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A B S T R A C T   

Endogenous cortical fluctuations captured by electroencephalograms (EEGs) reflect activity in large-scale brain 
networks that exhibit dynamic patterns over multiple time scales. Developmental changes in the coordination 
and integration of brain function leads to greater complexity in population level neural dynamics. In this study 
we examined multiscale entropy, a measure of signal complexity, in resting-state EEGs in a large (N = 405) cross- 
sectional sample of children and adolescents (9–16 years). Our findings showed consistent age-dependent in
creases in EEG complexity that are distributed across multiple temporal scales and spatial regions. Develop
mental changes were most robust as the age gap between groups increased, particularly between late childhood 
and adolescence, and were most prominent over fronto-central scalp regions. These results suggest that the 
transition from late childhood to adolescence is characterized by age-dependent changes in the underlying 
complexity of endogenous brain networks.   

1. Introduction 

The transition to adolescence is marked by substantial maturational 
changes in brain structure and function. Developmental neuroimaging 
studies reveal that grey matter volume peaks following the transition 
into adolescence and decreases with subsequent aging (Blakemore, 
2012a, b; Lebel and Beaulieu, 2011). The reductions in grey matter are 
coupled with increases in white matter volume, structural integrity, and 
brain network organization (Blakemore, 2012b; Váša et al., 2018; Wilke 
et al., 2007). As part of a complex and dynamic system these structural 
changes are regionally specific and not always linear (Lebel and Beau
lieu, 2011), but generally show an ontogenetic topographical organi
zation with early changes in posterior regions followed by later changes 
in anterior regions (Gogtay et al., 2004; Shaw et al., 2008). As devel
opment progresses, the widespread pruning, myelination of long-range 
networks, and changes in synaptic connectivity (Luna and Sweeney, 
2004; Stevens, 2009; Váša et al., 2018) result in refined segregation and 
integration of information processing in the brain. 

In many ways, neural development is seen as an emergent property 
where localized processes become more integrated and distributed 
across functional brain networks (Smith and Thelen, 2003). The cortex is 
highly modular such that computation in localized regional circuity is 

integrated with distributed networks across multiple spatial and tem
poral scales (Muldoon et al., 2016; Sporns, 2011). These changes in 
neural architecture provide a balance between local differentiation and 
global integration (Sporns, 2011) that is required for increasing one’s 
proficiency in adaptive responding to complex and changing environ
ments. Increased coordination between localized and distributed pro
cessing is thus a property of neural development that subserves learning 
(Deco et al., 2013) and allows for adaptation to environmental uncer
tainty (Grady and Garrett, 2018). 

The increased precision in coordination and integration of brain func
tion across development leads to increased variability in population level 
neural dynamics (McDonough and Nashiro, 2014; Misic et al., 2011; 
Vakorin et al., 2011). Variability in many physiological processes is thought 
to reflect the capacity for the system to respond to environmental demands, 
leading to a level of complexity that is required for distributed processing 
and integration (Golos et al., 2015; McIntosh et al., 2010). Normative 
developmental changes in brain structure and function support increased 
information processing capacity, represented by shifts from stability to a 
more variable and stochastic state. This dynamic property of neural activity 
is thought to result from functional network re-configurations and is re
flected in endogenous brain states (McIntosh et al., 2010). 

A growing body of work has focused on brain signal complexity as a 
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marker of maturation. Multiscale entropy (MSE), which measures the 
amount of signal similarity across a time series, was introduced for the 
analysis of physiological signals that are typically non-stationary and 
has shown promise in capturing the complexity of multiple biological 
processes (Costa et al., 2002, 2005). MSE is a measure of signal 
complexity that considers the degree to which the signal is predictable 
over progressively longer temporal scales, assigning low values to fully 
periodic as well as and random fluctuations. For example, white noise 
has extremely low complexity as the highly random fluctuations do not 
contain regular patterns in their dynamics over time. Biological signals 
often contain non-linear activity that has a structure, or patterns of 
structures, that span across frequencies and temporal scales. Several 
development studies have shown that complexity is a marker of func
tional brain network organization (McIntosh et al., 2010; McIntosh 
et al., 2008), increasing from early infancy into childhood with different 
maturational trajectories across sensory modalities (Lippe et al., 2009). 
Other studies have shown that increased variability in functional 
complexity maps on to maturation of stable behavioural responses 
(McIntosh et al., 2008; Mǐsić et al., 2010). In perhaps the largest 
cross-sectional sample of children to date (N = 464, ranging from 7 to 11 
years of age), Miskovic et al. (2015, 2016) also found age-dependent 
increases in the density, spatial distribution, and signal complexity of 
endogenous functional brain networks. Taken together, these studies 
suggest that neural signal complexity tracks developmental changes in 
functional brain networks that mediate behaviour. 

Despite these important findings in childhood, studies have yet to 
examine whether the well-known changes in brain networks from 
childhood to adolescence, including the extensive strengthening and 
reorganization of neural circuitry across networks leading to greater 
flexibility, efficiency and specialization (Casey et al., 2019; Ernst et al., 
2015), are reflected in the dynamics of signal complexity. Here we 
aimed to extend previous work on normal human brain development by 
using a large cross-sectional cohort to examine resting state brain signal 
variability from late childhood into adolescence. We expected that brain 
signal variability would increase with age and extend from fine to coarse 
time scales. We expected that these changes would be most prominent in 
anterior compared to posterior regions, reflecting the maturation of 
higher-order association areas from childhood to adolescence. 

2. Methods 

2.1. Participants 

Participants included children and adolescents aged 8–16, who were 

recruited through elementary and secondary schools as part of a larger 
study called the Brock Healthy Youth Project (BHYP). Parents were 
asked to identify whether their child had any illnesses or disabilities 
(either physical or mental). Two participants were excluded because of a 
diagnosis of autism, one participant was excluded because they are 
prone to seizures, and one participant was excluded because of a diag
nosis of cerebral palsy. The sample for the current study included 467 
participants representing the first wave of data collection. Some par
ticipants were excluded from the analyses due to excessive artifact 
identified during pre-processing, not having a minimum of 20 s of 
continuous artifact free data, or errors in MSE calculation. Four partic
ipants who were aged 8 years were also removed as this sample size was 
deemed too small for adequate hypothesis testing. The final sample 
resulted in 405 participants. Demographics for the sample are summa
rized in Table 1. 

2.2. Procedure 

Students were invited to participate in the study through research 
visits to schools. Some of the participants from the larger BHYP study 
were invited to complete a Mobile Lab component, which involved 
performing a series of computerized tasks while EEG was recorded. Prior 
to the experimental tasks, resting state EEG was recorded during one- 
minute blocks alternating between eyes open and eyes closed. Each 
block was completed twice, resulting in four minutes of resting state EEG 
(2 min eyes open, 2 min eyes closed). This study was approved by the 
University Ethics Board. Participants provided informed assent and 
parents provided informed consent. 

2.3. EEG acquisition and data reduction 

EEG was continuously recorded using a BioSemi ActiveTwo system 
with 96 channel dense array montage and 7 exogenous sensors placed on 
the face. Automated pre-processing was done using the Lossless Pipeline 
(https://github.com/BUCANL/BIDS-Lossless-EEG), implemented in 
EEGLAB and executed in Octave on Compute Canada’s national 
computing cluster Cedar. Pre-processing involved comprehensive data 
annotation to identify artifacts and non-stationarity in scalp channels and 
independent components. Quality control involved expert review of all 
data annotations and confirmation of flagged components informed by 
ICLabel classification, topographies, continuous time course activation, 
dipole fit, and power spectrum. For an expanded description of pre- 
processing criteria and artifact thresholds, see (Heffer and Willoughby, 
2020). 

Table 1 
Mean (%) of participant demographics by age.   

Age 9 Age 10 Age 11 Age 12 Age 13 Age 14 Age 15 Age 16  
34 (8.4) 73 (18) 72 (17.8) 57 (14.1) 57 (14.1) 62 (15.3) 36 (8.9) 14 (3.5) 

Biological Sex         
Female 16 (47) 33 (45) 31 (43) 29 (51) 33 (58) 26 (42) 15 (42) 9 (64) 
Male 18 (53) 40 (55) 41 (57) 28 (49) 24 (42) 36 (58) 21 (58) 5 (36) 
Race         
Caucasian 26 (76.5) 62 (85) 55 (76) 43 (75) 44 (77) 38 (61) 15 (41.6) 8 (57) 
Black – 2 (2.7) 3 (4.1) 2 (3.5) – 1 (1.6) – – 
Asian – – 2 (2.7) – – 1 (1.6) 1 (2.7) – 
Hispanic – 1 (1.4) 1 (1.4) – 2 (1.2) 2 (3.2) 2 (5.5) – 
Indigenous – 1 (1.4) – 1 (1.25) – – – 1 (7) 
Mixed 2 (5.8) 4 (5.5) 2 (2.7) 4 (7) 4 (7) 9 (14.5) 3 (8.3) 1 (7) 
Prefer not to answer – – – 1 (1.25) 1 (1.2) 1 (1.6) – – 
Parental education         
Some high school – – 1 (1.4) – – – – – 
High school diploma – 4 (5.4) 1 (1.4) 2 (3.5) 1 (1.7) 2 (3.2) 3 (8.3) – 
Some university/college 4 (11.8) 9 (12.3) 9 (12.5) 6 (10.5) 5 (8.8) 2 (3.2) 3 (8.3) 3 (21.4) 
Associate degree/diploma 13 (38.2) 31 (42.5) 32 (44.4) 20 (35) 29 (50.9) 25 (40.3) 8 (22.2) 4 (28.6) 
Undergraduate degree 9 (26.4) 19 (26) 21 (29.2) 22 (38.6) 15 (26.3) 26 (42) 17 (5.6) 3 (21.4 
Graduate degree 6 (17.6) 10 (7.3) 4 (5.6) 5 (8.8) 4 (7) 4 (6.4) 2 (5.6) 3 (21.4) 

Note: Numbers and percentages reflect proportion of cases within a given age category and do not always sum to 100 due to missing response on some variables. 
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Once flagged ICs were removed from the data, the re-constituted 
scalp EEG was low pass filtered at 30 Hz and segmented into 20 s non- 
overlapping windows (20,480 data points with sampling rate of 512 
Hz). Each of these 20 s windows were assessed and rejected based on the 
presence of extreme channel voltages (+/− 150 mV; eegthresh EEGLAB 
function) and joint probability of channel voltages (5 standard de
viations; jointprob EEGLAB function). The pre-processing resulted in an 
average of 1.13 min (SD = 0.02) of data (i.e., 3.4 continuous 20 s 
epochs) across participants. MSE was then calculated for all channels on 
each 20 s segment and averaged across segments to produce individual 
subject MSE estimates. 

2.4. Multiscale entropy extraction 

MSE calculation followed the original implementation from (Costa 
et al., 2005), which involves calculating sample entropy (Richman and 
Moorman, 2000) at multiple time scales of the EEG signal. Initially a 
coarse graining procedure for a given time scale (τ) is performed by 
calculating the average of neighbouring points from the original time 
series across non-overlapping windows of length τ. Sample entropy is 
then quantified at each of the temporal scale factors. Similar to the 
original implementation and other work, we included scale factors from 
1 to 20. As a measure of unpredictability across the duration of a time 
series, at a given scale factor, sample entropy represents the conditional 
probability that any two consecutive data sequences of pattern length (m 
+ 1) will be the same given a match for the first m points. Patterns are 
deemed to match if the absolute amplitude difference falls in the defined 
tolerance range, r. 

Sample entropy is calculated as: 

SE(m, r,N) = − In
(

cm + 1(r)
cm(r)

)

where: 

cm(r) =

{
number of pairs(i, j) with

⃒
⃒
⃒xm

i − xm
j

⃒
⃒
⃒ < r, i ∕= j

}

{

number of probable pairs = N− m+1
N− m

}

Thus, MSE measures the regularity (i.e., unpredictability) of the 
signal over multiple time scales, such that low values reflect high self- 
similarity/low complexity and high values reflect irregularity/high 
complexity. Based on previous developmental research in EEG and MEG 

studies (Heisz et al., 2012; McIntosh et al., 2008; Mǐsić et al., 2010; Misic 
et al., 2011; Miskovic et al., 2016), we set m = 2 and r = .5. 

2.5. PSD and power-law scaling extraction 

Given that sample entropy estimates are sensitive to linear (i.e., 
changes in PSD) and non-linear dynamics in the EEG, we also examined 
PSD changes across development and in relation to MSE. Power spec
trum density was calculated from the artifact-free resting EEG in order to 
examine developmental changes in spectral power scaling (i.e., 1/f) and 
whether power dynamics related to MSE. Continuous resting EEG during 
eye closed were epoched into 2 s windows to which a modified Welch 
periodogram was applied, with a Hanning tapered window of 1024 data 
points and 50 % overlap, to estimate PSD between 1 and 30 Hz. The 
frequency spectra were transformed into log-log space and the power- 
law scaling exponent, which represents the line of best fit for fre
quencies from 1− 30 Hz, was estimated by robust linear regression. 

2.6. Phase-shuffled surrogate time series 

To further test whether MSE is sensitive to non-linear temporal de
pendencies in EEG signal irregularities, we repeated our analysis using 
phase-shuffled surrogate time series. These surrogate time series were 
generated by performing an FFT on the original EEG time series, 
randomly shuffling phase of the Fourier components, and applying the 
inverse Fourier transform to regenerate the time domain. Given that the 
power spectrum reflects a linear process, but does not contain phase 
information, we expect to observe higher entropy when estimated on 
these randomly phase-shuffled surrogates as the time series has more 
irregularity than the original EEG time series. We used the iterated 
amplitude adjusted Fourier transform (IAAFT) algorithm as it has been 
shown to reduce unreliable identification of nonlinearity (Schreiber and 
Schmitz, 1996). The phase-shuffled surrogate time series were extracted 
using a maximum of 100 iterations. See Fig. 1 example comparing 
original EEG and surrogate time series and Supplementary Fig. 1 for 
mass univariate results highlighting developmental differences in MSE. 

2.7. Statistical analyses 

To examine global topographical differences MSE values were 
averaged and submitted to 2000 percentile bootstrap with 20 % trim
med means to test main effects and interactions between Region 

Fig. 1. Top panel illustrates a segment of 
continuous EEG signal (black) and phase- 
shuffled surrogate time series (yellow) that 
was generated by the IAAFT algorithm. The 
power spectrum of these the original EEG and 
phase-shuffled time series is identical. MSE es
timates are sensitive to temporal dependence 
and yields higher values for the phase-shuffled 
surrogate time series as it has more irregular
ity (For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.).   
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(frontal, central, parieto-occipital) and Hemisphere (left, right). These 
analyses were carried out using the wwmcppb function from the robust 
statistics package Hypothesize (Campopiano and Wilcox, 2020). 

To test MSE and PSD differences across chronological age, we per
formed a series of independent samples, two-tailed cluster permutation 
tests using threshold free cluster enhancement (TFCE; Mensen and 
Khatami, 2013). TFCE builds on other cluster forming approaches (e.g., 
cluster max, cluster mass; Bullmore et al., 1999; Groppe et al., 2011a, b; 
Maris, 2004; Maris and Oostenveld, 2007) by exploiting the temporal 
and spatial dependencies in EEG data and being sensitive to strong 
(er)-narrow and weak(er)-broad effects. By taking into account signal 
intensity (height: H) and spatial distribution (extent: E) across many 
thresholds, TFCE offers less trade-offs between sensitivity and control of 
Type I error rate, or the requirement for using potentially arbitrary 
cut-offs when defining cluster thresholds. Combined with permutation 
tests, TFCE is a useful method to effectively maintain family-wise alpha 
at 0.05 and control Type I error rates for multiple comparisons across all 
cephalic channels and entropy time scale factors. Based on the results 
from Mensen and Khatami (2013), we set E = .66 and H = 2 for TFCE. 
For hypothesis testing we used a Monte Carlo approach with 2000 
random between-participant permutations were used to establish an 
empirical distribution that approximates the null hypothesis that no 
group differences exist. Similar approaches have been widely used in 
functional MRI analyses to account for the intensity and distribution of 
signal across neighbouring voxels (Smith and Nichols, 2009; Wu et al., 
2011). These analyses were carried out using the ept_TFCE function from 
TFCE toolbox (https://github.com/Mensen/ept_TFCE-matlab). 

To test age differences in PSD slopes we conducted a mixed ANOVA 
with region as the within subjects factor using the lmer function in R. 
Significant effects were followed by post hoc tests using Bonferroni 
correction for multiple comparisons. The association between PSD slope 
and MSE were assessed by robust linear regression using the robustfit 
function in MATLAB. 

3. Results 

3.1. Topographical distribution of MSE 

The spatial distribution of MSE, averaged across time scales, showed 
central electrodes had greater MSE than frontal (p < .001, [.012, .005]) 
and posterior (p < .001, [.009, .019]) electrodes, and that frontal elec
trodes had greater MSE than posterior sites [p < .01, [.002, .014]). 
Although there was no evidence of a main effect of hemispheric differ
ences, there was an interaction between region and hemisphere. Spe
cifically, MSE was greater in the right hemisphere compared to left for 
frontal compared to posterior (p < .001, [.009, .003]) and for central 
compared to posterior (p < .01, [.008, .002]). There were no differences 
in hemispheric MSE between frontal and central regions. 

3.2. Developmental changes in MSE 

Differences in MSE in relation to chronological age were tested using 
a series of mass univariate tests for each electrode and time scale with 
TFCE (see Fig. 2). As can be seen from the contrast plots, there are 

Fig. 2. Pairwise age group contrasts for each scalp electrode and time scale factor. Hot colors indicate greater MSE in the older group of a given contrast (e.g., 9 vs 
13), masked by significance using Threshold Free Cluster Enhancement with 2000 random between-subjects permutations. No robust effects were observed for 
decreases in MSE with age. Shaded backgrounds for age group contrasts within pre-teen years (pink), between pre-teen and teen years (blue), and within teen years 
(grey). Note: F – frontal; C – central; PO – parieto-occipital. L – left hemisphere; R – right hemisphere. N.S. – no significant contrasts (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.). 
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consistent increases in brain signal complexity from 9–16 years. 
As the age gap between contrasts becomes larger, the differences in 

MSE increases in magnitude and robustness (i.e., the spatial concen
tration of effects across channels and time factors), particularly at 
fronto-central clusters compared to posterior regions. The transition 
from pre-teen to teen is marked by major changes in EEG complexity, as 
shown by greater MSE that spans both spatial and temporal scales. A 
descriptive summary of the developmental change in MSE is shown in 
Fig. 3, which represents the proportion of channel-by-time scale factor 
effects that were statistically significant from the TFCE analysis. These 
plots indicate that robust increases in EEG complexity were most 
prominent between pre-teen and teen years. Conversely, EEG 

complexity was relatively stable within childhood and did not show any 
reliable change within the teen age ranges. 

3.3. Developmental changes in PSD 

A similar mass univariate approach using TFCE was used to examine 
differences in frequency spectra in relation to chronological age. Fig. 4 
shows age-related changes that indicate a general reduction in spectral 
power with increasing age. Similar to the MSE results, changes were 
most prominent in terms of magnitude and channel-frequency span 
when contrasting pre-teen to teen ages. Reliable changes in spectral 
power within pre-teen and teen years were relatively sparse or absent. 

Fig. 3. Curves show the proportion of significant increase in MSE from childhood to adolescence across scalp electrodes and time scale factors. Each curve shows the 
difference from a younger age to an older age, as indicated on the x-axis. The proportion of significant changes are greatest from pre-teen to teen year, particularly for 
frontal and central channels. Note: F – frontal; C – central; PO – parieto-occipital. 

Fig. 4. Pairwise age group contrasts for each scalp electrode and frequency. Cold colors (blue) indicate less spectral power (dB) in the older group of a given contrast 
(e.g., 9 vs 13), masked by significance using Threshold Free Cluster Enhancement with 2000 random between-subjects permutations. Shaded backgrounds for age 
group contrasts within pre-teen years (pink), between pre-teen and teen years (blue), and within teen years (grey). Note: F – frontal; C – central; PO – parieto- 
occipital. L – left hemisphere; R – right hemisphere. N.S. – no significant contrasts (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.). 
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The TFCE results reveal that the reduction in PSD with age is most 
notable in the delta and theta frequency range (i.e., <10 Hz), with lower 
magnitude effects in the beta range that emerge in the teen years. 

A descriptive summary of the developmental change in PSD is shown 
in Fig. 5, which represents the proportion of channel-by-frequency ef
fects that were statistically significant from the TFCE analysis. These 
plots indicate that robust decreases in PSD were most prominent be
tween pre-teen and teen years. 

3.4. Developmental changes in PSD slopes 

A mixed ANOVA revealed significant main effects for region (F 
(7,794) = 213.56, p < .0001, ηp

2 = .35 [95 % CI: .31, .39]) and age (F 
(7,397) = 19.64, p < .0001, ηp

2 = .26 [95 % CI; .19, .31]). Follow-up tests 
revealed that PSD slope reliably differed between all regions, with the 
posterior-occipital cluster showing the most negative slope, followed by 
frontal and central clusters. Similar to the mass univariate results, the 
effect of age on PSD slope indicates that pre-teen ages had significantly 
more negative slopes compared to teens, whereas slope differences 

Fig. 5. Curves show the proportion of significant decrease in PSD from childhood to adolescence across scalp electrodes and time scale factors. Each curve shows the 
difference from a younger age to an older age, as indicated on the x-axis. The proportion of significant changes are greatest from pre-teen to teen years. Note: F – 
frontal; C – central; PO – parieto-occipital. 

Fig. 6. Main effects of age (left panel) and region (right panel) on PSD slopes. Top panel shows mean PSD slope estimates (1-30 Hz), Middle panel shows PSD curves 
and fitted slopes (dashed lines), Bottom panel shows kernel densities of power-law exponents (PSD slope). 
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within pre-teen and teen ages were less robust or absent. These main 
effects were superseded by an interaction between age and region (F 
(14,794) = 2.62, p < .001, ηp

2 = .04 [95 % CI; .01, .05]). Follow up 
pairwise comparisons revealed that this interaction was driven by sig
nificant differences between 10 and 13 years for frontal and central 
regions, but not at the parieto-occipital cluster. All other age pairwise 
comparisons were similar for frontal, central, and posterior-occipital 
regions. See Fig. 6 for a summary of PSD slope effects for age and re
gion and Fig. 7 for a summary of the age by region interaction effects. 

3.5. Linking PSD to MSE 

Given the developmental and individual differences in PSD, and the 
partial overlap between PSD and MSE estimates, we examined whether 
PSD slope was linked to MSE across development. Fig. 8 presents a series 
of robust regressions to assess the links between PSD slope and MSE at 
short and long time scale factors. Although we did observe a general 
trend for most ages whereby PSD slopes were positively related to MSE 
shorter scales and negatively at MSE longer time scales, PSD slope did 
not predict MSE estimates with the exception of ages 14 and 15 where 
PSD slope explained 16 % and 18 % of the variance in MSE short time 
scale factor, respectively. 

4. Discussion 

We examined normative development of cortical fluctuations in 
resting state EEG from late childhood to mid-adolescence in a large 
community sample. Our main findings showed that variability in 

endogenous cortical dynamics, a proxy for neural complexity, exhibits 
robust increases across development with the most prominent changes 
occurring from pre-teen to teen years to adolescence, primarily in 
fronto-central regions. Significant changes within childhood and within 
the teenage years were restricted both spatially and temporally, or not 
significant, suggesting that increases in neural complexity reflect a 
maturational change in underlying brain networks. 

Our mass univariate analyses revealed similar developmental effects 
for MSE and PSD, such that the differences between pre-teen and 
teenage years revealed the most consistent and robust effects. EEG signal 
complexity showed consistent age-related increases, whereas spectral 
power and PSD slope decreased. Age related changes within the pre-teen 
and teenage years were reduced in magnitude, relatively sparse in terms 
of spatial-temporal (MSE) and spatial-frequency (PSD) distribution, or 
completely absent. The pattern of these results is to be expected given 
that MSE is sensitive to both linear and non-linear dynamics and changes 
in PSD partially overlap with entropy estimate. Despite this partial 
overlap, MSE is differentially sensitive than PSD to irregularities in the 
EEG and also captures non-linear dynamics that are not captured by 
spectral power (Miskovic et al., 2015, 2019, Vasily and McIntosh, 2012). 

Our findings suggest that developmental changes in signal 
complexity are sensitive to non-linear dynamics of signal irregularity 
that are not completely reflected in age related PSD rotations. MSE 
showed significant increases for from age 9–10 and 11 years, but not for 
PSD. Conversely, PSD showed widespread attenuation from 13 to 16 
years, whereas signal complexity was stable across all scalp regions and 
temporal scales. Repeating our MSE analysis using randomly phase- 
shuffled surrogates of the EEG time series resulted in higher entropy 

Fig. 7. Contrasts for age by regions interactions for PSD slopes. Left panel shows t-statistics for each pairwise age contrast by region. Cold colors (blue) indicate that 
PSD slope was more negative for the younger age in a given contrast (e.g., 9 vs 10 years). Cells highlighted with red rectangles were statistically significant 
(Bonferroni corrected for multiple comparisons). Middle panel shows PSD curves fitted slopes (dashed lines). Right panel shows kernel densities of power-law ex
ponents (PSD slope). The pattern of results between chronological ages are the same across all regions, with the exception of the age 10 to 13 contrast which was only 
significant at frontal and central regions. Note: F – frontal; C – central; PO – parieto-occipital (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.). 
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estimates and did not eliminate the developmental changes observed in 
the original EEG time series. Finally, we found that, with the exception 
of 14 and 15 year olds, individual variation in PSD slope did not 
consistently predict MSE at either short or long time scales. Together, 
the current findings suggest that MSE is capable of capturing matura
tional changes in non-linear temporal dynamics that are not simply due 
to developmental shifts in PSD. Our results expand previous work on the 
development of cortical fluctuations (McIntosh et al., 2010) in endoge
nous resting state EEG (Miskovic et al., 2016) by including a large EEG 
sample with comprehensive analysis of MSE that includes full high 
density montage and cluster permutation testing with TFCE alongside 
developmental changes in PSD. 

The maturation of functional brain networks is characterized by the 
combination of deterministic and stochastic states (Buzsaki, 2006; 
Sporns, 2011) that are required for complex information processing and 
adaptation. As an emergent property of cortical development, 
age-dependent changes in network dynamic gives rise to a level of 
neural complexity that supports the growing repertoire of behaviours. 
Increased variability in cortical dynamics is likely a consequence of 
enhanced functional segregation and integration that occurs between 

hierarchically organized networks (Luna and Sweeney, 2004) and the 
enhanced edification of cognitive and behavioural capacity. Some evi
dence supports this notion and demonstrates that increased EEG signal 
complexity is associated with functional connectivity (McDonough and 
Nashiro, 2014; Misic et al., 2011), age-dependent refinements in 
behavioural control (Garrett et al., 2013; McIntosh et al., 2008), 
network efficiencies (Misic et al., 2011), and changes from decreased 
local to increase distributed network variability (Vakorin et al., 2011). 

Adolescence is a unique developmental stage during which wide
spread changes occur across multiple neural, behavioural, and social 
domains. At the neural level, the transition between childhood and 
young adulthood is marked by decreases in gray matter, increases in 
white matter volume, and a shift from local short-range connections to 
the strengthening of distributed long-range connections (Casey, 2015; 
Dosenbach et al., 2010; Hwang et al., 2013; Sporns, 2013). With the 
maturation of long-range connections that support integrated and 
distributed processing comes neural and cognitive specialization (Bea
triz Luna et al., 2020). A hallmark of this specialization during adoles
cence is the capacity for flexible control over behaviour, which is 
perhaps most obvious when the demands on self-regulation co-occur 

Fig. 8. Scatterplots of robust regression of PSD slope predicting MSE at short (top) and long (bottom) time scale factors for each age group. PSD slope explained 16 % 
and 18 % of MSE estimates over short time scale factors in individuals aged 14 or 15 years, respectively. 
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with heightened arousal, emotional saliency, and social pressures. The 
large maturational changes between frontal cortical and subcortical 
limbic networks are thought to support the development of this 
“emotional maturity” that allows individuals to appropriately monitor 
and regulate endogenous states so that they are in line with environ
mental demands (Johnson et al., 2009; Luna, 2009; Luna et al., 2020). 
The asynchrony between the maturation of cortical and subcortical 
networks is thought to be a key factor (Casey, 2015) leading to poorer 
self-regulation and maladaptive emotional decision-making that is 
prevalent during the adolescent transition period. For some individuals, 
these changes in neural architecture and function are coupled with 
increased vulnerability to psychopathology and poorer self-regulation. 
Given that the onset of several forms of psychopathology, such as 
depression and anxiety, coincides with the adolescent period, features of 
global network dynamics may be informative in the context of other 
indicators of cognitive ability and mental health. 

Recently it has been proposed that the relative shifts in hierarchical 
(re)organization of connections between and within subcortical and 
cortical regions across development impact self-regulation capacities, 
particularly in the context of heightened emotional arousal (Spear and 
Silveri, 2016). The embedded patterns in neural time series are associ
ated with connectome features (Grady and Garrett, 2018; Mǐsić, Betzel 
et al., 2016; Pedersen et al., 2017) and show fair to excellent stability 
within individuals (Kuntzelman et al., 2018), making them a potentially 
useful indicator of developmental risk and pathology. Some research has 
shown that reduced signal complexity is associated with neuro
developmental disorders and psychiatric outcomes, such as autism, 
schizophrenia, mood disorders, and Alzheimer’s (Bosl et al., 2011, 2018; 
Catarino et al., 2011; Escudero et al., 2006; Mǐsić, Dunkley et al., 2016; 
Yang et al., 2015). Although resting state activity reflects endogenous 
rhythms of underlying brain networks and general brain states, there is 
some evidence to suggest that resting state networks are also system
atically engaged when performing event-related tasks (Barnes et al., 
2009; Rehme and Grefkes, 2013; Schultz et al., 2012; Smith et al., 2009). 
Large cohort developmental studies will be important for establishing 
normative trajectories of dynamic complexity, how deviations confer 
neurodevelopmental risk, and whether the links between variability and 
neuropsychological capacity can be exploited to enhance resiliency and 
self-regulation. 

5. Limitations, conclusions, future directions 

We observed age-dependent increases in brain signal complexity 
from late childhood into mid adolescence at increasingly longer time 
scales. In addition, the spatial pattern of results show that increased 
complexity was most prominent over fronto-central regions, suggesting 
that these functional changes reflect well known maturation trajectories 
in brain structure and function into adolescence. These developmental 
patterns of EEG signal complexity were not captured by age-related 
shifts in PSD scaling. Although our results align with and extend pre
vious findings from other large studies on brain signal complexity in 
childhood (Miskovic et al., 2016), the current sample is cross sectional 
and only includes individuals aged 9–16 years. An absence of longitu
dinal data, or an adult cohort to examine whether signal complexity 
continues to change into adulthood, limits a more comprehensive 
assessment of maturational changes as they relate to EEG complexity. In 
addition, integrating measures of variability, irregularity, and spectral 
power will contribute to a deeper understanding of how EEG complexity 
at multiple temporal scales changes across development (Courtiol et al., 
2016; Kosciessa et al., 2020; Polizzotto et al., 2016). Future studies that 
longitudinally assess intra-individual complexity in resting and 
task-based EEG, coupled with comprehensive behavioural and neuro
cognitive assessment, will be especially valuable to our understanding 
about the functional significance of developmental changes in brain 
signal complexity. 
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Mǐsić, B., Mills, T., Taylor, M.J., McIntosh, A.R., 2010. Brain noise is task dependent and 
region specific. J. Neurophysiol. 104 (5), 2667–2676. https://doi.org/10.1152/ 
jn.00648.2010. 

Misic, B., Vakorin, V.A., Paus, T., McIntosh, A.R., 2011. Functional embedding predicts 
the variability of neural activity. Front. Syst. Neurosci. 5 https://doi.org/10.3389/ 
fnsys.2011.00090. 
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