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Abstract: Interactions between macrophages, cardiac cells and the extracellular matrix are crucial
for cardiac repair following myocardial infarction (MI). We hypothesized that cell-based treatments
might modulate these interactions. After validating that bone marrow cells (BMC) associated with
fibrin lowered the infarct extent and improved cardiac function, we interrogated the influence of
fibrin, as a biologically active scaffold, on the secretome of BMC and the impact of their association
on macrophage fate and cardiomyoblast proliferation. In vitro, BMC were primed with fibrin (F-
BMC). RT-PCR and proteomic analyses showed that fibrin profoundly influenced the gene expression
and the secretome of BMCs. Consequently, the secretome of F-BMC increased the spreading of
cardiomyoblasts and showed an alleviated immunomodulatory capacity. Indeed, the proliferation of
anti-inflammatory macrophages was augmented, and the phenotype of pro-inflammatory switched
as shown by downregulated Nos2, Il6 and IL1b and upregulated Arg1, CD163, Tgfb and IL10. Inter-
estingly, the secretome of F-BMC educated-macrophages stimulated the incorporation of EdU in
cardiomyoblasts. In conclusion, our study provides evidence that BMC/fibrin-based treatment im-
proved cardiac structure and function following MI. In vitro proofs-of-concept reveal that the F-BMC
secretome increases cardiac cell size and promotes an anti-inflammatory response. Thenceforward,
the F-BMC educated macrophages sequentially stimulated cardiac cell proliferation.

Keywords: macrophages; inflammation; secretome; fibrin; cell communication; cell priming

1. Introduction

Macrophages, the hallmark for tissue healing and wound formation, mediate the
inflammatory response following myocardial infarction (MI) and contribute to its resolu-
tion [1]. Frangogiannis et al. [2] primarily showed that shifting the balance of macrophages
from an inflammatory to an anti-inflammatory phenotype is essential for cardiac regenera-
tion. The roles of macrophages are multifaced, and their importance in the regeneration
of the neonatal heart has been identified [3], while it remains mostly unrevealed in the
adult myocardium. Extremely versatile, macrophages adopt a variety of functional phe-
notypes depending on signals in their environment ranging from pro-inflammatory to
anti-inflammatory and pro-resolution phenotypes [4]. The different subsets of macrophages
can be defined by their function, expression of genes, or responsiveness to activating cy-
tokines [5]. Two major types, namely, alternatively- and classically-activated macrophages,
are obtained by treatment of unpolarized macrophages, respectively, with interleukin-4
(IL-4) or lipopolysaccharide (LPS) associated with interferon (INF) respectively.

The spatiotemporal interaction of macrophages with the cardiac extracellular matrix
(ECM), cardiomyocytes and non-cardiomyocytes are believed to be a key feature in car-
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diac repair and regeneration [6–8]. Consequently, manipulating macrophage subsets has
become an emerging therapeutic strategy in numerous diseases, including cardiovascular
diseases (CVD) [9,10]. Due to their immunomodulatory capacities, cell-based therapies,
including bone-marrow cells (BMC), mononuclear cells (MNC) [11], mesenchymal stromal
cells (MSC) [12,13], anti-inflammatory macrophages [14] or their secreted extracellular
vesicles have gained interest for treating CVD such as MI [12,15,16]. The secretome of these
cells, composed of cytokines, growth factors, and extracellular vesicles or exosomes, is
accountable for their paracrine effect which improves cardiac structural and functional
outcomes accompanied by mobilization and polarization of macrophages [11,17,18]. For
instance, Vagnozzi et al. [11] demonstrated that seven days after ischemia/reperfusion
(I/R), bone marrow MNC and MSC improved heart function through an acute immune re-
sponse characterized by the mobilization of CCR2+ or CX3CR1+ macrophages. In addition,
Deng et al. [17] promoted anti-inflammatory macrophage polarization with MSC-exosomes
and demonstrated amelioration of cardiac damage after MI.

The use of biomaterials combined with cells is recommended for cell-based thera-
pies [19]. The scaffolds foster cell retention and survival. Nevertheless, scaffolds may also
modulate macrophage phenotypes depending on their composition and structure [20,21].
Fibrin, a biologically active scaffold, has gained increasing interest in tissue engineering [22].
Its general use interrogates its influence on the fate of cells. In the present study, fibrin
combined with unfractionated BMC was administered sub-chronically in a rat model of
MI. Beneficial functional outcomes were recorded after four weeks and were associated
with a reduced fibrotic scar. In vitro investigations revealed that the secretome of fibrin
primed-BMC (F-BMC) specifically activated macrophages with anti-inflammatory and
mitogenic properties.

2. Methods
2.1. In Vivo Study
2.1.1. Animals

Animals were purchased from Janvier (Le Genest, France) and received humane care
in compliance with the European Convention on Animal Care and agreement with the
Swiss Animal Protection Law. The protocol was approved by the cantonal and Swiss
Federal Veterinary Office, Switzerland (FR-2016-41; 23 February 2017) and controlled for
reduced animal suffering (all animals received, post-surgery, subcutaneous injection of
0.1 mg kg/L Temgesic).

2.1.2. Bone-Marrow Derived Cells Isolation BMCs and Characterization

BMCs were collected from femurs and tibias of adult rats, flushed with sterile phosphate-
buffered saline (PBS; Carl Roth GmbH, Karlsruhe, Germany), incubated in red blood cell
lysis buffer (Sigma, Welwyn Garden City, UK) and cultured in Iscove’s Modified Dulbecco’s
Medium (IMDM, Pan Biotech, Aidenbach, Germany) supplemented with 20% Fetal Bovine
Serum (FBS, Biochrom AG, Berlin, Germany), 100 IU mL−1 penicillin and 100 mg mL−1

streptomycin (Corning, Corning, NY, USA). The initial culture medium was changed at
passage 1 to Dulbecco’s Modified Eagle’s Medium–high glucose (DMEM, Sigma–Aldrich,
Schaffhausen, Switzerland), with 10% FBS, 100 IU mL−1 penicillin and 100 mg mL−1 strep-
tomycin. Cells were cultured under aseptic conditions using sterile and RNAse/DNAse
free tissue culture-treated plastic ware (Corning, NY, USA) at 37 ◦C and 5% CO2 in a
humidified incubator (Model CB160, Binder, Tuttlingen, Germany). The medium was
replaced every two days, and upon 80% confluence, cells were trypsinized, pooled, and
subcultured until passage 2. In order to preserve the different populations of the BMCs,
cells were collected at passage 2, and no other selection was performed.

For in vivo study, each pool was obtained from 10 male Lewis rats (mean weight of
150 g). For the in vitro study, each pool of BMCs was prepared from 3 male Lewis rats
(mean weight of 150 g).
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2.1.3. Myocardial Infarction Model

A total of 51 female Lewis rats (mean weight of 200–220 g) were included in the study:
following a permanent left anterior descending (LAD) coronary ligation. All surgical
interventions were performed under isoflurane and oxygen (5% for induction and 2.5% for
maintenance), animals were placed on a warming pad at 37 ◦C to avoid hypothermia during
anaesthesia and ventilated with a 14-G IV cannula at 70–90 cycles per minute (Harvard
Inspira Apparatus, Inc.; Holliston, MA, USA). Anaesthetized and ventilated as described.
For surgical induction of MI, the proximal left anterior descending (LAD) coronary artery
ligation was accessed through a left thoracotomy between the fourth and fifth intercostal
space and was permanently ligated (7/0 polypropylene suture, Ethicon, Inc.; Somerville,
MA, USA) [23]. Four animals died during or a few days post MI induction. Blood samples
were collected 24 h post-MI from the caudal tail artery in the anaesthetized rats, and plasma
was isolated using BD Vacutainer® Cell Preparation Tube (Becton Dickinson, Franklin
Lakes, NJ, USA) with sodium heparin following manufacturer’s instructions. The plasma
fraction was immediately frozen and stored at −80 ◦C. After thawing the samples, the
plasma cardiac troponin T (cTnT) level was analyzed on a System Roche Hitachi Cobas
(Roche Diagnostics, Basel, Switzerland) [24]. The criterium for selecting the animals was a
cTnT level > 900 ng/L [24], resulting in the exclusion of four animals. The mean plasmatic
cTnT level was 3028 ± 956 ng/L. Two weeks after MI induction, cardiac function was
measured by high-resolution echocardiography; reduced cardiac function assessed after
two weeks significantly decreased from 70 ± 2% to 47 ± 8%.

2.1.4. Epicardial Treatment

Two weeks post LAD ligation, 43 rats underwent a second left thoracotomy between
the fifth and sixth intercostal space under general anaesthesia [23]. Animals were allocated
to the treated or untreated group and received either a sham operation (untreated, n = 23)
or epicardial implantation on the infarcted myocardium of an association of fibrin (Tisseel®,
Baxter Healthcare Pty Ltd., Deerfield, IL, USA) and 2 million BMC (n = 20). One animal
from the latest group died 11 weeks post-treatment.

2.1.5. High-Resolution Echocardiography

To assess the cardiac function, high-resolution echocardiography was performed
with Vevo 3100 imaging system (VisualSonics, Toronto, ON, Canada) equipped with a
21 MHz linear-array transducer (MX250, VisualSonics, Fujifilm, Toronto, ON, Canada).
Echocardiograms were recorded at day 0, then at two weeks post-MI (pre-treatment) as
well as four- and twelve-weeks post-treatment (post-treatment) in a blinded manner. Each
animal was anaesthetized, ventilated and placed on a heating table in a supine position with
the extremities fixed with four electrocardiography leads. The chest was shaved and further
cleaned with a chemical hair remover for ultrasound attenuation. Warmed Aquasonic gel
EcoGel 100 (Eco-Med Pharmaceutical Inc., Toronto, ON, Canada) was applied to the thorax
surface to optimize visibility of the cardiac chambers. A rectal probe was placed to control
body temperature during the process. The ejection fraction (EF), systolic and diastolic
volumes were determined based on parasternal long-axis B-mode image analysis. Left
ventricle thickness and fractional shortening (FS), were estimated based on the parasternal
long-axis M-mode image analysis. All parameters were calculated with the VevoLab®

software (VisualSonics, Toronto, ON, Canada).

2.1.6. Histological Analysis

The heart was harvested, and cross-sections of 2 mm thickness from the base to the
apex were obtained for systematic sampling. Each section was embedded in paraffin
using a standard histological procedure. The paraffin blocks were sectioned at 5-µm
intervals with a manual microtome Shandon Finesse 325 (Thermo Fisher, Waltham, MA,
USA) and stained with Masson–Goldner trichrome staining. The slices were successively
incubated in Mayer’s hematoxylin (Merck AG; Zug, Switzerland), acid fuchsin-ponceau
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(Sigma–Aldrich; Buchs, Switzerland), phosphomolybdic acid orange G (Merck AG; Zug
Switzerland and Sigma–Aldrich; Buchs, Switzerland), and Lichtgrün (Sigma–Aldrich;
Buchs, Switzerland) solutions. The samples were dehydrated with an ascending ethanol
series and mounted with Eukitt (EM Sciences; Hatfield, PA, USA). Images were acquired
with a stereomicroscope Nikon SMXZ800 mounted with a Nikon 1 camera (Nikon; Tokyo,
Japan). Bersoft Image Analysis software (Bersoft Technology and Software; Lunenburg,
NS, Canada) was used to measure the scar thickness of the infarct, septum thickness, left
ventricle (LV) cavity area, infarct area, and LV tissue area. The infarct expansion index (EI)
was calculated as ((LV cavity area/whole LV area)/(infarct thickness/septum thickness)).
The measurements were performed on one 5-µm slice from each 2 mm heart section. EI for
each heart was the average of 5–6 sections [25].

2.2. In Vitro Studies
2.2.1. Conditioned Medium Preparation

BMCs (0.3 × 106 cells) were cultured in 6-well plates coated with 40 µL fibrin (20 µL
thrombin and 20 µL fibrinogen; Tisseel®, Baxter Healthcare Pty Ltd., Deerfield, IL, USA)
(F-BMC) or in an uncoated plate (BMC). The ratio cell/fibrin was optimized for low cell
mortality (<3% when measured with propidium iodine). Fibrin conditioned medium was
obtained after 48 h from a plate coated with 40 µL fibrin. Cd-medium were collected and cen-
trifuged for 5 min at 1200 rpm, immediately used or stored at −80 ◦C for proteomic analysis.

2.2.2. MS-Based Proteomics

Cd-medium was concentrated by ultrafiltration using vivaspin columns (10 kDa
MWCO). Samples were heated in SDS-PAGE loading buffer, reduced with 1 mM DTT
for 10 min at 75 ◦C and alkylated using 5.5 mM iodoacetamide for 10 min at RT. Protein
mixtures were separated on 4–12% gradient gels (Nupage, Thermo Fisher). Gel lanes
were cut into 6 slices, and proteins therein were in-gel digested with trypsin (Promega,
Dübendorf, Switzerland), and resulting peptide mixtures were processed on STAGE tips
and analyzed by LC-MS/MS.

Mass spectrometric measurements were performed on a QExactive Plus mass spec-
trometer (Thermo Scientific) coupled to an EasyLC 1000 nanoflow-HPLC. HPLC-column
tips (fused silica) with 75 µm inner diameter were self-packed with Reprosil–Pur 120 C18-
AQ, 1.9 µm (Dr Maisch GmbH, Ammerbuch, Germany) to a length of 20 cm. Samples were
applied directly onto the column without a pre-column. A gradient of A (0.1% formic acid
in water) and B (0.1% formic acid in 80% acetonitrile in water) with increasing organic
proportion was used for peptide separation (loading of the sample with 0% B; separation
ramp: from 5–30% B within 85 min). The flow rate was 250 nL/min and 600 nL/min for
sample application. The mass spectrometer was operated in the data-dependent mode and
switched automatically between MS (max. of 1 × 106 ions) and MS/MS. Each MS scan was
followed by a maximum of ten MS/MS scans using a normalized collision energy of 25%
and a target value of 1000. Parent ions with a charge state from z = 1 and unassigned charge
states were excluded for fragmentation. The mass range for MS was m/z = 370 − 1750. The
resolution for MS was set to 70,000 and for MS/MS for 17,500. MS parameters were as fol-
lows: spray voltage 2.3 kV; no sheath and auxiliary gas flow; ion–transfer tube temperature
250 ◦C.

MS raw data files were uploaded into the MaxQuant software version 1.6.10.43 for
peak detection, generation of peak lists of mass error-corrected peptides, and for database
searches (PMID 19029910). A full-length UniProt rat database containing additional com-
mon contaminants such as keratins and enzymes used for in-gel digestion (based on
UniProt rat FASTA version May 2019) was used as reference. Carbamidomethylcysteine
was set as a fixed modification, and protein amino-terminal acetylation and oxidation of
methionine were set as variable modifications. LFQ was chosen as the quantitation mode.
Three missed cleavages were allowed, enzyme specificity was trypsin/P, and the MS/MS
tolerance was set to 20 ppm. The average mass precision of identified peptides was, in
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general, less than 1 ppm after recalibration. Peptide lists were further used by MaxQuant
to identify and relatively quantify proteins using the following parameters: peptide and
protein false discovery rates, based on a forward-reverse database, were set to 0.01, mini-
mum peptide length was set to 7, the minimum number of peptides for identification and
quantitation of proteins was set to one which must be unique, minimum ratio count was
set to two, and identified proteins were again quantified. The interleukins were not in the
detection range of the actual proteomic protocol.

2.2.3. Macrophage Isolation, Differentiation and Priming with Condition Media

Monocytes were isolated from the bone marrow of seven different pools of 3 male
Lewis rats (mean weight of 150 g) (Janvier, Le Genest-Saint-Isle, France) and cultured
during seven days in DMEM medium, 10% FBS, 100 IU mL−1 penicillin and 100 mg mL−1

streptomycin, supplemented with 50 ng mL−1 of macrophage colony-stimulating factor (M-
CSF, Peprotech, London, UK) (Murray 2014). Cells were washed with PBS and stimulated
with either LPS (50 ng mL−1; Sigma–Aldrich; Buchs, Switzerland) and IFN (10 ng mL−1;
rat recombinant; Peprotech, London, UK) to trigger their differentiation towards a pro-
inflammatory phenotype M(LPS,IFN) or IL-4 (20 ng mL−1, rat recombinant; Peprotech,
London, UK) to obtain anti-inflammatory macrophages, M(IL-4) or kept untreated for
unpolarized macrophages (M(−))(adapted from [26]). M(−), M(LPS,INF) and M(IL-4) were
further cultured, during 48 h, with F-BMC, BMC or fibrin conditioned media. Culture
with DMEM 10% medium served as control. The differentiation of the macrophages was
validated by surface markers and expression profiles accessed by immunostaining and
RT-PCR, respectively.

2.2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

F-BMC, BMC or fibrin were cultured in the control medium (DMEM, 10% FBS, 1% P/S).
After 48 h, the media were harvested and centrifuged. The macrophages were cultured
for 48 h, with the conditioned media of F-BMC, BMC or substrate. Then, macrophages
were washed with PBS and cultured with standard medium (DMEM, 10% FBS, 1% P/S).
After 48 h, the cytokines were quantified in the medium harvested from the educated
macrophages. ELISA kits (IL-1β (ab100767; Abcam, Cambridge, UK), IL-6 (ab119548;
Abcam, Cambridge, UK), TNF-alfa (ab46070; Abcam, Cambridge, UK)) were used according
to the manufacturer’s instructions and were estimated as pg/mL. Absorbance was read on
a Tecan Infinite 200 PRO Microplate Reader (Tecan Group, Mennedorf, Switzerland).

2.2.5. Real-Time Polymerase Chain Reaction

RNA was isolated from BMC cultured with or without fibrin and from the different
macrophage phenotypes previously cultured with BMC, F-BMC, fibrin conditioned media
or with standard growth medium, using the Trizol Reagent (Molecular Research Center,
Inc., Cincinnati, OH, USA) according to the manufacturer’s instructions. RNA was reverse
transcribed to generate complementary DNA, using GoScript Reverse Transcription Mix™
(Promega, Madison, WI, USA) according to the manufacturer. Two-step quantitative Real
Time-PCR was performed to measure mRNA expression using a StepOne SYBR System
(Thermo Fisher Scientific, Basel, Switzerland) with GoTaq® qPCR Master Mix (Promega,
Madison, WI, USA) and acquired with StepOne software v.2.3. (Thermo Fisher Scientific,
Switzerland). mRNA expression was assessed using primers as presented in Supplementary
Table S2. The mRNA expression levels of all genes were quantified by normalizing to
the geometric mean of the reference genes GAPDH and beta-actin and using the relative
quantification of gene expression calculated by the 2−∆∆Ct approximation method.

2.2.6. H9C2 Rat Cardiomyoblasts

H9C2 rat cardiomyoblasts (Sigma–Aldrich; Buchs, Switzerland) were expanded in
Dulbecco’s Modified Eagle’s Medium—high glucose (DMEM, Sigma–Aldrich, Switzerland),
with 10% FBS, 100 IU mL−1 penicillin and 100 mg mL−1 streptomycin. Cardiomyoblasts
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were further cultured for 48 h with DMEM 10% medium or conditioned media from F-BMC,
BMC, fibrin, or macrophages. Additionally, H9C2 were cultured with F-BMC, fibrin, or
BMC educated macrophages. To obtain the double conditioned medium, the macrophages
were cultured with the fibrin, BMC, or F-BMC conditioned media for 48 h; the educated
macrophages condition media were collected, centrifuged and added to the H9C2.

2.2.7. Real-Time Cell Analyzer System (RTCA) and EdU Cell Proliferation Assays

An E-Plate® was seeded with 10,000-cells/well with gold microelectrodes fused to
the bottom surface and cultured for 120 h using the instrument xCELLigence Real-Time
Cell Analyzer (RTCA; ACEA Biosciences Inc., Penzberg, Germany) according to the manu-
facturer’s instructions. The cell index (CI; impedance measurement correlated with cell
proliferation) was recorded for 120 h. CI was plotted against time (hours), and the area
under the curve (AUC) was calculated [27].

An EdU Cell Proliferation Kit (Sigma–Aldrich; Buchs, Switzerland) was used according
to the manufacturer’s instructions. Pictures of stained cells were acquired using a Cytation
5 Cell Imaging Multi-Mode Reader (Biotek, Switzerland), and the percentage of positive
EdU cells per field was counted using Gen5 software (Biotek, Switzerland).

2.3. Statistical Analysis

Statistical analyses were performed using statistical software GraphPad Prism, Version
8 (GraphPad Software, San Diego, CA, USA). All values were reported as mean ± standard
deviation (SD). Data distribution was assessed using the Kolmogorov–Smirnov test. For the
in vivo study, an unpaired t-test was performed. For the in vitro study, one-way ANOVA
was performed, followed by a Dunnett’s multiple comparisons test or otherwise indicated.
Results were considered significant from p < 0.05.

3. Results
3.1. In Vivo Study

BMC associated with fibrin restores cardiac function loss and reduces the fibrotic scar
in the infarcted heart.

Epicardial implantation of fibrin and BMC was performed two weeks after the induc-
tion of MI by LAD ligation in a rat model, and the therapeutic potential was evaluated.

Before the treatment and four weeks post-treatment, functional and structural charac-
teristics were assessed by high-resolution echocardiography. The differences in EF and FS
in the treated group were calculated. As shown in Figure 1A, the treated group showed
statistically significant EF and FS gains, compared to the untreated group that showed a loss
in cardiac function (Figure 1A). It is important to note that the gain in EF and FS showed
high inter-individual variability. Indeed, the highest and the lowest EF gain measured were
+14% and −8%, respectively, in the treated groups and +3% and −11% in the control group,
respectively. Structural adaptations also differed between groups with augmented systolic
wall thicknesses and reduced LV volumes in treated animals (Figure 1A).

Furthermore, Masson’s trichrome staining was performed four weeks post-treatment
(Figure 1B). Calculation of the infarct expansion index demonstrated that the scar was
substantially smaller in the treated than in the untreated groups (Figure 1B), indicating that
the treatment significantly decreased cardiac fibrosis. Seven animals per group were kept
twelve weeks post-treatment. One animal in the treated group died after 11 weeks. Twelve
weeks post-treatment, the mean scar expansion index was decreased in treated animals
compared to control ones; however, the difference did not reach statistical significance.

Further immunostaining showed that the percentage of CD68 and CD206 macrophages
present in the infarcted myocardium and the peri infarcted area after 4 and 12 weeks was
similar in all groups (Figure S1).
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3.2. In Vitro Study
3.2.1. Unique Characteristics of F-BMC, Including Growth, Gene Expression and Secretion
Profile Distinguish Them from BMC

BMC are a heterogeneous population of cells as indicated by markers from the mes-
enchymal and hematopoietic lineages (Figure S2); the mesenchymal CD90+ cells were most
abundant. Fibrin induced a change in the morphology of BMC (Figure 2). While BMC
displayed a homogeneous spindle-like shape, F-BMC presented rounded cell morphology.
The proliferation of F-BMC was measured by EdU incorporation and revealed a significant
reduction compared to BMC (Figure 3A). In addition, cell growth was assessed using a
real-time cell analyzer (RTCA), in which microelectrodes measure the electrical impedance
of the cell populations assessing both the cell number and cell spreading. Results are
presented as the area under the curve (AUC) after 5 days (Figure 3B). The AUC of F-BMC
was significantly lower than the AUC of BMC, confirming reduced cell growth and spread-
ing. Taken all together, our data show that fibrin decreased both the proliferation and the
spreading of BMC.

1 

 

 
(A) 

 

 
Figure 1. Cont.
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Figure 1. (A) Fibrin and BMC treatment reduces systolic heart function loss. Cardiac function
was assessed by high-resolution echocardiography. The changes (∆) in ejection fraction, fractional
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between 4 weeks post- and pre-treatment. The control group is untreated (sham) infarcted animals
(n = 23); the treated group is animals treated with epicardial fibrin and BMC (n = 20). (B) Fibrin and
BMC treatment reduces fibrotic scar. (a) Representative Masson–Goldner trichrome stained heart
cross-sections from treated and control (sham) animals, 4 weeks post-treatment. The fibrotic scar
tissue is in blue; in red is the remote tissue. Scale bars indicate 3 mm. (b) Infarct Expansion Index was
measured on histologic sections 4 weeks or 12 weeks post-treatment. A total of 5 to 6 cross-sections
from systematic sampling of the whole heart were averaged for each animal. Each point represents
one animal. The control group is infarcted animals that received sham treatment. The treated group
is animals treated with epicardial fibrin and BMC. The values are shown as mean ± SD.
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Figure 2. Fibrin modulates the BMC morphology: Representative pictures of BMC cultured with fibrin
(F-BMC) or without (BMC) showing a heterogeneous population of cells with different morphology
and spreading. Scale bar = 100 µm.

The Conditioned media (Cd-media) of F-BMC and BMC were analyzed by liquid
chromatography (LC)-tandem mass spectrometry (MS/MS). In total, 1712 proteins were
identified (protein and peptide FDR < 0.01), of which 769 were quantified with a minimum
of two replicates out of three per group using label-free quantification based on respective
peptide ion currents [28]. Hierarchical clustering of data nicely discriminated the two ex-
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perimental groups indicating that Cd-media of F-BMC and BMC differed in their proteomic
composition on a global scale (Figure 4A). In total, protein abundances of 339 proteins
were significantly altered between the two groups, 185 were significantly upregulated, and
154 were downregulated when comparing F-BMC to BMC (Figure 4B; t-test, FDR < 0.05).
Upregulated proteins could be linked to metabolic and catabolic processes, inflammation
response and ECM remodelling (Figure 4C, Supplemental Table S1; BH FDR < 0.02).
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Figure 3. Fibrin modulates BMC proliferation: BMC were cultured with (F-BMC) or without fibrin
(BMC). Cell growth was assessed by (A) EdU incorporation for 48 h and by (B) RTCA: Cell index was
measured over 120 h, plotted, and the AUC calculated. The values are shown as mean ± SD; n = 3
biologically independent samples of pools of the BMC of 3 rats i.

In complement, RT-PCR was performed using RNA isolated from F-BMC and BMC.
Differential expressions of genes involved in inflammation and ECM organization were
prioritized (Figure 5). Furthermore, as proteomics did not allow the quantification of
interleukin secretions, their expressions were investigated by RT-PCR.

Fibrin priming induced a significant upregulation of TIMP1 expression and down-
regulation of the proteolytic enzymes MMP3 and MMP9 (Figure 5). In agreement, the
level of protein secretions of TIMP1 and MMP9 exhibited the same significant trends
(Supplemental Table S1). Vcam1, Icam and the inflammation mediators Nos2 and Tgfb
were significantly downregulated by fibrin, whereas Il1ra, Il1b, IL6, and Gmcsf expression
increased. (Figure 5). Concerning Tnfa, the gene expression was upregulated; however, the
difference in the secretion of TNF-alpha between BMC and F-BMC did not reach statisti-
cal significance as shown in the proteomic analysis (Supplemental Table S1). Ccl2/Mcp1
gene expression and related protein secretion were augmented (Figure 5, Supplemental
Table S1). While Csf1/Mcsf expression was not statistically changed, the secretion of the
protein increased. Chemokines were also significantly modulated by fibrin. Ccl5/Rantes
expression increased while Cxcl10 decreased (Figure 5). In parallel, the secretion of CxCL2,
CxCL3, CxCL4/PF4, CCL7 and CCL9 were significantly higher in F-BDMC (Supplemental
Table S1). Also, proteomic analysis revealed the modulation of proteins such as Osteopon-
tin (ONP/SPP1) and Gremlin1 (GREM1) that were both increased by fibrin (Supplemental
Table S1).

Collectively, these results show that fibrin profoundly influenced gene expression and
the cell proteome, simultaneously upregulating both pro-and anti-inflammatory mediators.
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Figure 4. Expression proteomic analyses of BMCs cultured with and without a fibrin-based substrate.
(A) Hierarchical clustering of protein abundances using log2 transformed and z-normalized LFQ
intensities indicates global alterations of CM due to culture conditions. Grey squares indicate proteins
not detected in respective samples. (B) Volcano plot analysis highlights significantly altered proteins
due to culture condition in red (FDR < 0.05). The black line indicates S0 of 0.1. (C) Eight cytokines
known to interact based on STRING DB are significantly downregulated in BMCs cultured with the
fibrin-based substrate [29]. The thickness of edges indicates the confidence of data support.

3.2.2. F-BMC Secretome Promotes the Proliferation of Undifferentiated and
Anti-Inflammatory Macrophages

The effects of the secretomes of BMC and F-BMC on macrophage fates were investi-
gated. The proliferation of undifferentiated (M(−)), pro-and anti-inflammatory macrophages
(respectively, M(LPS, IFN) and M(IL-4)) cultured with Cd-media from BMC, F-BMC and fibrin
were assayed by EdU incorporation. After 48 h, the percentage of EdU+ M(−) increased
significantly when cultured with Cd-media from both F-BMC and BMC (Figure 6A) rela-
tive to the unconditioned medium (control). Cd-medium from fibrin had no significant
effect. The proliferation rate of M(LPS, IFN) remained quantitatively low and similar for all
conditions (Figure 6B). Compared to control, the proliferation of M(IL-4) was statistically
significantly stimulated by the F-BMC secretome. There was no statistically significant
difference between BMC and control nor between BMC and F-BMC. Altogether, our results
show that F-BMC and BMC modulated the proliferation of M(−) and M(IL-4) macrophages.
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Figure 5. Fibrin modulates BMC gene expression. Real-time PCR measurement of selected genes
presented as fold change (FC). n = 5 biologically independent samples of cell pools from 3 rats.
* p < 0.05, shows the statistical significance between differential gene expression of F-BMC related to
BMC assessed by one-way ANOVA and Dunnett’s test.

3.2.3. F-BMC Secretome Induces a Macrophage Phenotype Switch

RT-PCR was performed using RNA isolated from macrophages cultured with Cd-media
from F-BMC (F-BMC educated macrophages) (Figure 7), BMC and fibrin (Figure S3). F-BMC-
educated M(−) showed a significantly downregulated expression of pro-inflammatory genes,
particularly Nos2, Il6 and Ccl2/Mcp1. Anti-inflammatory genes such as Arg1, Tgfb and IL-10
were significantly upregulated (Figure 7A). Similar gene regulations were recorded for
F-BMC-educated M(LPS,INF) with a significant downregulation of Il1b and no change for
Ccl2/Mcp1 (Figure 7B). Remarkably, the anti-inflammatory phenotype of the macrophage
M(IL-4) was further stimulated. All tested pro-inflammatory genes were significantly down-
regulated, and all studied anti-inflammatory ones were upregulated (Figure 7C).

The expressions of the surface markers of F-BMC-educated macrophages were sig-
nificantly altered, specifically the markers Cd206 and Cd163 related to alternatively acti-
vated macrophage phenotypes. Cd206 was significantly upregulated in M(−) and M(IL-4)
(Figure 7A,C), while Cd163 was significantly upregulated in all macrophages. Further, the
classical activated macrophage marker Cd86 was downregulated in M(IL-4) (Figure 7B). The
switch of macrophage plasticity to an anti-inflammatory profile was observed in BMC
educated macrophages. The gene expression switch was more prominent for F-BMC edu-
cated M(−) and M(LPS, IFN, (Figure S3). Fibrin also showed a different regulatory pattern in
M(LPS,INF) and M(−) compared to BMC and F-BMC (Figure S3).



Biomedicines 2022, 10, 527 12 of 22
Biomedicines 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

Figure 6. F-BMC and BMC conditioned media modulate macrophage proliferation. The prolifera-

tion of the different macrophages phenotypes was assessed by EdU incorporation. (A) M(−), (B) 

M(LPS,IFN), and (C) M(IL-4) macrophages were cultured with unconditioned medium (Control) or con-

ditioned media from with Fibrin, F-BMC and BMC. The values shown are mean ± SD. n = 3 biolog-

ically independent pools of macrophages from 3 animals, therefore, in total, 9 animals per group. 

3.2.3. F-BMC Secretome Induces a Macrophage Phenotype Switch 

RT-PCR was performed using RNA isolated from macrophages cultured with Cd-

media from F-BMC (F-BMC educated macrophages) (Figure 7), BMC and fibrin (Figure 

S3). F-BMC-educated M(−) showed a significantly downregulated expression of pro-in-

flammatory genes, particularly Nos2, Il6 and Ccl2/Mcp1. Anti-inflammatory genes such as 

Arg1, Tgfb and IL-10 were significantly upregulated (Figure 7A). Similar gene regulations 

were recorded for F-BMC-educated M(LPS,INF) with a significant downregulation of Il1b and 

no change for Ccl2/Mcp1 (Figure 7B). Remarkably, the anti-inflammatory phenotype of the 

macrophage M(IL-4) was further stimulated. All tested pro-inflammatory genes were sig-

nificantly downregulated, and all studied anti-inflammatory ones were upregulated (Fig-

ure 7C). 

The expressions of the surface markers of F-BMC-educated macrophages were sig-

nificantly altered, specifically the markers Cd206 and Cd163 related to alternatively acti-

vated macrophage phenotypes. Cd206 was significantly upregulated in M(−) and M(IL-4) 

(Figure 7A,C), while Cd163 was significantly upregulated in all macrophages. Further, the 

classical activated macrophage marker Cd86 was downregulated in M(IL-4) (Figure 7B). The 

switch of macrophage plasticity to an anti-inflammatory profile was observed in BMC 

educated macrophages. The gene expression switch was more prominent for F-BMC ed-

ucated M(−) and M(LPS, IFN, (Figure S3). Fibrin also showed a different regulatory pattern in 

M(LPS,INF) and M(−) compared to BMC and F-BMC (Figure S3). 

The levels of IL-1beta, IL-6 and TNF-alpha secreted by F-BMC-educated macro-

phages were further quantified by enzyme-linked immunosorbent assay (ELISA). Uncon-

ditioned medium served as the control. IL-1beta levels were significantly decreased in 

M(LPS,INF) and M(IL-4) with respective −2.8 and −5.8 fold changes compared to control (Figure 

8). IL-6 levels were significantly decreased for M(−), M(LPS,INF) and M(IL-4) with −3.7, −2.8 and 

−3.0 fold changes, respectively (Figure 8). TNF-alpha secretion was also significantly 

lower in M(−) and M(LPS,IFN) with fold changes of −4.0 and −2.8, respectively (Figure 8). The 

decrease in the secretion of cytokines corroborated the changes in gene expression 

0.0

0.5

1.0

1.5

2.0

2.5

E
d

U
+
 M

(L
P

S
,I
N

F
)(
%

)

Control Fibrin BMC F-BMC
0

5

10

15

E
d

U
+

 M
(-

) 
(%

)

Control Fibrin BMC F-BMC

0.0286

0.0063

0

10

20

30

40

50

E
d

U
+
 M

(I
L

4
) 
(%

),

0.0035

0.0056

0.0006

Control Fibrin BMC F-BMC

A B C 

Figure 6. F-BMC and BMC conditioned media modulate macrophage proliferation. The proliferation
of the different macrophages phenotypes was assessed by EdU incorporation. (A) M(−), (B) M(LPS,IFN),

and (C) M(IL-4) macrophages were cultured with unconditioned medium (Control) or conditioned
media from with Fibrin, F-BMC and BMC. The values shown are mean ± SD. n = 3 biologically
independent pools of macrophages from 3 animals, therefore, in total, 9 animals per group.
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Figure 7. F-BMC conditioned medium modulates the macrophage expression profile. Relative gene
expression of pro-inflammatory markers (grey) and anti-inflammatory markers (black) measured in
F-BMC educated macrophages: (A) M(−), (B) M(LPS, IFN) and (C) M(IL-4) relative to uneducated ones.
The values are shown as mean ± SD. All n= 3 biologically independent samples were constituted of
macrophage pools, each pool was obtained from three animals, therefore, in total, nine animals per
group. * p < 0.05, shows the statistical significance between differential gene expression of F-BMC
educated macrophages and uneducated ones assessed by one-way ANOVA and Dunnett’s test.

The levels of IL-1beta, IL-6 and TNF-alpha secreted by F-BMC-educated macrophages
were further quantified by enzyme-linked immunosorbent assay (ELISA). Unconditioned
medium served as the control. IL-1beta levels were significantly decreased in M(LPS,INF)
and M(IL-4) with respective −2.8 and −5.8 fold changes compared to control (Figure 8). IL-6
levels were significantly decreased for M(−), M(LPS,INF) and M(IL-4) with −3.7, −2.8 and
−3.0 fold changes, respectively (Figure 8). TNF-alpha secretion was also significantly lower
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in M(−) and M(LPS,IFN) with fold changes of −4.0 and −2.8, respectively (Figure 8). The
decrease in the secretion of cytokines corroborated the changes in gene expression measured
with RT-PCR. Taken all together, the results show that F-BMC-educated macrophages
decreased both the expression and the secretion of different proteins related to a pro-
inflammatory phenotype.
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Figure 8. F-BMC conditioned medium modulated the macrophage secretion profile. Cytokine ex-
pression levels of (A) IL-1 beta, (B) IL-6 and (C) TNF-α were quantified by ELISA in cell culture
supernatants of M(−), M(LPS,IFN), and M(IL-4) educated with F-BMC conditioned medium or uncondi-
tioned medium. The values are shown as mean ± SD. n = 7 biologically independent macrophage
pools; each pool was obtained from three animals.

3.2.4. F-BMC Secretome Promotes Cardiomyoblast Spreading

Cardiomyoblasts (H9C2) were chosen as a model of proliferative cardiac cells. The
proliferation of H9C2 cultured with Cd-media from BMC, F-BMC and fibrin was compared
to an unconditioned medium (control) and measured using EdU incorporation. After two
days, the percentage of EdU+ H9C2 was significantly higher with F-BMC compared to
BMC and Fibrin Cd-media (Figure 9A) and was similar to the control.
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Figure 9. F-BMC, BMC and fibrin secretomes altered cardiomyoblast H9C2 growth. H9C2 were
cultured with Cd-media from F-BMC, BMC or fibrin. Standard growth medium served as control.
H9C2 growth was assessed by (A) EdU incorporation during 48 h and by (B) RTCA: Cell index
was measured over 120 h, and the AUC was calculated after five days. The values are shown as
mean ± SD; n = 3 biologically independent experiments.
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In addition, the F-BMC secretome significantly increased the AUC of H9C2, suggesting
an increased spreading with or without an increased cell number. The cell index measured
by RTCA (Figure 9B) corroborated the proliferation assay. Taken all together, our results
suggest that the F-BMC secretome induced an increase in H9C2 spreading and had no
effect on cell proliferation when compared to the control condition. In contrast, fibrin and
BMC secretomes reduced both H9C2 spreading and proliferation compared to F-BMC.

3.2.5. Alternatively-Activated Macrophages Promote Cardiomyoblast Proliferation

Cd-media obtained from unpolarised and polarised macrophages were used to cul-ture
H9C2 (Figure 10). EdU+ cells and AUC were significantly increased for M(IL-4), suggesting
that the secretome of alternatively activated macrophages increased the H9C2 proliferation
rate. M(−) and M(LPS,INF) did not alter the spreading of H9C2 compared to the control.
M(LPS,INF) reduced H9C2 proliferation.
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Figure 10. Macrophage secretomes altered the cardiomyoblast H9C2 proliferation rate and spreading.
H9C2 were cultured with Cd-media from M(−), M(LPS,IFN) or M(IL-4). Standard growth medium
served as control. H9C2 growth was assessed by (A) EdU incorporation during 48 h and by (B) RTCA:
Cell index was measured over 120 h, and the AUC was calculated after five days. The values are
shown as mean ± SD; n = 3 biologically independent experiments.

3.2.6. F-BMC-Educated-Macrophages Demonstrate Paracrine Mitogenic Properties on
Cardiac Cells

Educated macrophages were obtained from M(−), M(LPS,IFN) or M(IL-4) macrophages
primed with Cd-media from BMC, F-BMC or fibrin. Then, H9C2 were cultured with
secretomes from educated or uneducated macrophages (Figure 11). The secretome of
F-BMC-educated M(−) (labelled as M(−)/F-BMC) modulated the growth of H9C2 as shown
by the significant increase of the percentage of EdU+ H9C2 (Figure 11A) and the AUC at
5 days (Figure 11B) compared to the uneducated M(−) secretome.

Similar trends were observed for M(LPS,INF) /F-BMC (Figure 11C,D) while M(IL-4), /F-
BMC showed different effects. Indeed, M(IL-4)/F-BMC induced proliferation of H9C2
similar to the control (uneducated M(IL-4)) and a great reduction in H9C2 spreading
(Figure 11E,F). Notably, the uneducated M(IL-4) induced a strong proliferation of H9C2
(Figure 11E,F). This proliferation capacity is maintained when M(IL-4) are educated with
F-BMC while H9C2 spreading is reduced.
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Figure 11. The conditioned media of educated macrophages altered cardiomyoblast H9C2 prolifera-
tion rate and spreading. H9C2 were cultured with Cd-media from (A,B) educated M(−), (C,D) edu-
cated M(LPS,IFN) or (E,F) educated M(IL-4). Macrophages were cultured with Cd-media from fibrin,
BMC or F-BMC, respectively. Cd-medium from uneducated served as the control. H9C2 growth
was assessed by (A,C,E) EdU incorporation for 48 h and by (B,D,F) RTCA: Cell index was measured
over 120 h, and the AUC was calculated after five days. The values are shown as mean ± SD; n = 3
biologically independent experiments.

4. Discussion

In the present study, fibrin and BMC were combined to sub-chronically treat the
ischemic myocardium. Epicardial implantation reduced MI related loss of cardiac function
and prevented fibrotic scar expansion. The therapeutic effect of cell-based therapy is
associated with an acute paracrine activation of in situ repair mechanisms [30]. Indeed,
secreted mediators are believed to be essential for overcoming post-natal cardiomyocyte
cell-cycle arrest, manipulating the microenvironment, stimulating progenitor differentiation
and promoting the functional polarization of the non-myocyte cell population.

In addition, following cell-based treatment, the role of the inflammatory response and
its resolution has gained increased interest. The presence of macrophages and their role
have recently been explored. Vagnozzi et al. [11] demonstrated that CD68+ macrophages
were increased within the area of cell injection after three and seven days post-injection;
however, their presence vanished after two weeks [11]. The authors suggested that
macrophages were associated with the presence of injected cells [11]. It has since been
validated that the therapeutic cells survived only a few days after implantation [11,31]. In
the present study, MI content of CD68+ and CD206+ macrophages were similar in treated
and untreated groups after 4 and 12 weeks. The presence of therapeutic cells is unlikely, and
accordingly, the macrophage content is unlikely to be affected at these late stages. Neverthe-
less, when MSCs were administered together with a slow degrading polycaprolactone matrix,
our previous study identified the presence of CD68+ cells four weeks post-treatment [31],
suggesting that the chronic presence of macrophages might also be dependent on the lasting
presence of the matrix. In the current study, fibrin, as a rapidly degrading matrix, was absent
after 4 weeks, which may explain the lack of difference in the macrophage content.

It is reasonable to suggest that the initiation of cardioprotective events leading to scar
reduction would occur rapidly after the treatment. Therefore, to understand these potential
early events, we investigated in vitro the interaction between the matrix, the therapeutic
cells, the macrophages and cells of cardiac origin.



Biomedicines 2022, 10, 527 16 of 22

The association of cell and matrix have gained increased interest as a therapeutic
product for cardiac repair [32]. The matrix plays a critical role in prolonging cell survival
after transplantation [33,34]. Initially used as a scaffold to provide physical substrate for
cell survival, the matrix also has multiple effects [35]. The present in vitro study provides
evidence of the impacts of the matrix on the therapeutic cells. The fibrin matrix alters
the morphology of BMC, their gene expression and protein secretion and fosters their
immunomodulatory capacities.

4.1. Impact of Fibrin on BMC and Their Properties

First, we report an effect on BMC morphology and proliferation. BMC is a heteroge-
neous population of cells with a prevalence of mesenchymal CD90+ cells. It is well estab-
lished that unfractionated BMCs are composed of monocytes, lymphocytes, hematopoietic
stem cells, MSC and progenitors. Accordingly, hybrid properties and inter-cellular crosstalk
between all cell types can be expected [36]. We demonstrated that fibrin modified the BMC
shape, reduced their spreading and proliferation. In agreement, previous studies demon-
strated that MSC showed a modified morphology, a reduced size and a decreased prolifera-
tion when cultured with fibrin [37,38]. Furthermore, the fibrin-induced BMC morphological
changes were associated with a downregulation of Icam and Vcam1. These adhesion molecules
mediate the interaction between cells and the ECM, and their downregulation could explain
the reduced spreading of the cells resulting in a reduced size and rounded shape.

Second, we demonstrated that fibrin induced changes in BMC gene expressions. The
most prominent gene upregulation was the expression of Il1 receptor antagonist (IL1ra)
and, to a lesser extent of Il1b, while IL1a remained unchanged. In normal homeostasis,
IL1ra counterbalances the effect of IL1b and IL1a by binding to their common receptor.
IL1ra has been proposed to be one of the mediators of the therapeutic effect of MSC by
antagonizing IL-1 effects and blocking inflammation. Luz-Crawford et al. [39] showed
that IL1ra secreted by MSC acts on macrophages by inducing a polarization toward the
anti-inflammatory phenotype.

Third, we showed an impact of fibrin on the immunomodulatory properties of BMC.
The secretomes from both BMC and F-BMC alleviated the gene expression of macrophages
and specifically induced a polarization of M(LPS/INF) and M(−) toward alternatively acti-
vated macrophage phenotypes. Indeed, BMC and F-BMC educated macrophages increased
their expression of anti-inflammatory markers (Arg1, Cd163, Cd206, Il10, Tgfb) while de-
creasing pro-inflammatory markers (Nos2, Cd86, Il1b, Il6, Mcp1, Tnfa).

It is well established that MSCs promote the polarization of macrophages to an anti-
inflammatory phenotype [40–43]. For instance, co-cultures of MSC and macrophages
have shown that MSC induces the conversion of classically activated, pro-inflammatory
macrophages to alternatively activated macrophages [26]. Interestingly, our study indi-
cates that the combination of fibrin and BMC further potentiated the anti-inflammatory
regulatory capacity of BMC.

Alternatively-activated macrophages mediate the resolution of inflammation by phago-
cytosis of cellular debris, production of ECM proteins and secretion of cytokines such as
IL-10 and TGF-beta [44]. Modulating macrophage phenotypes for salvaging ischemic
damage is a promising new therapeutic strategy. Indeed, dampening the inflammatory
response using MSC is broadly studied for multiple chronic diseases [45]. As far as MI
is concerned, several cell-based treatments have increased CD206+ macrophages. It has
been demonstrated that stimulating the anti-inflammatory CD206+ macrophage polariza-
tion with cytokines, bioactive drugs or cell treatments improved cardiac tissue repair in
MI animal models [46,47]. The current assumption is that a transient CD206+ phenotype
effectively clears inflammation and may be advantageous for improved cardiac function and
alleviated adverse ventricular remodelling [46]. Nevertheless, a chronic elevation of CD206+

cells could have unwanted consequences due to the fibrotic properties of the alternatively
activated macrophage population [48]. Remarkably, a pro- or anti-fibrotic environment may
influence the balance between the different macrophage populations identified in MI.
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Furthermore, in M(IL-4), Tnfa expression was significantly downregulated by F-BMC,
and its secretion remained low. Likewise, Tnfa secretion by M(LPS, INF) and to a lesser
extent by M(−) was significantly reduced in F-BMC educated macrophages. Accordingly,
an MSC-conditioned medium has been shown to inhibit the production of TNF-alpha by
activated macrophages in vitro through the release of Il-1ra [49]. Therefore, a possible
explanation of this reduction is the increase of Il1ra in F-BMC.

In addition, F-BMC induced the upregulation of Tgfb in all the macrophage subsets.
Notably, it has been shown that GREM1 increased the expression of Tgfb in hepatic stellate
cells and tubular cells [50]. Consistently, the increased GREM1 in the F-BMC secretome
could potentially mediate the Tgfb elevation.

Fibrin was obtained from fibrinogen and thrombin. Accordingly, the secretome of
F-BMC contains more fibrinogen than the one of BMC. Fibrinogen is thought to activate
macrophage inflammatory pathways and might affect macrophage polarization in our
model. Nevertheless, the pro-inflammatory effect of fibrinogen is inhibited by fibrin [51].
Here, we showed a negligible pro-inflammatory impact of fibrinogen. For instance, the
conditioned medium from fibrin alone downregulated the pro-inflammatory related genes
and upregulated Cd163 in M(IL-4).

4.2. Cardiomyoblast Fate

F-BMC stimulated the spreading of cardiomyoblasts but not their proliferation. No-
tably, the proteomics analysis revealed increased Osteopontin (OPN/SSP1) in the secretome
of F-BMC. OPN has been associated with cardiac hypertrophy [52]. Therefore, F-BMC
induced cardiomyoblast hypertrophy is consistent with OPN level.

Macrophages had an impact on cardiomyoblasts proliferation in a phenotype de-
pendent manner. Uneducated M(IL-4) greatly stimulated H9C2 proliferation while other
macrophage subsets did not. Nevertheless, when educated by F-BMC, M(LPS,INF) and
M(−) developed a capacity to stimulate cardiomyoblast growth compared to uneducated
macrophages. This effect was also promoted by fibrin for M(LPS/INF) and by BMC for
M(−). Taken all together, our results suggest that mitogenic properties developed by F-
BMC educated M(LPS/INF) and M(−) could be a consequence of their polarization toward an
anti-inflammatory phenotype.

Altering cardiomyocyte fate emerged as an effective strategy to compensate for the loss
of functional cardiomyocytes following MI. In the present study, we validate in vitro that
fibrin and BMC are potential catalyzers of optimal microenvironment conditions to favor
the polarization of macrophages. Their role in cardiac repair remains to be investigated.
Psarras et al. [7] identified up to seven new cardiac myeloid cell subtypes, including four
macrophage populations; their respective role is still not fully understood [6]. However,
the crosstalk between cardiac cells and macrophages is essential for cardiac homeosta-
sis [7,11,47,53–55]. In addition to their multifaceted roles in ECM modulation, cardiac
electrical conduction and mitochondrial homeostasis [56–58], we reinforce the importance
of anti-inflammatory macrophages in regulating proliferative cell fate. The present in vitro
results suggest that macrophage plasticity and anti-inflammatory environment are both
necessary for modifying cardiomyoblast cell size and proliferation. Nevertheless, fur-
ther studies need to be undertaken to investigate these effects on other models such as
neonatal and adult cardiomyocytes in vitro and also in vivo and validate this present
proof-of-concept. Indeed, Vagnozzi et al. [11] showed in vivo that there was no forma-
tion of new cardiomyocytes following temporal and regional induction of CCR2 + and
CX3CR1+ macrophages. Nevertheless, the understanding of the spatiotemporal role of the
macrophage in limiting adverse remodelling is still unclear. Our study suggests that (1) the
importance of a scaffold that stimulates an optimal immune response for regeneration is
to be considered, and (2) F-BMC may potentially induce an early stimulation of the car-
diac reparative process. Further studies are necessary to identify the detailed mechanism
in vitro and acute in vivo effects.
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4.3. Integrated Concept

Taken all together, as represented in Figure 12, we documented in vitro that first, the
F-BMC secretome has crucial effects on macrophage phenotypes: F-BMC induces the polar-
ization of M(−) toward an anti-inflammatory phenotype, a phenotype switch of M(LPS,INF)
and the proliferation of M(IL-4). Accordingly, the F-BMC educated macrophages present
an anti-inflammatory phenotype and their secretomes favor cardiomyoblast proliferation.
Second, the F-BMC secretome promotes cardiomyoblast spreading.
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leading to phenotype switch in a macrophage subset dependant manner and (3) proliferation of
anti-inflammatory macrophages. F-BMC educated macrophages upregulate anti-inflammatory genes
and downregulate pro-inflammatory ones. Their secretome induced cardiomyoblast proliferation.

In conclusion, our study provides evidence that in vivo, F-BMC treatment lowered
the infarct extent, increased wall thickness and improved cardiac function. In vitro, the
F-BMC secretome promoted the growth of anti-inflammatory macrophages, stimulated
macrophage plasticity and consequently altered the balance between the pro- and anti-
inflammatory macrophage subsets. F-BMC secretome favored the mitogenic properties of
anti-inflammatory macrophages promoting cardiac cell growth.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10030527/s1, Figure S1: CD68+, CD206+ macrophages
within the infarcted area and border zone were similar in all groups. Immunostainings for CD206
(A,C) and CD68 (B,D) were performed on paraffin-embedded heart sections. 5 to 6 cross-sections
from a systematic sampling of the whole heart were averaged for each animal. Hearts were harvested
4 or 12 weeks post-treatment; Figure S2: Surface markers of BMCs measured by flow cytometry and
immunostaining. (A) Histogram represents the flow cytometry results, and the pictures represent the
immunostainings of the cells. BMC are a heterogeneous population of cells as indicated by markers
from the mesenchymal (CD90, CD29, CD13) and hematopoietic (CD45, CD44, CD68) lineages. The
mesenchymal CD90+ cells were most abundant. They form a population of large and spread cells.
(B) Quantification of the immunostainings; Figure S3: Comparison of the expression profiles of
macrophages cultured in F-BMC, BMC or fibrin conditioned medium; Table S1: Expression proteomic
data of conditioned medium of F-BMC and BMC; Table S2: Primers used for real-time PCR analysis.
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