 eq.)

OR3

O

29
up to 90% ee

R2 R2
R1

OTBS

OMe

OOTBS

OMe

OOTBS

F

OMe

OOTBS

75% yield, 90% ee
ε/α = 5:1

37% yield, 62% ee
ε/α = 1.2:1

47% yield, 8% ee
ε/α = 3.2:1

28

+
ε γ α

R1 H

O
+

R3

OTBS

OEtR2 R2
R1

OH
CO2Et

R3

1) 31 (5 mol%)
Et2O, 0 °C, 24-120 h

2) HCl in MeOH

S

S
NH

O O

O O

Ar

Ar

F3C

CF3
Ar =31

CF3

CF3

up to 92% yield
up to 27:1 d.r.

32
up to 97% ee

305

Me

OH
CO2Et

MeMe

Me

Np = naphthyl

78% yield, 27:1 d.r.
92% ee

Me
Np

OH
CO2Et

Me

Me
Np

OH
CO2Et

nBu

85% yield, 19:1 d.r.
96% ee

68% yield, 20:1 d.r.
97% ee

Scheme 9. First organocatalyzed enantioselective bis-vinylogous Mukaiyama aldol reaction.

Furthermore, List et al. also investigated the closely related alkynylogous Mukaiyama al-
dol reaction between silyl alkynyl ketene acetals 30 and different aldehydes 5 (Scheme 10) [38].
They employed the earlier displayed disulfonimide catalyst class 31 to generate tetra-
substituted allenes 32 with excellent yields (up to 92%), diastereoselectivities (up to 27:1),
and enantioselectivities (up to 97% ee).
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Scheme 10. First enantioselective alkynylogous Mukaiyama aldol reaction organocatalyzed by
disulfonimides presented by List et al. [38].

More recently, the group of Alemán investigated the organocatalyzed VMAR of
isatins 33 with the linear crotonaldehyde derived dienolate 2 in the presence of chiral
bifunctional thioureas and squaramides (34–37) (Scheme 11) [39]. After detailed opti-
mization studies featuring different catalysts, solvents, isatin-N-substitutions, and the
addition of H2O, the corresponding aldol products 38 were obtained in good yields (up
to 82%) and excellent enantioselectivities (up to 98% ee). Then, a broad scope of different
substitutions in the aromatic moiety revealed that both electron-donating and electron-
withdrawing groups were well tolerated. The only exception was found for steric hindered
7-substituted substrates that disturb an efficient coordination of the catalyst, leading to
diminished enantioselectivities.
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3. Vinylogous Mukaiyama Mannich Reactions

The Mannich reaction is closely related to the aldol reaction and mainly deviates in
the nature of the applied electrophile, either featuring imines or iminium ions. Ergo, the
reaction products later exhibit primary or secondary amine moieties. The regular Mannich
reaction leads to the formation of biologically relevant β-amino-carbonyl compounds (e.g.,
β-amino-acids). A vinylogous extension of the reaction further enables the synthesis of
δ-amino-α,β-unsaturated carbonyl compounds, which represent highly functionalized in-
termediates in the preparation of various natural compounds (e.g., alkaloids). Vinylogous
Mannich processes are not explored as detailed as the related aldol reactions, yet their ver-
satility and synthetic significance raise high interest especially in search of stereoselective
catalytic applications [5].

In 1980, the group of Danishefsky presented the first vinylogous Mannich reaction
between silyl-protected dienolates 39 and Eschenmoser iminium salt (40), delivering the
corresponding γ-methylenketones 41 in yields up to 65% (Scheme 12a) [40]. First in 1999,
Martin et al. reported pioneering work in the field of asymmetric vinylogous Mukaiyama
Mannich reactions (VMMnR) by applying chiral organometallic catalysis (Scheme 12b) [41].
Under optimized conditions for the reaction between an aldehyde-based aromatic imine 42
and triisopropylsilyloxyfuran 43, the threo (44a) and erythro adducts (44b) were obtained
in a ratio of 91:9 and 48% ee within the major product (44a). Since only moderate enan-
tioselectivities were accomplished in this first approach, the search for a highly selective
method was further pursued. In this regard, seminal investigations were presented by
Hoveyda and Snapper in 2006, in which AgOAc was used as a Lewis acid catalyst in
the presence of chiral phosphine ligands 47 [42]. They applied their design on a similar
reaction and, in contrast, managed to raise the yields, diastereo- and enantioselectivities of
the corresponding γ-butenolides 48 (Scheme 12c).

In the following years, the asymmetric VMMnR was investigated by many different
work groups [5,19,43,44]. However, most of the publications featured organometallic
catalysis or the asymmetric induction by chiral auxiliars. Thus, only a limited number of
organocatalytic applications in asymmetric VMMnRs with silyl-protected dienolates have
been published to date.

In this regard, the group of Akiyama presented a novel organocatalyzed asymmet-
ric formation of γ-butenolides 44 via a VMMnR [45]. In detail, they applied an iodine
substituted chiral phosphoric acid 50 to the reaction between 2-(trimethylsilyloxy)furan
(20) and different aldimines 42 (Scheme 13). While an ortho-hydroxy group was re-
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quired at the N-aryl imine for attaining high yields, diastereo- and enantioselectivities,
electron-poor aromatic aldimines granted better results than electro-neutral aromatic and
aliphatic substrates.
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Scheme 12. The origin of the vinylogous Mukaiyama Mannich reaction (VMMnR) by Danishefsky et al. (a) [40], pioneering
of an asymmetric approach by Martin et al. (b) [41], and the first highly enantioselective application presented by Hoveyda
and Snapper (c) [42].
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Scheme 13. First organocatalytic approach of the asymmetric VMMnR in the formation of γ-
butenolides by Akiyama et al. [45].

Later on, the group of Zhang urged for a method that does not rely on the mandatory
presence of a neighboring hydroxy group at the imine for dual hydrogen-bonding interac-
tions [46]. In this regard, promising results were obtained by applying imidophosphoric
acid catalysts, which were earlier pioneered by List et al. [47]. More specifically, the 2,2′-
diphenyl-3,3′-biphenanthryl-4,4′-diylphosphate (VAPOL)-derived Brønsted acid catalyst
51 induced the best results in asymmetric VMMnR’s between 2-(trimethylsilyloxy)furan
(20) and several different aromatic aldimines 50 (Scheme 14). The demonstrated broad
scope showed a high tolerance for substitutions and functional groups, furnishing the
products in high yields (up to 98%), diastereo- (up to 99:1 d.r.) and enantioselectivities
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(up to 97% ee). Especially, a 3,4-dichloro substitution in the aldimine core led to excellent
results within the respective γ-butenolides 52.
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Scheme 14. Improved method for the organocatalyzed asymmetric VMMnR between aromatic
aldimines and silyl-dinolates renouncing the necessity of neighboring hydroxy-groups presented by
Zhang et al. [46].

Simultaneously to the earlier illustrated work of Akiyama et al., the group of Schneider
published their investigations on the organocatalytic application of chiral phosphoric
Brønsted acids 55 in a VMMnR. However, they exhibited the first utilization of linear
silyl-dienolates 54 in this field [48]. After detailed optimization studies on the reaction
conditions, they exclusively received the corresponding δ-amino α,β-unsaturated carboxylic
acid derivatives 56 in high yields (up to 97%) and enantioselectivities (up to 92% ee)
(Scheme 15). It was discovered that polar-protic solvents (e.g., tBuOH) were mandatory for
the catalytic activity of the applied Brønsted acids. Furthermore, different substitutions on
the employed aldimines 53 did not diminish the results, thereby demonstrating the broad
applicability of this method. In a later publication, this reaction was utilized as a prototype
for the development of the first asymmetric organocatalytic reaction on a single microfluidic
nanospray chip with integrated enantiomer separation and nanoES-MS-analysis [49].
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Scheme 15. Brønsted acid organocatalyzed asymmetric VMMnR’s between aldimines and linear
silyl-dienolates by Schneider et al. [48].

Between 2008 and 2011, the group of Schneider further extended their investigations
on this type of reaction toward higher enantioselectivities and broader scope on both the
aldimine substrates and dienolate nucleophiles [50–52]. Additionally, it was discovered
that the reaction can also be carried out in a three-component fashion, thereby avoiding the
use of preformed imines and saving one synthesis step [51].



Molecules 2021, 26, 6902 11 of 21

Next to the usually applied ester-derived dienolates, this group also investigated the
employment of other dienolate types [50]. Especially, piperidine and morpholine-based
vinylketene silyl N,O-acetals 57 proved to be good alternatives and provided excellent
yields (up to 99%) and enantioselectivities (up to 92% ee) with an exclusive γ-selectivity
(Scheme 16a). Furthermore, they also encountered the issue of poor results with aliphatic
aldimines [52]. In this regard, the solvent mixture was changed to THF, since protic
solvents promote enolization of the aldimines and subsequent self-aldolization, explaining
the overall poor yields. A following optimization further revealed that bulkier catalysts
55c in the presence of ester-based dienolates 54 furnished the best enantioselectivities (91%
ee) (Scheme 16b). Then, with this improved method, aliphatic substrates 59 showed overall
good yields (up to 83%) and excellent enantioselectivities (up to 99% ee). Interestingly,
aromatic aldimines 50 featured no reaction at all under these conditions.
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Scheme 16. Investigation of linear vinylketene silyl N,O-acetals in Brønsted acid organocatalyzed asym-
metric VMMnRs (a) and optimization in the utility of aliphatic substrates (b) by Schneider et al. [50,52].

In 2017, Schneider et al. discovered that β-alkylated dienolates 25 also furnish aza-
Diels–Alder adducts in the earlier mentioned three-component VMMnRs under otherwise
unchanged conditions [53]. In a catalyst screening, it was discovered that by employing
chiral phosphoric Brønsted acid 62, the reaction can be controlled to primarily form the
desired N-heterocycles 63. Hence, the cyclic products were obtained in high yields (up to
82%) and excellent enantioselectivities (up to >99:1) (Scheme 17).
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Scheme 17. Formation of aza-Diels–Alder cycloadducts by alternative reaction control in the presence
of chiral phosphoric Brønsted acids.

In order to demonstrate the synthetic relevance of this reaction, the Schneider group
embraced their method for the synthesis of known natural compounds that commonly
require more complex or additional reaction steps. In this regard, they accomplished the
synthesis of (R)-coniine hydrochloride (65) [52] and (S)-anabasine (66) [54] in moderate
yields and excellent enantioselectivities (Figure 2). Furthermore, they intensively studied
the synthetic access to indolizine-based alkaloids (IBAs) 67 with several different substitu-
tion patterns, mainly in the 3-, 5-, and 8-position [55]. A VMMnR is the key step of this
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synthesis route and was optimized in the presence of chiral 1,1′-bi-2-naphthol (BINOL)-
based phosphoric acids to provide the desired lactam intermediates in good yields and
excellent diastereo- and enantioselectivities (up to >99% ee). Building on these enantiopure
intermediates, the further incorporation of substituents and chiral centers was achieved
under substrate control, which led to the formation of several natural-occurring alkaloids
with high purity.
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Figure 2. Total synthesis of (R)-coniine hydrochloride (65), (S)-anabasine (66), and indolizine-
based alkaloids (67) based on initial Brønsted acid organocatalyzed asymmetric VMMnRs by
Schneider et al. [52,54,55].

In 2014, the group of List presented an asymmetric VMMnR catalyzed by their devel-
oped Brønsted acid disulfonimide catalyst 70, which was already successfully used in an
earlier work on VMARs (Scheme 7) [12]. This time, the catalyst was applied to the reaction
between the cyclic dienolate 69 and different N-Boc imines 68 (Scheme 18). After a detailed
catalyst and broad substrate screening, the corresponding δ-amino-α,β-unsaturated cyclic
ester products 71 were obtained in excellent yields and enantioselectivities (both up to
99%) with just a small exception regarding aliphatic substrates. In follow-up studies, fur-
ther reactions on the received products provided the corresponding dioxinones 72 with
maintained high enantiopurity.
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Scheme 18. Chiral disulfonimide organocatalyzed VMMnRs and subsequent transformation to
useful enantiomerically pure building blocks presented by List et al. [12].

Later on, the group applied the same conditions to the reaction between the acyclic
Chan’s diene (11) and similar aromatic N-Boc-aldimines [56]. The following substrate
scope underlined the versatility of the reaction, since the application of different dienolates
still provided excellent yields and enantioselectivities with over 90% ee.

In contrast to the earlier featured reactions with exclusively employed aldimine-
substrates, Silvani et al. presented the first enantioselective VMMnR with less reactive,
more challenging ketimines [57]. More specifically, additions of 2-(trimethylsiloxy)furan
(20) to isatine-derived benzhydryl isatins 73 were carried out in the presence of chiral
phosphoric acids 74 (Scheme 19). The stereocontrol of this reaction bears higher complexity
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due to the larger steric demand and lower reactivities compared to aldimines substrates.
Interestingly, the stereocontrol was regulated by the reaction temperature. At high temper-
atures, racemic mixtures with excellent d.r. were obtained, while for lower temperatures
(down to −78 ◦C), this tendency was reversed. A subsequent substrate screening revealed
that isatin-N-substitutions were very well tolerated regarding the yield (up to 81%) and the
enantioselectivity (up to 96% ee), while modifications in the aromatic core only led to the
products 75 in moderate yields (42–68%) and decreased enantioselectivities (1–74% ee).
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Scheme 19. First organocatalyzed asymmetric VMMnR on ketimine-based substrates, presented by
Silvani et al. [57].

Only recently, the groups of Alemán and García Mancheño presented the dearom-
atization of quinazolines in an asymmetric vinylogous Mukaiyama Mannich-type reac-
tion following a Reissert-type approach by first acylation of the substrates 76 and subse-
quent nucleophilic addition of silyl-dienolates 78 to the in situ formed iminium ion 77
(Scheme 20) [58]. The reactions were performed in the presence of chiral tetrakistriazole-
based anion-binding catalysts 79 giving the vinylogous products 80 in excellent yields (up
to 99%) and enantioselectivities (up to 95% ee). After comprehensive optimization studies,
the reaction was carried out with different silyl-dienolates. Especially, bulky ester moieties
and silyl-protecting groups yielded good results, while α-, β-, and γ-methylation was also
well tolerated. Eventually, the relevance of this new method was further broadened by
successful upscaling, derivatization, and catalyst-recycling reactions.
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4. Vinylogous Mukaiyama Michael Reactions

In contrast to the earlier displayed Mukaiyama aldol (VMAR) and Mannich (VMMnR),
the equivalent vinylogous Michael reaction (VMMcR) is not explored in such a broad
fashion, which is mostly caused by the more difficult control of its stereochemical outcome.
Since both substrates feature two different reaction sites (α- or γ-reactivity for the dienolate
nucleophile and 1,2- or 1,4-reactivity regarding the carbonyl electrophile), these reactions
potentially result in four different regioisomers. Although this obstacle is challenging to
overcome, there is still a high potential within this method, as it enables the synthesis
of various chiral 1,7-dioxo compounds. Thus, this topic has found large interest in the
chemical community for the last 20 years [4,18,59].

The first enantioselective approach toward the VMMcR was already proposed in
1997 by Katsuki et al., in which they presented the Lewis-acid catalyzed addition of 2-
(trimethylsilyloxy)furans 81 to oxazolidone enoates 82 (Scheme 21) [60]. A detailed screen-
ing, primarily catalyzed by scandium triflates in the presence of different BINOL-derived
ligands 83, yielded the sought-after enantioinduction but failed to go above moderate
selectivities (up to 73% ee). However, with this method, the desired γ-butenolides 85 were
received in excellent diastereomeric ratios (>50:1). Later on, the enantioselectivity of the
process could be improved to give the respective products with up to 95% ee by switching
the catalyst system to copper triflate in combination with chiral bis(oxazoline)-ligands 84,
although the diastereomeric ratios were diminished.

Molecules 2021, 26, x FOR PEER REVIEW 15 of 22 
 

 

 
Scheme 21. First enantioselective vinylogous Michael reaction (VMMcR) presented by Katsuki et 
al. [60]. 

Apart from this example by Katsuki, most metal-based Lewis acid-catalyzed 
VMMcR’s tend to facilitate 1,2- rather than 1,4-additions to unsaturated carbonyls [61,62]. 
In order to overcome this issue, the group of MacMillan reported in 2003 a vinylogous 
Michael method relying for the first time on organocatalysis [63]. Therein, they proved 
that the employment of secondary amine catalysts 88 and the in situ formation of alde-
hyde-based iminium ions facilitate the corresponding 1,4-addition (Scheme 22a). With the 
desired selectivity in hand, the flexibility of this process was explored. It was shown that 
acylated or alkylated siloxy-furans in 5-position 86, as well as γ-substituted aldehydes 87, 
provided 89 in high yields (up to 93%) and excellent enantioselectivities (up to 99% ee) 
while maintaining good diastereoselectivities (up to 31:1 d.r.). Ultimately, they demon-
strated the importance of this method by applying it to the synthesis of the commercially 
relevant spiculisporic acid. 

Later on, the same group developed a cascade-VMMcR, in which iminium-ion and 
enamine catalysis were merged by exclusively applying one imidazolidone-catalyst 91 
[64]. Thereby, the asymmetric addition of 5-methyl-2-(trimethylsilyloxy)furan (86) to dif-
ferent aldehydes 87 and subsequent chlorination in the α-position through chlorinated 
quinone 92 was achieved in a one-pot reaction (Scheme 22b). The corresponding products 
92 were obtained in high yields (up to 97%) and with exceptional enantiomeric excesses 
(>99% ee). 

 
Scheme 22. First highly enantioselective organocatalyzed VMMcR (a) and subsequent one-pot chlo-
rination through cascade reactions by MacMillan et al. (b) [63,64]. 

Almost 10 years later, a series of related articles were published [65–67]. The groups 
of Pápai and Pihko focused on the challenging stereocontrol of a VMMcR with α-substi-
tuted enals [65]. After intensive studies, trans-2,5-diphenylpyrrolidine (95) was found to 
be a suitable catalyst for the reaction between TIPS-protected silyloxyfurans 94 and α-sub-
stituted enals 93 (Scheme 23). It was discovered that 10–20 mol % of catalyst was sufficient 
to provide the products 96 in good yields (up to 90%) and excellent enantioselectivities 
(up to 96% ee). Only the diastereomeric ratio was low, which was compensated by easy 

O OTMS

R1

Sc(OTf)3 (5 mol%)
(R,R)-BINOL 83 (6 mol%)

Cu(OTf)2 (5 mol%)
(S,S)-BOX 84 (6 mol%)

HFIP (1 equiv.)
DCM, 0 °C

R2 N O

OO
+ N O

O O

O
O

R1

H
R2

anti-85
a) up to 73% ee (R,R)
b) up to 95% ee (S,S)

a)

b)

a) up to 94% yield, <50:1 d.r.
b) up to 95% yield, 24:1 d.r.

81 82

O OTMS 88 (20 mol%)
DBNA (20 mol%)

DCM, H2O, -20 to -70 °C+
up to 93% yield 
up to 31:1 d.r.

R1

R2 O

O

R2

O
O

R1

89
up to 99% ee

N

N
H

O Me

tBu

88

O

OTMS 91 (20 mol%)
TFA (20 mol%)

EtOAc, -40 to -60 °C
+

up to 97% yield 
up to >25:1 d.r.

Me
O

R

O
O

Me

syn-92
up to >99% ee

N

N
H

O Me

tBu

91

Bn
N

Ph

Cl

O
Cl

Cl

Cl
Cl

Cl

Cl
+

(a)

(b)

87

86

86
R

O

87

90

Scheme 21. First enantioselective vinylogous Michael reaction (VMMcR) presented by Katsuki et al. [60].

Apart from this example by Katsuki, most metal-based Lewis acid-catalyzed VMMcR’s
tend to facilitate 1,2- rather than 1,4-additions to unsaturated carbonyls [61,62]. In order to
overcome this issue, the group of MacMillan reported in 2003 a vinylogous Michael method
relying for the first time on organocatalysis [63]. Therein, they proved that the employment
of secondary amine catalysts 88 and the in situ formation of aldehyde-based iminium
ions facilitate the corresponding 1,4-addition (Scheme 22a). With the desired selectivity in
hand, the flexibility of this process was explored. It was shown that acylated or alkylated
siloxy-furans in 5-position 86, as well as γ-substituted aldehydes 87, provided 89 in high
yields (up to 93%) and excellent enantioselectivities (up to 99% ee) while maintaining good
diastereoselectivities (up to 31:1 d.r.). Ultimately, they demonstrated the importance of this
method by applying it to the synthesis of the commercially relevant spiculisporic acid.

Later on, the same group developed a cascade-VMMcR, in which iminium-ion and
enamine catalysis were merged by exclusively applying one imidazolidone-catalyst 91 [64].
Thereby, the asymmetric addition of 5-methyl-2-(trimethylsilyloxy)furan (86) to different
aldehydes 87 and subsequent chlorination in the α-position through chlorinated quinone
92 was achieved in a one-pot reaction (Scheme 22b). The corresponding products 92 were
obtained in high yields (up to 97%) and with exceptional enantiomeric excesses (>99% ee).

Almost 10 years later, a series of related articles were published [65–67]. The groups of
Pápai and Pihko focused on the challenging stereocontrol of a VMMcR with α-substituted
enals [65]. After intensive studies, trans-2,5-diphenylpyrrolidine (95) was found to be a suit-
able catalyst for the reaction between TIPS-protected silyloxyfurans 94 and α-substituted
enals 93 (Scheme 23). It was discovered that 10–20 mol% of catalyst was sufficient to provide
the products 96 in good yields (up to 90%) and excellent enantioselectivities (up to 96% ee).
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Only the diastereomeric ratio was low, which was compensated by easy chromatographic
separation. Reactions with β-substituted enals gave similar good enantioselectivities and
without presenting significant diastereoselectivity issues.
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Scheme 22. First highly enantioselective organocatalyzed VMMcR (a) and subsequent one-pot
chlorination through cascade reactions by MacMillan et al. (b) [63,64].
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Scheme 23. Extension of the secondary amine-catalyzed VMMcR to α-substituted enal-substrates by
Pápai and Pihko [65].

Simultaneously, Ye, Dixon and coworkers searched for a diastereodivergent method of
the VMMcR [66]. They succeeded by screening different multifunctional catalyst structures
within the reaction of γ-substituted-N-Boc-silyloxy-pyrroles 98 with α,β-unsaturated linear
enones 97 (Scheme 24). The primary-amine catalyst 99 facilitated the reaction toward the
corresponding anti-101 (up to 7:1 anti:syn), while the use of quinine-substituted thiourea
100 led to the syn-derivative 101 as major product (up to 16:1). Furthermore, the reactions
proceed with moderate to good yields (up to 75%) and excellent enantioselectivities (up to
99% ee).

Shortly after, the group of Singh sought for a method that also tolerates the use of
cyclic enones [67]. In that matter, the chiral 1,2-diphenylethane-1,2-diamine (103) efficiently
catalyzed the reactions between 2-silyloxyfurans 81 and selected cyclic enones 102 with dif-
ferent ring-sizes (5, 8, 12, and 15 carbons), leading to high enantio- and diasteroselectivities
(up to 97% ee and 97:3 d.r.) (Scheme 25). Interestingly, the reactions with 3-substituted cyclic
enones, which led to the formation of quaternary carbon-centers in β-position, exhibited
exceptional selectivities (up to >99% ee and 99:1 d.r.) in the respective products 104.



Molecules 2021, 26, 6902 16 of 21

Molecules 2021, 26, x FOR PEER REVIEW 16 of 22 
 

 

chromatographic separation. Reactions with β-substituted enals gave similar good enan-
tioselectivities and without presenting significant diastereoselectivity issues. 

 
Scheme 23. Extension of the secondary amine-catalyzed VMMcR to α-substituted enal-substrates 
by Pápai and Pihko [65]. 

Simultaneously, Ye, Dixon and coworkers searched for a diastereodivergent method 
of the VMMcR [66]. They succeeded by screening different multifunctional catalyst struc-
tures within the reaction of γ-substituted-N-Boc-silyloxy-pyrroles 98 with α,β-unsaturated 
linear enones 97 (Scheme 24). The primary-amine catalyst 99 facilitated the reaction to-
ward the corresponding anti-101 (up to 7:1 anti:syn), while the use of quinine-substituted 
thiourea 100 led to the syn-derivative 101 as major product (up to 16:1). Furthermore, the 
reactions proceed with moderate to good yields (up to 75%) and excellent enantioselectiv-
ities (up to 99% ee).  

 
Scheme 24. Diastereodivergent method for chiral amine organocatalyzed VMMcR with N-Boc-si-
lyloxy-pyrrole-substrates by Ye and Dixon [66]. 

Shortly after, the group of Singh sought for a method that also tolerates the use of 
cyclic enones [67]. In that matter, the chiral 1,2-diphenylethane-1,2-diamine (103) effi-
ciently catalyzed the reactions between 2-silyloxyfurans 81 and selected cyclic enones 102 
with different ring-sizes (5, 8, 12, and 15 carbons), leading to high enantio- and diasterose-
lectivities (up to 97% ee and 97:3 d.r.) (Scheme 25). Interestingly, the reactions with 3-
substituted cyclic enones, which led to the formation of quaternary carbon-centers in β-
position, exhibited exceptional selectivities (up to >99% ee and 99:1 d.r.) in the respective 
products 104.  

+R2 O
R3 OTIPSO R1

95 (20 mol%)
4-NBA (20 mol%)

H2O (2 eq.)

DCM, 0 °C or r.t.
up to 90% yield 
up to 94:6 d.r.

96
up to 96% ee

N
H

Ph Ph

(R,R)-95

O
OO

O

R2

OO R1 R3

O
OO OAcMe MeMe

90% yield, 55:45 d.r.
96% ee

71% yield, 50:50 d.r.
94% ee

O
OO Me

Me
64% yield, 91:9 d.r. 

94% ee

9493

R1

O

R2

99 (20 mol%)
N-Boc-L-Trp (40 mol%)

100 (20 mol%)
benzoic acid (20 mol%)

DCM, 40 °C, 96-120 h

a) up to 75% yield, 7:1 d.r.
b) up to 72% yield, 1:16 d.r.

+ NBoc

OTBS

R3

+

a)

b)

b: up to 96% ee

N

O

R3

Boc

O
R2

R1

syn-101
a: up to 98% ee

N

O

R3

Boc

O
R2

R1

anti-101

N

O

Me

Boc

O
Ph

Me

N

O

Me

Boc

O
n-Pr

Me

N

O

Me

Boc

O

Me

a: 75% yield, 5:1 d.r.
    98% ee
b: 72% yield, 1:13 d.r.
    95% ee

a: 64% yield, 7:1 d.r.
    96% ee
b: 58% yield, 1:11 d.r.
    95% ee

a: 56% yield, 5:1 d.r.
    94% ee
b: 70% yield, 1:16 d.r.
    96% ee

iPr N
H

Ph
Ph

NHTsNH2

N

OMe
N

N
S

H
H

N H

H2N

99

100

97 98

Scheme 24. Diastereodivergent method for chiral amine organocatalyzed VMMcR with N-Boc-
silyloxy-pyrrole-substrates by Ye and Dixon [66].
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Scheme 25. Amplification of the chiral amine catalyzed VMMcR toward cyclic enone-substrates
investigated by Singh et al. [67].

In 2012, Schneider et al. presented the first approach of a VMMcR with acyclic
silyl-dienolates and acyclic α,β-unsaturated carbonyl-compounds (Scheme 26) [68]. This
method bears high challenges in terms of regioselectivity considering the 1,2- and 1,4-
reactivity of the applied electrophiles, as well as the α- and γ-reactivity of the dienolates.
Therefore, four different regioisomers might be generated, highlighting the need for precise
stereocontrol. Although all Michael reactions enable these isomers, earlier publications
circumvent this issue by applying cyclic reaction partners, which have higher tendencies
to form the desired 1,7-dioxo-compounds (γ-1,4-reactivity). However, in this approach,
Schneider et al. were able to overcome the regioselectivity problems by applying the
Jørgensen–Hayashi amine catalyst (104) to VMMcRs between α,β-unsaturated aldehydes
87 and linear silyl dienol ethers 105. After optimization of the process, only the desired
1,7-dioxo products were obtained. It was observed that sterically demanding dienolates
provided the best selectivities due to their hindered α-reactivity. Follow-up reactions with
different substrates exhibited that the desired 1,7-dioxo products 107 could be received
in very good yields (up to 90%) and exceptional enantioselectivities (up to >99% ee) for
aromatic aldehydes. However, aliphatic substrates gave diminished results. Interestingly, a
study on γ-methyl-dienolates revealed that their E/Z-configuration has a direct influence
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on the diastereoselectivity of the reaction. Hence, the Z-dienolate provided anti-107 as the
major isomer, while the E-analog gave rise to the syn-107 in higher ratios.
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Scheme 26. Highly regio- and enantioselective organocatalyzed VMMcR pioneering the employment
of acyclic silyl-dienolates presented by Schneider et al. [68].

In a later publication, the same group sought for a modification of the process that
allows for lower catalyst loadings, as well as for later derivatization of the final prod-
ucts [69]. To combine both requests, they employed vinylketene silyl N,O-acetals 108
as nucleophiles (Scheme 27). These possess higher reactivities, enabling lower catalyst
loadings. Moreover, the formed N-acyl pyrrole-products 109 can be more easily converted
into relevant motives. After a re-optimization of the reaction conditions and subsequent
substrate screening of aldehydes 87, the same tendencies were observed, in which excellent
yields (up to 95%) and enantioselectivities (up to 99% ee) were received for (hetero)aromatic
and β-silyl-substituted aldehydes. However, aliphatic enals exhibited no reactivity under
these conditions. Finally, next to reducing the catalyst loading from 20 mol% to 10 mol%,
target derivatizations were also accomplished successfully in follow-up reactions such as
hydrolysis, transesterifications, reductions, or alkylations.
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Scheme 27. Improvement toward lower catalyst loadings and simpler product derivatization con-
cerning the organocatalyzed VMMcR with acyclic dienolates.

In 2015, Huang, Dai, and He developed the first application of a N-heterocyclic
carbene (NHC)-catalyzed VMMcR featuring the addition of 2-(trimethylsilyloxy)furan
(20) to different chalcone derivatives 110 (Scheme 28) [70]. A mechanism was proposed
in which an activated hypervalent silicate nucleophile is formed by attack of the NHC
111 to the silicon atom within the silyl-dienolate 20. Consequently, the desired products
112 were obtained in high yields (up to 99%) and excellent diastereoselectivities (up to
32:1). Although this method was not enantioselective, the excellent results indicate a high
potential for future investigation within chiral NHC catalysts.
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Scheme 28. NHC-organocatalyzed diastereoselective vinylogous Mukaiyama Michael reaction presented by Huang, Dai,
and He [70].

5. Conclusions

This review provides an overview of the effective organocatalytic approaches within
asymmetric vinylogous versions of very common C–C bond formation reactions with silyl-
protected dienolates. More specifically, the areas of asymmetric vinylogous Mukaiyama al-
dol (VMAR), Mannich (VMMnR), and Michael reactions (VMMcR) are presented. Although
the organocatalytic methodologies were only developed within the last 20 years, most pub-
lished studies already present excellent results, especially with regard to the enantiocontrol.

The vast number of organocatalytic structures and their simple tunability allows
to tailor these catalysts precisely to the corresponding targeted process. Thus, it was
discovered that VMARs are best facilitated by H-bond donor catalysts (e.g., TADDOLS,
thioureas, and squaramides), while VMMnRs provide the best results in the presence of
chiral Brønsted acids (e.g., disulfonimides, BINOL- or VAPOL-based phosphoric acids).
The latter additionally exhibits the first application of anion-binding catalysis in this field.
While the above-mentioned reaction types are activated by non-covalent interactions,
VMMcRs are found to be catalyzed most efficiently by covalent bonding with primary and
secondary amines (e.g., MacMillan-type or Jørgensen–Hayashi catalysts).

As a consequence of the different reaction sites within the nucleophiles (α- and γ-
reactivity), the investigation of vinylogous reactions commonly provokes regioselectivity
issues. However, the organocatalytic approaches discussed in this review mostly accom-
plished the formation of pure γ-products, which is admittedly often controlled by the
application of cyclic silyl-dienolates. Remarkably, in the past few years, it has been possible
to develop reactions with intrinsically less selective acyclic dienolates in a VMMcR with
the exclusive formation of γ-1,4-adducts.

However, there are still some important limitations within this field that need to be
resolved. For instance, the commonly used large catalyst loadings (often 10–20 mol%) need
to be reduced, since they complicate potential future applications in industrial processes.
Nonetheless, some studies show that this obstacle can be overcome, thus underlining the
capability of these organocatalyzed vinylogous C–C-bond formations in the presence of
silyl-protected dienolates. Lastly, better and general control with acyclic silyl-dienolates
remains highly challenging as well as achieving high levels of stereoselectivity with certain
types of aliphatic substrates.
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