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Abstract [ MOREONLINE

Background and Objectives COVID-19 Resources
The biologic mechanisms underlying neurologic postacute sequelae of severe acute respiratory For the latest articles,
syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) are incompletely understood. invited commentaries, and
blogs from physicians

Methods around the world

We measured markers of neurologic injury (glial fibrillary acidic protein [GFAP], neurofila- NPub.org/COVID19
ment light chain [NfL]) and soluble markers of inflammation among a cohort of people with

prior confirmed SARS-CoV-2 infection at early and late recovery after the initial illness (defined

as less than and greater than 90 days, respectively). The primary clinical outcome was the

presence of self-reported CNS PASC symptoms during the late recovery time point. We

compared fold changes in marker values between those with and without CNS PASC symp-

toms using linear mixed-effects models and examined relationships between neurologic and

immunologic markers using rank linear correlations.

Results

Of 121 individuals, 52 reported CNS PASC symptoms. During early recovery, those who went
on to report CNS PASC symptoms had elevations in GFAP (1.3-fold higher mean ratio, 95%
CI 1.04-1.63, p = 0.02), but not NfL (1.06-fold higher mean ratio, 95% CI 0.89-1.26, p = 0.54).
During late recovery, neither GFAP nor NfL levels were elevated among those with CNS PASC
symptoms. Although absolute levels of NfL did not differ, those who reported CNS PASC
symptoms demonstrated a stronger downward trend over time in comparison with those who
did not report CNS PASC symptoms (p = 0.041). Those who went on to report CNS PASC
also exhibited elevations in interleukin 6 (48% higher during early recovery and 38% higher
during late recovery), monocyte chemoattractant protein 1 (19% higher during early recovery),
and tumor necrosis factor a (19% higher during early recovery and 13% higher during late
recovery). GFAP and NfL correlated with levels of several immune activation markers during
early recovery; these correlations were attenuated during late recovery.
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Glossary

BMI = body mass index; COVID-19 = coronavirus disease 2019; GFAP = glial fibrillary acidic protein; IFN = interferon; Ig =
immunoglobulin; IL = interleukin; IP = IFN-y induced protein; IQR = interquartile range; MCP-1 = monocyte
chemoattractant protein 1; NfL = neurofilament light chain; PASC = postacute sequelae of SARS-CoV-2 infection; RBD =
receptor-binding domain; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2; TNF = tumor necrosis factor.

Discussion

Self-reported neurologic symptoms present approximately 4 months after SARS-CoV-2 infection are associated with elevations
in markers of neurologic injury and inflammation at earlier time points. Some inflammatory pathways seem to be involved
months after acute infection. Additional work will be needed to better characterize these processes and to identify interventions

to prevent or treat this condition.

There is an urgent need to understand the pathophysiology
that underlies the postacute sequelae of severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2) infection
(PASC), a set of conditions characterized by persistent
symptoms in some individuals recovering from coronavirus
disease 2019 (COVID-19)." Although a spectrum of symp-
toms is reported among individuals experiencing PASC,
neurologic symptoms are particularly common.'” Limited
data are available on the biologic predictors and correlates of
these symptoms.

Neurologic involvement during COVID-19 is common.**
Acute illness is associated with substantial immune
activation®” and CNS dysfunction.*” A handful of studies
have explored the measurement of serum glial fibrillary acidic
protein (GFAP), an intermediate filament protein found in
the cytoskeleton of CNS astrocytes,'® and neurofilament light
chain (NfL), a cytoskeletal protein expressed in the axons of
neurons'" during acute COVID-19."*" In some cases, higher
levels of these markers were identified in patients with neu-
rologic symptoms during acute infection'®>"”; other studies
have not identified such relationships.'”

Recent work has shown structural brain changes in individuals
with a history of COVID-19.”° A high proportion of indi-
viduals experience ongoing physical or mental health symp-
toms in the 2-12 months after COVID-19."*'?* Although
the biology is not well understood, recent work has suggested
that immune activation might play a role in PASC.**** In the
postacute period, inflammatory markers such as interleukin
(IL)-6, tumor necrosis factor (TNF) a, and interferon (IFN)-
v-induced protein (IP)-10 have been associated with ongoing
symptoms.”® These markers, particularly IL-6, may correlate
with long-term neuropsychiatric manifestations of COVID-
19.%° However, there are limited data on the relationship
between biomarkers of immune activation, neurologic injury,
and neurologic symptoms during the postacute period.'”*”*’

In a prior analysis using the broadest possible case definition

of PASC (i.e., presence of any 1 of 32 COVID-19-attributed
symptoms), we found that subtle differences in levels of
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inflammatory markers predicted the presence of persistent
symptoms >90 days after COVID-19.> In the current report,
we investigated a more specific outcome measure defined by 8
self-reported neurologic symptoms. In addition to the pre-
vious measures of inflaimmation, we evaluated markers of
neurologic injury among those with and without this more
specific PASC phenotype. A better understanding of the re-
lationships between these markers among individuals with
neurologic manifestations of PASC could help in identifying
therapies to prevent and/or manage this condition as the
pandemic continues.

Methods

Study Participants and Procedures

Beginning in April 2020, we conducted a prospective longi-
tudinal study of individuals who had recently recovered from
confirmed SARS-CoV-2 infection (Long-term Impact of In-
fection with Novel Coronavirus cohort; NCT04362150).°
Recruitment occurred using a combination of clinician re-
ferrals, paper and web-based advertisements, and mailings to
all patients testing positive at university-affiliated sites. Most
of them (78%) had not been hospitalized during the acute
phase. The determination of eligibility was agnostic to the
presence or absence of persistent SARS-CoV-2-attributed

symptoms.

A research coordinator administered a study questionnaire at
early (<90 days) and late (>90 days) recovery time points
after COVID-19 symptom onset. Participants were queried
regarding the presence of 32 symptoms, including 8 neuro-
logic symptoms (eTable 1, linksIww.com/NXI/A727). A
symptom was recorded as present if it was reported at the time
of the visit and was either new in onset since the time of
SARS-CoV-2 infection or had worsened since the time of
SARS-CoV-2 infection. Symptoms that preceded and were
unchanged after SARS-CoV-2 infection were recorded as
absent. We also collected information about demographics
and medical history and retrospectively collected information
on symptoms experienced during the acute phase of the ill-
ness. Blood was collected by venipuncture at each visit.
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Plasma was isolated using centrifugation of heparinized blood
and stored at —80 °C.

Clinical Outcomes

The primary clinical outcome was CNS PASC, defined as the
presence of at least 1 CNS symptom at a late recovery visit
occurring >90 days from initial COVID-19 symptom onset.
These symptoms included memory/concentration issues,
headache, vision problems, dizziness, and balance issues. We
selected these symptoms because they were believed to best
reflect dysfunction of the CNS and most likely to associate
with biologic processes that could be identified using the 2
primary biomarker outcomes. A secondary analysis examined
any neurologic symptom, which included the following in
addition to the central neurologic symptoms: problems with
smell or taste, smelling an odor that is not really present, and
numbness/tingling (eTable 2, links.lww.com/NXI/A727). In
addition to symptom data collected at the time of the visit, we
also used data collected retrospectively at the time of enroll-
ment regarding the presence or absence of neurologic
symptoms during the acute phase of infection to examine
changes in biomarkers at early and late follow-up. For hos-
pitalized participants, medical records were requested and
reviewed by a study physician. Our rationale for and methods
of symptom ascertainment have been described in detail
elsewhere.*

Biomarker Assays

Plasma was isolated using centrifugation of heparinized blood
and stored at —80 °C. Samples were thawed on the day of
analysis, centrifuged at 10,000g for S minutes, and plated in
Quanterix-supplied 96-well plates. Plasma biomarker mea-
surements were performed using the fully automated HD-X
Simoa platform at 2 time points: early recovery (median 52
days) and late recovery (median 123 days). Those performing
the assays were blinded to clinical information. The primary
analytes were plasma GFAP and NfL measured using the
GFAP Discovery and NF-light Advantage kit assays, re-
spectively (Quanterix). We also measured the levels of
markers that have been found to be important during acute
SARS-CoV-2 infection®” using multiplex (Cytokine 3-PlexA:
IL-6, IL-10, TNFa) or single-plex (IFN-y, IP-10, monocyte
chemoattractant protein 1 [MCP-1]) kits. SARS-CoV-2
receptor-binding domain (RBD) immunoglobulin (Ig) G
was also assayed.

Plasma was assayed according to the manufacturer’s recom-
mended 1:4 dilution for all assays except IFN-y, which was
assayed at the recommended 1:2 dilution, and SARS-CoV2
IgG, which was diluted 1:1,000. To minimize the number of
freeze-thaw cycles, samples were divided up into several batch
runs per assay, and analyzed in 2 Quanterix instruments si-
multaneously with 2 assays each, and then refrozen at —80 °C.
The analysis of all samples was performed in 2-3 separate
batch runs in singlicate within a week period per assay, using
the same kit lot for each assay. All assays were performed
according to the manufacturer’s instructions, and assay
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performance was consistent with the manufacturer’s

specifications.

Statistical Analysis

We log-transformed all biomarkers to reduce the influence of
outliers and to permit interpretation of fold changes. As in
prior work,”® to compare values at early and late time points as
well as assess whether trajectories in marker values differed
between those with and without PASC, we compared the ratio
of the mean transformed values for each biomarker between
those with and without neurologic symptoms using linear
mixed-effects models with terms for PASC, time period (early
vs late recovery), and their interaction. We exponentiated the
coefficients to give the ratio between the untransformed
biomarker values to calculate fold changes and 95% confi-
dence intervals. We used Spearman correlations to evaluate
relationships between levels of neurologic and immune
markers. All p values are 2-sided. We used Stata (version 16.1;
StataCorp, College Station, TX) and Prism (version 9.1.2,
GraphPad Software, L.L.C., San Diego, CA).

Standard Protocol Approvals, Registrations,
and Patient Consents

All participants provided written informed consent. This
study was approved by the Institutional Review Board at the
University of California, San Francisco.

Data Availability
The data that support the findings of this study are available
from the corresponding author, M.J.P., on reasonable request.

Results

Study Participants

This study included 121 individuals with primary outcome
data (Table 1), 92 of whom (76%) had a paired early recovery
sample for analysis. During acute COVID-19, most (89, 74%)
had been symptomatic outpatients while 27 (22%) had been
hospitalized. Five (4%) reported asymptomatic SARS-CoV-2
infection. Of those hospitalized, 23 (85%) required supple-
mental oxygen and 3 (11%) required mechanical ventilation.
SARS-CoV-2—targeted treatment was uncommon: 4 indi-
viduals (15%) received remdesivir, 1 (4%) received conva-
lescent plasma, and S (19%) received steroids. No participant
experienced an acute neurologic event (e.g,, stroke, seizure)
during their hospitalization. All samples were collected before
the availability of SARS-CoV-2 vaccination.

Fifty-two individuals, of whom most were women, reported
CNS symptoms at the late recovery time point (Table 2).
Among them, the most commonly reported CNS symptoms
were trouble concentrating (81%), headache (35%), and
dizziness (35%).

Early recovery visits took place at a median of 52 (inter-
quartile range [IQR] 38-64) days postinfection. Late re-
covery visits took place at a median of 123 (IQR 114-135)
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Table 1 Characteristics of the Study Cohort

All (n =121) CNS PASC (n =52) No CNS PASC (n = 69)
Demographic characteristics
Age, y, median (IQR) 44 (37-57) 48 (38.5-57) 43 (36-55)
Sex at birth
Male 55 (45.5) 15(28.9) 40 (58.0)
Female 66 (54.6) 37(71.2) 29 (42.0)
Gender
Male 54 (44.6) 14 (26.9) 40 (58.0)
Female 65 (53.7) 36 (69.2) 29 (42.0)
Transgender 2(1.7) 2(3.9) 0 (0)
Race/ethnicity
White 69 (57.0) 32(62.8) 37 (56.1)
Hispanic/Latino 30 (24.8) 14 (27.5) 16 (24.2)
Asian 14(11.6) 4(7.8) 10(15.2)
Black/African American 3(2.5) 1(2.0) 2(3.0)
Pacific Islander/Native Hawaiian 1(0.8) 0(0) 1(1.5)
Other/unknown 4(3.3) 1(2.0) 3(4.3)
Sexual orientation
Straight/heterosexual 85(70.2) 35(72.9) 50 (84.8)
Gay/lesbian/same-sex loving 17 (14.0) 9(18.8) 8(13.6)
Asexual 1(0.8) 1(2.1) 0(0)
Questioning/unsure 3(2.5) 3(6.3) 0(0)
Unknown/prefer not to answer 15(12.4) 4(7.8) 11 (15.9)
Highest level of education
Grades 1-6 4(3.3) 1(1.9) 3(4.4)
Grades 7-11 5(4.1) 1(1.9) 4(5.8)
High school/general educational development 12(9.9) 6(11.5) 6(8.7)
At least some college/associate’s degree 11(9.1) 7 (13.5) 4(5.8)
4y of college/bachelor’s degree 54 (44.6) 22 (42.3) 32 (46.4)
At least some graduate school 35(28.9) 15(28.9) 20(29.0)
Clinical characteristics
Preexisting medical conditions
Autoimmune disease 9(7.4) 6(11.5) 3(4.4)
Cancer (treatment within 2 y before COVID-19) 3(2.5) 2(3.9) 1(1.5)
Diabetes 14 (11.6) 7(13.7) 7(10.1)
Lung problems (asthma, COPD, or other lung disease 23(19.0) 12(23.1) 11 (16.2)
active within 5 y before COVID-19)
BMI category
24.9 or less 42 (34.7) 15(28.9) 27 (39.1)
25 to 29.9 37 (30.6) 8 (15.4) 29 (42.0)
Continued
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Table 1 Characteristics of the Study Cohort (continued)

All (n=121) CNS PASC (n =52) No CNS PASC (n =69)
30 or greater 41 (33.9) 29 (55.8) 12(17.4)
Characteristics of acute COVID-19 iliness
Asymptomatic 5(4.1) 1(1.9) 4 (5.8)
Symptomatic/outpatient 89 (73.6) 38(73.1) 51(73.9)
Symptomatic/hospitalized 27 (22.3) 13 (25.0) 14 (20.3)

Abbreviations: BMI = body mass index; COPD = chronic obstructive pulmonary disease; COVID-19 = coronavirus disease 2019; IQR = interquartile range; PASC = postacute
sequelae of SARS-CoV-2 infection; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

All values listed are number (percentage) unless otherwise specified.

days postinfection. The early recovery visit for those reporting
CNS PASC symptoms occurred slightly later than for those
who denied CNS PASC symptoms (60 [IQR 40-67] and 49
[IQR 37-59] days, respectively). The timing of the late recovery
visit was similar between those with and without CNS PASC (123
[IQR 117-137] and 124 [IQR 113-134] days, respectively).

Levels of Neurologic and Inflammatory
Markers Among Those With and Without CNS
PASC Symptoms

We first compared the levels of each marker measured during
early recovery between those who went on to report CNS
PASC symptoms and those who did not (Figures 1-3, eTa-
bles 3 and 4, linkslww.com/NXI/A727). At the early re-
covery time point, those who went on to report CNS PASC
had significantly higher levels of GFAP (1.3-fold higher mean
ratio, 95% CI 1.04-1.63, p = 0.02; Figure 1A), but not NfL
(1.06-fold higher mean ratio, 95% CI 0.89-1.26, p = 0.54;
Figure 1B). Those who went on to report CNS PASC also had
higher levels of cytokines IL-6 (1.48-fold higher mean ratio,
95% CI 1.12-1.96, p = 0.006; Figure 2A), TNFa (1.19-fold
higher mean ratio, 95% CI 1.06-1.34, p = 0.003; Figure 2B),
and the chemokine MCP-1 (1.19-fold higher mean ratio, 95%
CI 1.01-140, p = 0.034; Figure 3A), compared with those
who did not report CNS PASC. Trends for other markers
were in a similar direction, although the differences did not
achieve statistical significance.

We next compared the levels of each biomarker measured
during late recovery between those with and without self-
reported CNS PASC at this visit (Figures 1-3, eTables 3 and
4, links.lww.com/NXI/A727). No significant differences were
detected in GFAP or NfL between those with and without
PASC (Figure 1, A and B). Those reporting persistent CNS
PASC symptoms had persistent elevations in IL-6 (1.38-fold
higher mean ratio, 95% CI 1.07-1.77, p = 0.013; Figure 2A)
and TNFa (1.13-fold higher mean ratio, 95% CI 1.02-1.26,
p = 0.022; Figure 2B). IEN-y was lower (0.71-fold difference,
95% CI 0.55-0.91, p = 0.007; Figure 3C). Levels of SARS-
CoV-2 RBD IgG did not differ between groups at either the
early or late time points (Figure 3C).

Neurology.org/NN

Changes in Levels of Plasma Biomarkers

Over Time

To examine changes in the levels of these markers between
the early and late recovery time points, we used mixed models
to indicate changes over time among those with and without
CNS PASC symptoms (Figures 1-3, eTables 3 and 4, links.
Iww.com/NXI/A727). Significant differences in trends of
NFL (p = 0.041; Figure 1B), IFN-y (p = 0.012; Figure 2C),
and MCP-1 (p = 0.019; Figure 3A) were noted between the
CNS PASC and non-CNS PASC groups. As predicted from
the cross-sectional analyses, consistently higher levels of IL-6
and TNFa were observed, although the trends in the levels of
these markers did not differ between groups (Figure 2, A
and B).

Relationships Between Neurologic and
Inflammatory Markers

To examine relationships between the neurologic markers
and markers of inflammation, we performed nonparametric
pairwise analyses at early and late recovery time points
(Figure 4). GFAP levels weakly correlated with MCP-1 (r =
0.21,p =0.02) and IL-6 (r = 0.18, p = 0.054) at the early time
point and with IL-6 at the late time point (r = 0.19, p = 0.043).
NfL correlated with MCP-1 (r = 0.41, p < 0.001), IL-6 (r = 0.23,
p=0012), IFN-y (r = 028, p = 0.003), and TNFa (r = 0.32, p <
0.001) at the early time point and with MCP-1 (r = 0.31, p <
0.001) at the late time point. In addition, there was a strong
correlation between NfL and SARS-CoV-2 IgG at the early time
point (r = 0.40, p< 0.001).

Influence of Symptoms During Acute Infection
We did not identify significant differences in levels of markers
at either recovery time point between those with and without
prior CNS symptoms during acute infection (eTable S, links.
Iww.com/NXI/A727). For some markers, we noted non-
significant trends toward differential changes over time in
groups with and without CNS symptoms during acute in-
fection. These included NfL (more steep decline among those
with acute CNS symptoms, p = 0.066) and anti-RBD IgG
(less steep decline among those with acute CNS symptoms,
p = 0.063).
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Table 2 PASC Symptoms in Study Cohort

All (n=121) CNS PASC (n = 52) No CNS PASC (n = 69)
Total PASC symptoms
Mean (range) 3.3(0-18) 6.9 (1-18) 0.64 (0-7)
Median (IQR) 1(0-6) 6.5 (4-9) 0(0-1)
PASC, by symptom
Trouble concentrating, trouble with your thinking, or trouble with your memory 42 (34.7) 42 (80.8) 0 (0)
Headache 18 (14.9) 18 (34.6) 0(0)
Trouble with vision, e.g., double vision, blurry vision, or other visual issues 13(10.7) 13(25.0) 0(0)
Dizziness 18 (14.9) 18 (34.6) 0(0)
Trouble with balance or feeling unsteady 13(10.7) 13(25.0) 0(0)
Trouble with taste or smell 27 (22.3) 20 (38.5) 7(10.1)
Smelling an odor that is not actually there 8 (6.6) 7 (13.5) 1(1.5)
Numbness, tingling, or “pins and needles” in your arms or legs 17 (14.1) 16 (30.8) 1(1.5)
Feeling feverish 2(1.7) 2(3.9) 0 (0)
Measured a temperature of >100.4 °F or 38 °C 2(1.7) 2(3.9) 0(0)
Chills, feeling unusually cold 2(1.7) 2(3.9) 0 (0)
Feeling tired or having low energy 41 (33.9) 37(71.2) 4 (5.8)
Cough 13(10.7) 11(21.2) 2(2.9)
Shortness of breath 28 (23.1) 25 (48.1) 3(4.4)
Chest pain 18 (14.9) 13 (25.0) 5(7.3)
Feeling your heart pound or race 15(12.4) 13 (25.0) 2(2.9)
Runny nose or congestion 14 (11.6) 9(17.3) 5(7.3)
Sore throat 7(5.8) 6(11.5) 1(1.5)
Muscle aches 20 (16.5) 19 (36.5) 1(1.5)
Loss of appetite 12 (9.9) 11(21.2) 1(1.5)
Nausea, gas, or indigestion 17 (14.1) 15(28.9) 2(2.9)
Vomiting 1(0.8) 1(1.9) 0(0)
Stomach pain 6 (5.0) 3(5.8) 3(4.4)
Constipation 3(2.5) 3(5.8) 0 (0)
Diarrhea or loose bowels 9(7.4) 8 (15.4) 1(1.5)
New spots or a rash on your skin 10(8.3) 9(17.3) 1(1.5)
Fainting spells 0(0) 0(0) 0 (0)
Pain in your arms, legs, or joints such as knees and hips 9(7.4) 9(17.3) 0(0)
Back pain 7 (5.8) 6(11.5) 1(1.5)
Trouble sleeping 32(26.5) 26 (500) 6(8.7)
Menstrual cramps or other problems with your periods 2(1.7) 2(3.9) 0(0)
Pain or problems during sexual intercourse 0(0) 0(0) 0(0)

Abbreviations: IQR = interquartile range; PASC = postacute sequelae of SARS-CoV-2 infection; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

All values listed are number (percentage) unless otherwise specified.
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Sensitivity Analyses the primary results (no new relationship between NfL and
Because of the relationship between age and levels of NfL,>" ~ PASC was identified) (eTable 6, links.lww.com/NXI/A727).
we performed an age-adjusted analysis which did not change =~ We also repeated the primary analysis adjusting for age, sex,

Figure 1 Cross-Sectional Measurements and Longitudinal Trends in Neurologic Marker Levels Among Those With and
Without CNS PASC

A B ——— Late CNS PASC
+——— No late CNS PASC
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= 90 g
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Z < 804
Y g0
7.5
704 7.0+
Early Late Early Late
recovery recovery recovery recovery

p values reflect group comparisons during early and late recovery as well as comparison of change over time between groups. Early recovery represents a
median of 52 days post-SARS-CoV-2 symptom onset (or positive PCR); late recovery represents a median of 123 days post-SARS-COV-2 symptom onset (or
positive PCR). GFAP = glial fibrillary acidic protein; NfL = neurofilament light chain; PASC = postacute sequelae of SARS-CoV-2 infection; SARS-CoV-2 = severe
acute respiratory syndrome coronavirus 2.

Figure 2 Cross-Sectional Measurements and Longitudinal Trends in Cytokine Levels Among Those With and Without CNS

PASC
A B ———— Late CNS PASC
+——— No late CNS PASC
=0.006 = =0.003 =0.020
p p=0.010 304P p
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E p=0.010 E .
& 0.4 & '
pe = 0.70-
z &
0.3 0.654
024, : 0.604 .
Early Late Early Late
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p values reflect group comparisons during early and late recovery as well as comparison of change over time between groups. Early recovery represents a
median of 52 days post-SARS-CoV-2 symptom onset (or positive PCR); late recovery represents a median of 123 days post-SARS-CoV-2 symptom onset (or
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Figure 3 Cross-Sectional Measurements and Longitudinal Trends in Chemokine Levels and Antibodies Among Those With

and Without CNS PASC
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Early recovery represents a median of 52 days post-SARS-CoV-2 symptom onset (or positive PCR); late recovery represents a median of 123 days post-SARS-
CoV-2 symptom onset (or positive PCR). IgG = immunoglobulin G; IP-10 = IFN-y-induced protein 10; MCP-1 = monocyte chemoattractant protein 1; PASC =
postacute sequelae of SARS-CoV-2 infection; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

and prior hospitalization status which did not change the
interpretation of the results (eTable 7), although some of
the relationships were slightly attenuated. Because the
proportion of individuals with preexisting autoimmune
disease (most commonly thyroiditis) differed between
groups, we adjusted for this and the results were largely
unchanged (eTable 8). The IL-6 relationship was attenu-
ated when we additionally adjusted for body mass index
(BMI) (eTable 9), but the relationships identified with
GFAP and TNFa were maintained.

We performed a secondary analysis in which individuals
reporting any symptom that could be attributed to a primary
neurologic cause (including the peripheral nervous system)
were compared against individuals reporting no neurologic
symptoms (eTable 10, links.Iww.com/NXI/A727). In this
analysis, the elevation in GFAP seen at early follow-up among
those reporting any neurologic PASC symptom was slightly
attenuated (mean ratio 1.24, 95% CI 1.00-1.55, p = 0.052).
Similar elevations were seen in IL-6, MCP-1, and TNFa at
early follow-up among those reporting any neurologic PASC
symptom. At late follow-up, those with any neurologic PASC
had higher levels of IL-6 and TNFa. The difference in IFN-y
seen among those with CNS PASC in the primary analysis
was no longer statistically significant.
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Finally, because we have previously found that PASC is as-
sociated with elevations in certain markers, we performed an
analysis comparing those with CNS PASC with those
reporting no symptoms of any kind during late recovery
(eTable 11, links.Iww.com/NXI/A727). The interpretation of
the primary results was again unchanged, although some of
the findings were attenuated in this comparison against a
smaller group.

Discussion

A large proportion of individuals with PASC experience
symptoms that may be attributed to nervous system
dysfunction,"*** but the pathophysiologic processes un-
derlying such symptoms remain poorly understood. We in-
vestigated the associations between self-reported neurologic
symptoms and plasma biomarkers of neurologic injury and
systemic inflammation during early and late recovery periods
after laboratory-confirmed SARS-CoV-2 infection. We found
that those reporting CNS PASC symptoms approximately 4
months after initial infection had earlier elevations in several
biomarkers, including GFAP, IL-6, and TNFq, suggesting that
the acute infection resulted in direct CNS tissue injury and
systemic inflammation, both of which might conceivably be
causally related to the development of CNS PASC symptoms.
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Figure 4 Relationships Between Biomarkers of Neurologic
Injury and Systemic Inflammation in the Full

Cohort
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Data reflect nonparametric correlations between markers at early and late
recovery time points. Early recovery represents a median of 52 days post-
SARS-CoV-2 symptom onset (or positive PCR); late recovery represents a
median of 123 days post-SARS-CoV-2 symptom onset (or positive PCR).
GFAP = glial fibrillary acidic protein; IFN = interferon; IgG = immunoglobulin
G; IL = interleukin; IP-10 = IFN-y-induced protein 10; MCP-1 = monocyte
chemoattractant protein 1; NfL = neurofilament light chain; PASC = post-
acute sequelae of SARS-CoV-2 infection; SARS-CoV-2 = severe acute re-
spiratory syndrome coronavirus 2; TNF = tumor necrosis factor.

Elevations in IL-6 and TNFa persisted through approxi-
mately 4 months of recovery. Replication of these findings
in larger and more diverse cohorts may be a first step to-
ward identifying interventions for their prevention and/or
management.

We identified elevations in GFAP during early recovery that
were associated with later CNS PASC. Although we did not
observe elevations in NfL at either time point, we did identify a
more precipitous decline among those reporting CNS PASC.
Together, these observations lend support to the possibility of
early injury that might resolve while clinical symptoms persist.
Based on autopsy studies, acute SARS-CoV-2 can access the
CNS.*® A correlation between severity of COVID-19 and levels
of NfL and GFAP in the acute phase has been observed,*"” and
a recent study showed structural brain changes in those with
prior COVID-19.*° However, studies of the trajectories of NfL
and GFAP levels during the weeks after symptom onset have
been inconsistent."”**** OQur findings are in line with studies that
identified a correlation between NfL and/or GFAP with severity
of reported neurologic symptoms during the acute phase, but
found no association between the biomarker levels and persis-
tence of neurologic symptoms after 6 months.>”*® Further work
exploring the dynamics of these markers in cohorts with mea-
surements performed during the period of acute illness, as well as
efforts to identify downstream markers which may persist and be
identified during later recovery, will be informative.

This analysis builds on several observations we and others
have made suggesting that markers of systemic inflammation
may be important in driving PASC.**** Although we
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previously observed associations between such markers and
broadly defined PASC (i.e., any 1 of 32 COVID-19-attributed
symptoms), it is notable that the strength of these associations
was more pronounced in the current analysis using a more
specific PASC outcome (i.e., any 1 of S CNS PASC symp-
toms). At the same time, the fact that those reporting CNS
PASC symptoms had a greater number of PASC symptoms
overall makes it challenging to disentangle a more specific
CNS PASC phenotype from more severe PASC in general. It
suggests that CNS PASC might reflect 1 extreme on a spec-
trum of illness. Further work to compare those with distinct
phenotypic clusters of symptoms, if they exist, could further
elucidate the biology.

Although the purpose of this analysis was to explore the
inflammatory pathways related to CNS PASC and not to
define clinical factors associated with this condition, we
performed several adjusted analyses to assess how these
clinical factors could be involved with the inflammatory
pathways. Adjustment for age, sex, and hospitalization status,
3 factors most strongly associated with PASC in large epi-
demiologic studies,” did not affect the interpretation of the
results. Adjustment for the history of autoimmune disease,
which has been variably suggested to be involved in
PASC,>>*¢ also did not have an effect. Further adjustment
for BMI seemed to attenuate the relationship between PASC
and IL-6, but it is unclear whether it is appropriate to classify
BMI as a confounder or mediator in the relationship be-
tween IL-6 and BMI based on preliminary evidence that
adipose cells could be involved in the pathogenesis of SARS-
CoV-2 infection.”” Further work to understand the re-
lationship between clinical factors, inflammatory pathways,
and PASC will be needed to better define the biology of this

condition.

Dysregulation of IL-6 and TNFa is potentially deleterious in
inflammatory disease states, related to systemic and localized
tissue inflammation and endothelial dysfunction. The reason
for elevations in levels of these markers among those with
CNS PASC is not clear. One possibility is that they represent
residual inflammation from the period of acute infection that
is slower to resolve among those with PASC. However, the
identification of persistent differences months after infection
suggests other possibilities such as a delayed return to im-
munologic homeostasis related to a persistent immune re-
sponse caused by an ongoing pathophysiologic process
or processes (e.g., persistent antigenic stimulation,*® micro-
vascular dysfunction,® and autoimmunity*’). Although the
source of these inflammatory markers is unknown, both IL-6
and TNFa can be produced by CNS cell types as well as by
peripheral immune cells and both cytokines been implicated
in CNS pathology.‘”’42 Similarly, MCP-1 is a chemokine
expressed by macrophages and microglia, and elevations have
been implicated in other neurocognitive conditions.** Further
investigation into the source of IL-6, TNFa, and MCP-1
production among those with CNS PASC symptoms, which
may include coinvestigation of the peripheral blood and CSF
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compartment, will be needed to provide clues to the patho-
physiology underlying this condition.

Interestingly, levels of these biomarkers during early and late
recovery did not differ between those with and without self-
reported neurologic symptoms during acute infection. This
suggests that residual neurologic injury in those with neuro-
symptomatic acute COVID-19, at least among study pop-
ulations comprised primarily of outpatients, is not the most
important causal factor. Although it is likely that the severity
of acute infection is 1 contributor to the development of
PASC, the determination of who will have ongoing elevations
in markers of neurologic injury and/or who will go on to
experience CNS PASC during late recovery seems to be more
complex than identifying those who report neurologic
symptoms during the acute phase of illness. The lack of dif-
ferences in levels of GFAP and NfL at late recovery is evidence
against a large degree of ongoing neurologic injury at this late
time point, despite the persistence of symptoms.

Although the exact pathogenesis of neurologic complications
from SARS-CoV-2 is yet unclear, several hypotheses have
been proposed. These include direct viral infection, systemic
inflammation, compartmentalized neuroinflammation, and
sequelae of thrombotic injury. Viral tropism for human as-
trocytes has been demonstrated in vivo, ¥ postmortem brain
samples from patients with COVID-19 have shown prefer-
ential infection of astrocytes,*> and a case-control study of
brain samples uncovered altered gene expression in some
astrocytes.*® Astrocyte dysfunction, as reflected in increased
plasma GFAP observed here, could relate to the emerging
cognitive PASC complaints, which can encapsulate attention
and working memory deficits. Direct invasion of neurons has
been suggested based on their expression of ACE-2 receptor,
but SARS-CoV-2 viral particles have been only rarely dem-
onstrated in several neuropathologic autopsy studies and
studies of CSF during acute infection.*”*® In addition, there is
evidence of multifocal inflammatory infiltrates consisting
of lymphocytes as well as activated innate immune cells in
autopsy tissue.>> Further investigation of PASC will require
in-depth exploration of what is occurring in the CNS com-
partment during both acute and recovery time periods.

Our analysis has several important limitations. First, although
recruitment was agnostic to the presence of persistent
symptoms, the cohort is a convenience sample that is unlikely
to be representative of the general population of individuals
recovering from COVID-19 or experiencing PASC. For ex-
ample, our study population may be enriched for people with
more severe symptoms because such individuals may be more
motivated to participate in research. If that were the case, the
associations we identified may hold only for certain subpop-
ulations of individuals experiencing PASC. Even so, the cur-
rent understanding of PASC is so limited that we believe the
identification of these biological associations remains highly
informative. Second, we relied on self-report to ascertain the
presence of symptoms, and many symptoms are not clearly
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attributable to a neurologic cause. This risks misattribution
of symptoms to neurologic causes and therefore mis-
classification of individuals as having CNS PASC. However, as
of the time of this analysis, the World Health Organization
criteria for diagnosis of PASC are reliant on self-report and do
not require objective testing. Although the definition is not
optimal, we believe that our case definition appropriately
captures this condition as it is currently understood. Studies
that do include objective measurements (which may include
detailed neurologic history and examination, neurocognitive
and neuropsychiatric testing, and/or neuroimaging) are likely
to be more informative and are urgently needed. Third, it is
difficult to disentangle neurologic symptoms from other non-
neurologic symptoms which might co-occur, and it is possible
that differences in these markers are driven by more severe
PASC in general rather than neurologic symptoms specifically.
Although we collected data related to comorbidities known to
be important in both acute COVID-19 and PASC (e.g, di-
abetes, lung disease, obesity), we did not obtain complete
medical and psychiatric histories as part of the study and we did
not have available psychiatric symptom data for this analysis;
affective symptoms may also co-occur and be inter-related.””
Fourth, we measured a limited set of biomarkers, and there are
likely to be others that are important in the pathophysiology of
this condition. Our measurements were all taken in blood, and
although there are established relationships between blood and
CSF measurements of these markers in other disease condi-
tions, these have yet to be established for COVID-19 and were
not seen in at least 1 study.'® Furthermore, although they are of
mechanistic interest regardless of their cells of origin, the
markers we measured are not CNS-specific and may be gen-
erated peripherally. For this reason, more detailed studies that
include CSF analyses will be critical. Fifth, for reasons described
in the statistical methods literature,*° we elected to eschew
adjustments for multiple comparisons because the goal of this
study was to identify promising biomarkers of a poorly un-
derstood condition; we instead opted to report our analyses
comprehensively without selective reporting of statistically
significant findings. Finally, prepandemic specimens were not
available from these volunteers, and it is therefore possible that
elevations in markers of interest among those with CNS
PASC preceded SARS-CoV-2 infection. Regardless, we believe
that the observations made here provide important prelimi-
nary clues as to potentially important biological pathways to
inform more detailed neurologic evaluations and potential
therapeutic studies.
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