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To quantify the potential impact of rotavirus vaccines and identify strategies
to improve vaccine performance in Bangladesh, a better understanding of
the drivers of pre-vaccination rotavirus patterns is required. We developed
and fitted mathematical models to 23 years (1990–2012) of weekly rotavirus
surveillance data from Dhaka with and without incorporating long-term and
seasonal variation in the birth rate and meteorological factors. We performed
external model validation using data between 2013 and 2019 from the
regions of Dhaka and Matlab. The models showed good agreement with
the observed age distribution of rotavirus cases and captured the observed
shift in seasonal patterns of rotavirus hospitalizations from biannual to
annual peaks. The declining long-term trend in the birth rate in Bangladesh
was the key driver of the observed shift from biannual to annual winter rota-
virus patterns. Meteorological indices were also important: a 1°C, 1% and
1 mm increase in diurnal temperature range, surface water presence and
degree of wetness were associated with a 19%, 3.9% and 0.6% increase
in the transmission rate, respectively. The model demonstrated reasonable
predictions for both Dhaka and Matlab, and can be used to evaluate the
impact of rotavirus vaccination in Bangladesh against changing patterns of
disease incidence.
1. Introduction
Rotavirus remains an important diarrhoeal disease among children less than
5 years of age globally with significant morbidity and mortality in low-
and middle-income countries (LMICs), particularly in sub-Saharan Africa and
SouthAsia. Together, these two regions accounted formore than 85%of estimated
global rotavirus deaths among children less than 5 years between 2000 and 2013
[1]. However, rotavirus vaccine impact has been found to be low to moderate in
these regions [2]. In addition, the cost of treatment for rotavirus episodes imposes
an economic burden on households in South Asia [3,4]. In order to quantify
vaccine impact and identify strategies to improve both the performance and
cost-effectiveness of rotavirus vaccines in these settings, a better understanding
of the drivers of pre-vaccination rotavirus patterns is required.

In Bangladesh, rotavirus is the leading cause of severe diarrhoea, account-
ing for about two-thirds of acute gastroenteritis (AGE) hospitalizations and
about 3% of all deaths among children less than 5 years old [5,6]. Rotavirus
transmission occurs year-round with a predominant seasonal peak during the
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dry season (November–February). Almost half of hospitaliz-
ations occur among infants 6–11 months old [6,7]. Several
studies reported an association of rotaviral diarrhoea with
hypernatremia and convulsion in children [8]. The high mor-
bidity but relatively low mortality rates in Bangladesh can be
attributed in part to the widespread availability of oral rehy-
dration salts for early treatment at home [9,10]; the future
introduction of rotavirus vaccine is likely to further reduce
the morbidity and mortality rate.

In Bangladesh, changes in the epidemiology of rotavirus
such as increases in the proportion of diarrhoea attributable
to rotavirus and genotype circulation have been reported
[5,11,12]. In order to evaluate the impact of rotavirus vacci-
nation against changing epidemiological patterns of disease
burden, it is necessary to identify potential drivers of rota-
virus incidence in the absence of vaccination. Some of these
drivers of pre-vaccination rotavirus epidemiology could
also interfere with vaccine performance and contribute to
the differential rotavirus vaccine impact between and
within LMICs and high-income settings [13–16].

Anumberof studies have attempted to assess the importance
of demographic and environmental factors as potential drivers
of the spatio-temporal pattern of rotavirus incidence [17–21].
For instance, Pitzer et al. [18] demonstrated that high birth rates
in tropical countries may contribute to the observed lack of rota-
virus seasonality in these settings. Nevertheless, meteorological
variables are likely to influence rotavirus seasonal patterns.
Temperature and rainfall have been found to be important fac-
tors controlling both virus survival outside the host and
dispersal and persistence in the environment [22,–24]. In South
Asia, Jagai et al. [25] found an inverse relationship between
both temperature and rainfall and the riskof rotavirus infections,
while Hasan et al. [26] found a positive association between
rotavirus and diurnal temperature variations.

While most modelling studies have assessed the impact of
demographic and environmental factors independently,
further studies are needed to assess their combined effects
on rotavirus incidence. Here, we use mathematical models
of rotavirus transmission dynamics to investigate the impor-
tance of long-term and seasonal variations in the birth rate
and meteorological indices, including diurnal temperature
range (dtr), degree of wetness (dow) and surface water pres-
ence (wpre), as potential drivers of temporal variations of
rotavirus incidence in Dhaka, Bangladesh. We compared 23
years of observed weekly rotavirus cases with those pre-
dicted by models with and without incorporating seasonal
variation in the birth rate and meteorological indices. For
the model to be used to evaluate future benefits of rotavirus
vaccination in Bangladesh, it is important that the model can
reproduce the observed pre-vaccination rotavirus patterns.
Thus, the predictive potential of the models was assessed
by performing external validation using weekly data between
2013 and 2019 from Dhaka and Matlab.
:

2. Methods and data
(a) Rotavirus data
Weekly records of confirmed rotavirus-positive cases for
Dhaka were obtained from the International Centre for
Diarrheal Disease Research, Bangladesh (icddr,b). The sur-
veillance platform has been described previously [5,27,29].
Briefly, stool samples were collected from a systematic
sample of diarrhoeal patients presenting to iccdr,b hospital
in Dhaka; every 25th patient (4%) was sampled between
1990 and 1995, while every 50th patient (2%) has been
sampled since 1996. Stool samples were tested for rotavirus
using ELISA. The rotavirus-positive cases were aggregated
into 17 age groups (monthly intervals for infants less than
1-year-old, yearly intervals from 1 year to less than 5 years
of age, and those aged 5 years or older). To examine the
potential changes in rotavirus patterns over time, we divided
the dataset into two parts: 1990–2001 (part 1) and 2003–2012
(part 2). The data for 2002 were used as a transition period to
evaluate the best-fit models from the sub-data. In addition,
the best-fit models were validated using weekly confirmed
rotavirus-positive cases between 2013 and 2019 (part 3).

We also performed external model validation using
weekly rotavirus surveillance data obtained from Matlab
Hospital between 2013 and 2019.Matlab is a rural area situated
55 km southeast of Dhaka and forms part of the icddr,b’s
Diarrhoeal Disease Surveillance System (DDSS). Unlike
Dhaka, stool samples are collected from all diarrhoeal patients
coming from the DDSS area and attending theMatlab Hospital
and tested for rotavirus using ELISA. Similar to Dhaka, the
rotavirus-positive cases were aggregated into 17 age groups.
(b) Meteorological data and indices
Daily minimum and maximum 2 m air temperature data
were obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim reanalysis product
[30], while daily rainfall data were obtained from Climate
Hazards group Infrared Precipitation with Stations (CHIRPS)
[31]. These are reanalysed data that combine model outputs
with earth observational datasets. Previous studies have used
hydrometeorological variables derived from these earth
observations to predict rotavirus [32,33]. Both datasets were
extracted over Dhaka and Matlab for the study period 1990–
2019. We used these meteorological variables to derive three
indices: diurnal temperature range (dtr), degree of wetness
(dow) and surface water presence (wpre).

The daily dtr is given by

dtr ¼ Tmax � Tmin, ð2:1Þ
where Tmax and Tmin are the daily maximum and minimum
temperatures, respectively. The daily dtr was normalized
and then averaged to generate a weekly time series. We
used dtr rather than temperature because it better captures
the combined effects of cooler night-time temperatures and
lower humidity, both of which favour virus survival [34]; fur-
thermore, it demonstrated strong associations with rotavirus
incidence in Dhaka in a previous analysis [26].

The weekly dow [35] is given by

dow

¼ (total rainfall per week)�(number of rainy days per week)
7

ð2:2Þ

The dow was normalized before incorporating it into the
model. We used the dow instead of actual rainfall to reduce
sensitivity to isolated heavy storm events within a week.

The daily wpre is an output from a simple water balance
model developed by Asare et al. [36,37] that requires only
rainfall data and other estimated fluxes to predict fractional
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Figure 1. Schematic of the mathematic model for rotavirus transmission
dynamics. Model parameters are described in electronic supplementary
material, table S2.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212727

3
coverage of surface water over a given area. The model
equation is given by

dwpond

dt
¼ 2

rhref

wref

wpond

� �r=2

((Q(wmax � wpond)

þ Pwpond)(1� f)� wpond(Eþ fImax)),

ð2:3Þ

where wpond is the daily fractional flood water coverage, ρ is
the geometrical shape factor, wmax is the maximum flood
water coverage, href is the reference flood water depth, wref

is the reference flood water coverage, Q (derived from the
soil conservation service curve number method [38]) is the
runoff, P is the rainfall, E is the evaporation, Imax is the maxi-
mum infiltration and f ¼ wpond=wmax. The values of the fixed
model parameters are listed in the electronic supplementary
material, table S1. The daily fractional flood water coverage
was normalized and aggregated to generate a weekly time
series. The wpre provides a proxy for flooding events.

Since dow and wpre are correlated and highest during the
monsoon season, we evaluated them in separate models with
dtr, which peaks in the winter season. To interpret the effect
sizes associated with each meteorological variable, we multi-
plied by the standard deviation to convert back to the
original scale.

(c) Demographic data
Data on long-term trends in the crude birth rate, crude death
rate, average annual rate of population change and total
population for Dhaka were obtained from the World Urban-
ization Prospects database [39]. We used linear interpolation
to estimate values for the weekly birth and death rates per
1000 population, and estimated the net rate of immigration
as the average annual rate of population change minus the
difference between the crude annual birth and death rates.
We verified that our model was able to reproduce the
observed total size and age distribution of the Dhaka
population over time.

To explore the potential impact of seasonality in the
birth rate, we used data from a longitudinal study of about
2500 women across 14 villages in Matlab, Bangladesh that
were followed for a period of 4 years [40]. As the birth sea-
sonality in Dhaka is unknown, we assumed that it was
either strongly seasonal as observed in Matlab or exhibited
no seasonality. We fitted a sinusoidal function to the monthly
birth rate data from Matlab to estimate the amplitude and
timing (i.e. phase) of seasonality in the birth rate, then
multiplied the resulting function by the birth rate of Dhaka
to obtain the seasonal birth rate (equation 2.4) used in the
models:

Bs(t) ¼ Blt(t)� 1þ 0:42� cos
2pt� 48
52:18

� �� �
, ð2:4Þ

where Bs and Blt are the seasonal and long-term trend in
birth rates for Dhaka, respectively. We assumed that the
amplitude and timing of birth seasonality remained consist-
ent over time.

(d) Model description
We modified the mathematical model of rotavirus trans-
mission developed by Pitzer et al. [17] (figure 1) to
incorporate seasonal variation in the birth rate and meteoro-
logical indices. The model assumes that newborns enter the
maternal compartment M (which was divided into six sub-
compartments to account for non-exponential waning of
maternal antibodies) at a rate equal to the birth rate B and
are protected from rotavirus infection by maternal antibodies.
This immunity wanes at a rate ωm, after which infants become
fully susceptible to primary infection (S0). Primary infections
occur at a rate λ, and infected individuals (I1) remain infec-
tious for an average period of 1/γ1, with a fraction (d1)
developing severe rotavirus diarrhoea. Recovered individuals
enter the R1 compartment and are assumed to have tempor-
ary immunity to reinfection that wanes at a rate ω. Following
the waning of immunity, individuals become susceptible to
secondary infection (S1), which occur at a reduced rate σ1λ.
The secondary infected individuals (I2) are less likely to
develop severe diarrhoea (d2), have lower infectiousness (by
a factor ρ2) and recover at a faster rate γ2 into the R2 compart-
ment. Again, immunity wanes at the same rate ω, after which
individuals move into the partially immune susceptible com-
partment (S2); subsequent infections occur at a further
reduced rate σ2λ, but are assumed to be mostly asymptomatic
or mildly symptomatic (proportion severe d3 was estimated).
The partially immune infected individuals (I≥3) have infec-
tiousness reduced by a factor ρ≥3 and recover at a rate γ2.
The recovered individuals enter the R≥3 compartment,
where their immunity wanes at the same rate ω, after which
individuals return to the S2 compartment.
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The force of infection (i.e. the rate of transmission from
infected to susceptible individuals) at time t in weeks, λ(t),
is given by

l(t) ¼ b(t)(I1(t)þ r2I2(t)þ r�3I�3(t)), ð2:5Þ
where β(t) is the seasonally varying transmission parameter.
To determine the number of harmonic terms to include in the
model, we performed wavelet analysis on the weekly rota-
virus-positive time-series data for 1990–2019 and subsets of
data divided into part 1 (1990–2001), part 2 (2003–2012)
and part 3 (2013–2019; validation period).

For our default model (model 0), we assumed sinusoidal
forcing with both annual and biannual harmonic terms
(equation (2.6a)):

Model 0:

b(t) ¼ b0 1þ b1cos
2pt� ;1
52:18

� �
þ b2cos

2pt� ;2
26:09

� �� �
: ð2:6aÞ

We then extended this model to estimate the contribution of
meteorological forcing in addition to the sinusoidal forcing,
evaluating dtr and either dow (model A, equation (2.6b))
or wpre (model B, equation (2.6c)) as best explaining the
influence of rainfall:

Model A:

b(t) ¼ b0

�
1þ b1cos

2pt� ;1
52:18

� �
þ b2cos

2pt� ;2
26:09

� �

þ bdtr(dtr)þ bdow(dow)
�
, ð2:6bÞ

Model B:

b(t) ¼ b0

�
1þ b1cos

2pt� ;1
52:18

� �
þ b2cos

2pt� ;2
26:09

� �

þ bdtr(dtr)þ bwpr(wpre)
�
, ð2:6cÞ

where β0 is the baseline transmission rate, b1 is the amplitude
of annual seasonal forcing, b2 is the amplitude of biannual
seasonal forcing, ϕ1 is the annual seasonal offset, ϕ2 is the
biannual seasonal offset, bdtr is the scaling parameter for dtr,
bdow is the scaling parameter for dow and bwpre is the scaling
parameter for wpre. The model input parameters are defined
in the electronic supplementary material, table S2.

(e) Model-fitting approach
We fitted the models to the 23 years of weekly age-stratified
rotavirus surveillance data fromDhaka Hospital using a maxi-
mum-likelihood framework; we estimated 8 to 10 parameters
while fixing the remaining model parameters at values ident-
ified from the literature (see electronic supplementary
material, table S2). We assumed that the confirmed cases of
rotavirus in each week and age group followed a Poisson dis-
tribution with mean equal to the model-predicted number of
severe rotavirus cases multiplied by an estimated reporting
fraction (h). The 95% confidence intervals for parameters of
interest (R0, 1/ωm, b1, ϕ1, b2, ϕ2, bdtr, bdow and bwpre) were deter-
mined by profile likelihoods. We fitted the models with and
without incorporating seasonal variation in the birth rate.
Themodelswere fitted to both thewhole time series (complete:
1990–2012) and subsets of the data (part 1: 1990–2001 and part
2: 2003–2012) to estimate the model parameters. Finally, we
performed externalmodel validation by comparingmodel pre-
dictions to weekly rotavirus surveillance data between 2013
and 2019 from Dhaka and Matlab. We used demographic
data for Matlab obtained from the World Urbanization
Prospects database [39].
3. Results
The average annual incidence of rotavirus was more than
500 confirmed cases in Dhaka between 1990 and 2019. The
highest number of confirmed rotavirus cases per week was
41 (figure 2a). Observed rotavirus cases showed a shift in sea-
sonal patterns from predominantly biannual to annual peaks
towards the end of the model-fitting period (1990–2012)
(figure 2b). The annual epidemics persisted and increased in
intensity during 2013–2019 (validation period) (figure 2b).
Rotavirus cases occurred year-round, with the highest pro-
portion of cases (46%) occurring during the winter months
(November–February) and the peakoccurring either inDecem-
ber or January. Minor peaks also usually occurred during the
monsoon season (July–October), but occasionally during the
pre-monsoon hot season (March–June), accounting for about
27% and 26% of the cases, respectively (figure 2c).

Comparing part 1 (1990–2001) and part 2 (2003–2012)
(figure 2c), there was a slight increase in the proportion of
cases occurring in the winter months (part 1: 41%; part 2:
45%) and a reduction in the proportion of cases occurring
during the monsoon months (part 1: 32%; part 2: 26%).
While there were more cases during the monsoon season
than the pre-monsoon season in part 1, the proportion of
cases in these two seasons were similar in part 2. Peak
cases occurred in either December or January for part 1, but
predominantly in January for part 2. For part 3 (validation
period), more than half (55%) of rotavirus cases occurred
during the winter months (figure 2c). There was a compar-
able proportion of cases occurring during the remaining
periods (monsoon: 22%; pre-monsoon: 23%).

Figure 2d shows the temporal patterns of the demo-
graphic and meteorological drivers used for the model. The
birth rate showed a consistent substantial decrease from 36
births per 1000 people in 1990 to 18 births per 1000 people
in 2019. Diurnal temperature range peaked during winter,
while both surface water presence and degree of wetness
peaked during the monsoon periods (figure 2d ).

All the models were able to reproduce the overall temporal
patterns in rotavirus incidence, particularly the shift from
biannual to annual seasonal peaks and the increasing trend
in the peak season outbreaks of rotavirus towards the end of
the study period (figure 3a). The models also performed well
in estimating the proportion of rotavirus cases occurring in
the winter and monsoon seasons (figures 2c and 3b). Table 1
summarizes the estimated parameter sets that provided the
best fit to the complete data and the associated Bayesian
information criterion (BIC) values. Based on the BIC, models
incorporating both the seasonal birth rate, dtr andwpremeteor-
ological indices (model Bsbr) provided the best fit to the data
(table 1). However, the models mostly underestimated the
winter peaks in the early part of the study period, specifically
1994–1995 and 1997, and also failed to capture a notable
monsoon outbreak in 2004 (figure 3a).

The proportion of rotavirus cases in the monthly less than
1-year-old age groups increased steadily until 8 months of
age (figure 3c). Over half of the cases (51%) occurred in
infants aged 5–11 months, while only 3% of cases occurred
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Figure 2. Time series of observed rotavirus cases and demographic and meteorological model inputs. (a) Weekly rotavirus cases in Dhaka between 1990 and 2019.
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in infants less than 3 months of age. Only 5% of cases occurred
in 2- to 4-year-olds, and 8% of cases were in persons aged
greater than or equal to 5 years (figure 3c). Generally, the
models were able to reproduce the observed age distribution
patterns and accurately predicted both the trend and peak
age of hospitalizations (8 months) for infants less than
1 year old (figure 3c). In addition, the models showed good
agreement with the observed trend and proportion of cases in
children aged 2–4 years and greater than or equal to 5 years
(figure 3c). However, all models slightly overestimated the pro-
portion of rotavirus cases in the 1-year-old age group and
underestimated cases in the 7-, 8- and 10-month-old age groups.

Comparing part 1 and part 2, our models were able to
estimate the timing of winter peaks and, in addition, the
biannual and mostly annual outbreaks in part 1 and part 2
(figure 4a,b), respectively. The age distribution of rotavirus
cases was similar in part 1 and part 2, which was consistent
with the estimates from our models (electronic supplemen-
tary material, figure S1). Based on BIC, the best model for
both part 1 and part 2 is the same model including a seasonal
birth rate, dtr and wpre (electronic supplementary material,
table S3). Both best-fit models were able to predict weekly
rotavirus patterns in 2002 (figure 4c). The best model for
part 1 showed a remarkable agreement with the timing and
intensity of the winter peak in 2002, but slightly overesti-
mated the monsoon season rotavirus activity. On the other
hand, the best-fit model for part 2 satisfactorily predicted
monsoon rotavirus activity but underestimated the size of
the winter peak.

The relative effect of the meteorological indices on the
transmission rate, given by the scaling parameters (bdtr,
bdow, bwpre), was greatest for dtr (electronic supplementary
material, table S4). A 1°C increase in dtr was associated
with a 19% increase in the rotavirus transmission rate in the
best-fit model; this effect was greater for part 2 (34%) com-
pared to part 1 (2.3%). The wpre consistently contributed to
a greater proportion of the transmission rate (3.9% for a 1%
increase in wpre) compared to dow (0.6% for a 1 mm increase
in dow for the model including seasonality in the birth rate).
The effect estimates for wpre and dow were generally consist-
ent between part 1 and part 2 (electronic supplementary
material, table S4).
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The model validation showed that the best-fit model was
able to accurately predict the observed peak timing, duration
and intensity of rotavirus activity in winter for both Dhaka
and Matlab (figure 5a,b). However, the best-fit model consist-
ently overestimated rotavirus cases during the pre-monsoon
and monsoon seasons. Based on mean absolute error, the
best-fit model for part 2 has a slightly better predictive per-
formance for both Dhaka and Matlab (Dhaka complete:
5.89, part 1: 5.33, part 2: 5.30; and Matlab complete: 3.68,
part 1: 3.44, part 2: 3.40). The proportion of cases occurring
during winter were comparable (Dhaka: 55%; Matlab: 54%),
but the proportion of cases occurring in the monsoon
season were higher in Matlab than Dhaka (figure 5c). The
model underestimated and overestimated the proportion of
cases occurring during the winter and monsoon seasons,
respectively. The models were able to predict the observed
trends in the age distribution but over- or underestimated
the proportion of cases in some age groups (electronic
supplementary material, figure S2).
The intensity of the biannual peak quantified by the wave-
let power spectrum was greater than the annual in part 1
(biannual: 0.13; annual: 0.06), but the opposite was true for
part 2 (biannual: 0.17; annual: 0.30) and part 3 (biannual:
0.03; annual: 0.85) (electronic supplementary material, figures
S3a and S4a). Wavelet analysis of best-fit models with (elec-
tronic supplementary material, figure S3b) and without
(electronic supplementary material, figure S3c) seasonality in
the birth rate shows that both models were able to reproduce
the observed shift from the predominantly biannual cycle in
part 1 to a stronger annual signal in part 2. However, when
we fitted the model assuming a fixed birth rate (using the
average birth rate between 1990 and 2012) rather than the
declining long-term trend in the birth rate, the model failed
to reproduce the observed shift in rotavirus patterns (electronic
supplementary material, figure S3d).

There is a substantial increase in the intensity of the annual
signal in the validation period (2013–2019) compared to the
fitting period for Dhaka (electronic supplementary material,



Table 1. The best-fit model parameters for the complete dataset (1990–2012). Values in parentheses indicate 95% confidence intervals. Here, sbr represents
the models using seasonal birth rate, while br represents models assuming a non-seasonal birth rate. The best model (model Bsbr) is italicized. R0: basic
reproductive number, ωm: duration of waning maternal immunity, d3: proportion of subsequent infections that are severe, h: proportion of severe diarrhoea
cases reported, b1: amplitude of annual seasonal forcing, ϕ1: annual seasonal offset, b2: amplitude of biannual seasonal forcing, ϕ2: biannual seasonal offset,
bdtr: scaling parameter for dtr, bdow: scaling parameter for dow, bwpre: scaling parameter for wpre and BIC: Bayesian information criterion.

parameter

model 0 model A model B

sbr br sbr br sbr br

R0 49 (48.6–49.5) 51.9 (51.1–52.8) 26.7 (26.5–27.0) 35.7 (35.2–36.4) 26.2 (25.9–26.4) 39.3 (38.8–40.1)

1/ωm (weeks) 26.9 (26.5–27.2) 28.1 (27.6–28.5) 28.9 (28.5–29.2) 29.1 (28.6–29.5) 28.7 (28.6–29.1) 28.9 (28.4–29.3)

d3 4.10 × 10−4 3.90 × 10−4 3.60 × 10−4 3.70 × 10−4 3.60 × 10−4 3.70 × 10−4

h 0.043 0.042 0.051 0.045 0.051 0.045

b1 0.116 (0.115–0.118) 0.095 (0.088–0.101) 0.103 (0.098–0.126) 0.106 (0.092–0.116) 0.114 (0.107–0.130) 0.095 (0.086–0.106)

ϕ1 (weeks) 10.8 (10.6–11.0) 12.6 (12.1–13.0) 4.761 (4.7–7.0) 11.8 (11.0–12.5) 5.7 (5.4–8.6) 11.9 (11.2–12.6)

b2 0.022 (0.022–0.024) 0.023 (0.022–0.025) 0.046 (0.044–0.051) 0.036 (0.033–0.038) 0.047 (0.045–0.050) 0.032 (0.029–0.034)

ϕ2 (weeks) 33.2 (33.0–33.5) 33.5 (33.2–33.8) 32.6 (32.2–32.8) 33.2 (32.8–33.5) 32.5 (32.3–32.8) 33.1 (32.75–33.4)

bdtr 0.357 (0.354–0.364) 0.179 (0.172–0.187) 0.367 (0.361–0.372) 0.128 (0.122–0.136)

bdow 0.148 (0.057–0.293) 0.843 (0.607–0.951)

bwpre 0.244 (0.175–0.481) 0.385 (0.266–0.495)

BIC 34 111 34 158 34 065 34 126 34 036 34 114
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figure S4a). A similar predominant annual signal was observed
for Matlab (electronic supplementary material, figure S4b).
The best-fit model (model Bsbr) was able to predict the
observed increase in annual seasonal epidemics of rotavirus
(electronic supplementary material, figure S4c,d).
4. Discussion
Using mathematical models fitted to weekly rotavirus cases
in Dhaka, we demonstrated for the first time that a consistent
reduction in the birth rate over time in Bangladesh can help
to explain the shift from biannual to annual seasonal patterns.
Furthermore, seasonality in the birth rate and meteorological
indices are important factors in capturing the amplitude and
timing of seasonal peaks, particularly during the winter
season. Overall the models demonstrated good performance
in predicting both temporal patterns and the age distribution
of rotavirus cases in Dhaka and Matlab.

The year-round circulation of rotavirus with major peaks
during the winter season (November–February) in Dhaka is
similar to what has been found in other parts of the country.
Satter et al. [6] found that rotavirus contributes to more than
80% of acute AGE hospitalizations among children less than
5 years old between November and February across seven
hospitals in Bangladesh. This also is consistent with what
has been observed in other tropical regions [25,41].

In addition, we found a shift from biannual to nearly annual
rotavirus incidence in Dhaka beginning around 2010, which our
models were able to reproduce. Among the demographic and
environmental variables considered, the declining long-term
trend in the birth rate was identified as a key driver of this shift
towards more annual seasonal epidemics. When we fitted the
best model (model Bsbr) assuming a constant birth rate (using
the average birth rate between 1990 and 2012), we could not
reproduce the shift frombiannual to annual epidemics (electronic
supplementary material, figures S3d and S5). This agrees with
the study of Park et al. [20], who found a high birth rate as an
important factor contributing to biannual peaks of rotavirus in
Niger. The declining birth rate and an improvement in water
treatment have also been hypothesized as potential drivers of a
shift towards more seasonal rotavirus epidemics in Spain [42].
Similarly, Pitzer et al. [18] demonstrated that countries with
lower birth rates tended to experience stronger seasonal rotavirus
patterns compared to countrieswithhigher birth rates. Therewas
no significant difference in the meteorological indices between
part 1 and part 2 (electronic supplementary material, figure S6),
althoughwe found that dtrmay be contributing more to season-
ality in rotavirus transmission during the latter part of the study
period. For instance, while there was a more than 14-fold differ-
ence in the relative effect of dtr on the transmission rate between
part 1 andpart 2, comparable effectswere found forwpre and dow
for the two parts. Given that dtr is a useful indicator of climate
change, its potential effects on rotavirus incidence under
climate change, combined with changes in demographic charac-
teristics, require further detailed investigation. Nevertheless, it is
possible that factors such as improvements in sanitation and
nutrition [11,43] and changes in rotavirus genotype circulation
[44] may play a role in the altered transmission patterns. Future
studies should explore whether these factors also contribute to
the observed changes in rotavirus patterns.

Comparing models with and without seasonality in the
birth rate revealed that the inclusion of seasonal births
substantially improved the fit of the models based on BIC
scores (table 1; electronic supplementary material, table S3).
Although we only had data on birth seasonality in Matlab
from the late 1970s, it is possible that seasonality in the birth
rate in Bangladesh is substantial. The timing of the birth peak
in November (electronic supplementary material, figure S7)
may increase the availability of susceptible infants in the
winter season, after maternal antibodies have waned, thereby
facilitating the winter outbreaks. Since a high proportion of
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susceptible infants are infected during the winter period, there
will be fewer susceptible infants remaining after the winter
peak season, particularly during the latter part of the study
period (2003–2012) and during the model validation period
(2013–2019) when birth rates were lower, leading to decreasing
monsoon peaks. Other studies have also demonstrated the
importance of birth seasonality in predicting the timing and
amplitude of measles epidemics [45,46].

Themeteorological indices may also play an important role
in predicting the timing of rotavirus epidemics, which predo-
minately occur in January in Dhaka. Thus, meteorological
indices derived from earth observations can be incorporated
into dynamical models to improve predictions of rotavirus
infections. Rotavirus survival is enhanced during cold dry
periods, which is supported by the large coefficient of dtr esti-
mated for part 2 and the consistency in the peak in dtr and
rotavirus incidence (electronic supplementary material, figure
S6). Other studies have shown that rotavirus peaks in the dry
cold period in the tropics and exhibits inverse associations
with rainfall, temperature and relative humidity [25,41]. How-
ever, variation in the susceptible population likely influences
the disease seasonality. This is consistentwith findings byMar-
tinez et al. [19] who, using the same flood forcing, found
differences in population density as a key driver of the
observed differences in rotavirus seasonality between the
main Dhaka city and peripheral towns surrounding it.

Contrary to the shift in temporal patterns of rotavirus from
the 1990s to the 2000s, there was no significant change in the
age distribution. The stable age distribution provides the
basis for future examination of how vaccination could shift
the age distribution of rotavirus cases. There is an agreement
between the observed (60%) and predicted (56–58%)



35

40

45

30

25

20

15

10

5

0
2013 2014 2015 2016 2017

observed complete part 1 part 2

observed complete part 1 part 2

2018 2019 2020

date

2013

0 10 20 30 40 50 60 70 80 90 100
seasonal distribution of rotavirus

2014 2015 2016 2017 2018 2019 2020

date

no
. s

ev
er

e 
R

V
G

E
ca

se
s 

(p
er

 w
ee

k)

35

40

45

30

25

20

15

10

5

0

Matlab (model)

winter monsoon pre-monsoon

Matlab (observed)

Dhaka (model)

Dhaka (observed)

no
. s

ev
er

e 
R

V
G

E
ca

se
s 

(p
er

 w
ee

k)

(a)

(b)

(c)

Figure 5. Comparison of model-predicted and observed weekly rotavirus time-series for external model validation. (a) Out-of-sample model validation using data
from Dhaka. (b) External model validation using data from Matlab. (c) Comparison of the best-fit model-simulated and observed seasonal distribution in rotavirus
cases for both Dhaka and Matlab. In both instances, the best-fit model (model Bsbr) was used. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212727

9

proportion of cases among children aged less than 12 months,
which is similar to that reported for other LMICs (56–69%) [47–
50], but higher than the range reported in high-income
countries (41–55%) [51,52] prior to vaccine introduction. The
small proportion of cases in infants less than 3 months
(approx. 3%) agrees with the 3% observed globally [50] and
suggests that the vast majority of rotavirus cases could be pre-
vented using an infant vaccine schedule. Approximately 8% of
cases occurred in the greater than or equal to 5 age group
(figure 3c; electronic supplementary material, figure S1),
which is similar to what has been reported in other parts of
Bangladesh as well as in other countries [53–55]. This clearly
shows that rotavirus continues to contribute to the burden of
diarrhoea in older children and adults, and thus there is a
need for a better understanding of how all age groups contrib-
ute to the burden and transmission of rotavirus both pre- and
post-vaccination.

The models provide satisfactory predictions of the trend
towards increasingly winter seasonal peaks of rotavirus
observed in both Dhaka and Matlab during the validation
period (2013–2019). The pronounced shift towards annual
epidemics compared to biannual epidemics observed
during the model-fitting period is likely due to further
declines in the birth rate. The crude birth rate decreased by
about 2.5% between 2012 and 2019. Overall, the ability of
the model to reliably predict rotavirus dynamics in Dhaka
(urban) and Matlab (rural) provides confidence that the
model can be used to investigate the impact of changes in
birth rates on rotavirus patterns in other settings.

To identify effective vaccination strategies and evaluate
vaccine impact, a better understanding of pre-vaccination
rotavirus incidence is required. However, this is difficult if
the patterns of rotavirus incidence are changing over time,
as in the case of Dhaka. Our model provides a way of simu-
lating rotavirus incidence in the absence of vaccination that
accounts for the changing patterns in rotavirus epidemiology,
thus providing a baseline against which to evaluate future
vaccine impact. In addition, the model can also be used to
evaluate the potential impact of different vaccination strat-
egies to identify the optimal strategy for Bangladesh.

Our results add to the evidence of the importance of the
changes in birth rates in controlling the temporal shift from
biannual to annual rotavirus activity. The satisfactory agree-
ment between the model and observed data from both
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Dhaka and Matlab achieved during model validation demon-
strates the potential of the models to predict the future
dynamics of rotavirus in the absence of vaccination. The
lack of substantial decline in rotavirus cases in Dhaka and
Matlab despite a consistent long-term decline in birth rate jus-
tifies the need for introduction of rotavirus vaccine in
Bangladesh. The models we have developed and validated
demonstrate the potential for use in evaluation of the
impact of rotavirus vaccination in Bangladesh against the
changing patterns of rotavirus incidence.
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