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ABSTRACT Here, we describe the genome sequence of Acidianus ambivalens DSM
3772, an archaeon belonging to the Sulfolobales order that was first isolated from
continental solfataric fields. This thermoacidophile was sequenced because it utilizes
a unique sulfur disproportionation pathway that enables this metabolism under aer-
obic conditions, in contrast to obligately anaerobic bacterial sulfur disproportiona-
tors.

Acidianus ambivalens DSM 3772 is an obligate chemolithoautotrophic acidophile
isolated from continental solfataric fields (1, 2). It belongs to the Sulfolobales order

within the archaeal domain and grows most optimally at 80°C and a pH of 1 to 3 (1, 2).
This archaeon has been suggested to cope with low pH levels by an extreme turnover
of its terminal oxidase, which in turn generates a proton gradient by chemical charge
separation (3). Under aerobic conditions, this archaeon performs oxygen-dependent
elemental sulfur disproportionation to sulfide and sulfite (4). Under anaerobic condi-
tions, A. ambivalens uses hydrogen as an electron donor for elemental sulfur reduction
(5). It has also been shown to grow anaerobically with tetrathionate as the sole sulfur
substrate (5).

Genomic DNA of A. ambivalens was received from the DSMZ following growth in
medium 358a and extraction via a JetFlex genomic DNA purification kit from Genomed.
DNA libraries were prepared using a Nextera XT library prep kit on a Hamilton Microlab
Star automated liquid-handling system prior to sequencing via the Illumina HiSeq
platform using a 250-bp paired-end protocol. Reads were adapter trimmed with
Trimmomatic v0.30 (6). De novo assembly was performed using SPAdes v3.7 (7), and
annotation was performed using RAST v2.0 (8). The publicly available genome was
annotated with PGAP (9). CheckM v1.0.12 (10) was used to estimate genome complete-
ness. MetaPOAP v1.0 (11) was used to determine the likelihood for the presence or
absence of metabolic pathways. Taxonomic assignment of the genome was verified
with GTDB-Tk v0.3.2 (12). Hydrogenase proteins were classified with HydDB (13).
Default parameters were used for all software.

The A. ambivalens genome was recovered at 140� average coverage as 721,210
reads, which were assembled into 65 contigs with an N50 value of 1,228,068 bp and
totaling 2,326,940 bp encoding 2,794 coding sequences and 48 RNAs. The genome has
a 34.4% GC content. CheckM estimates the genome to be 100% complete based on the
presence of single-copy marker genes with 0% redundancy and strain heterogeneity.

The aerobic sulfur disproportionation pathway encoded by A. ambivalens differs
from that of anaerobic sulfur disproportionators, which encode a variant of the dissim-
ilatory sulfate reduction pathway (5, 14, 15). Aerobic elemental sulfur disproportion-
ation to sulfite and sulfide in A. ambivalens is promoted by a cytoplasmic sulfur
oxygenase reductase (SOR), with neutral or slightly acidic pH optima (5 to 7.4) (16). The
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genes encoding thiosulfate quinone oxidoreductase (TQO) (subunits doxA, doxB, doxC,
doxD, doxE, and doxF), argued to be involved in the formation of tetrathionate from
thiosulfate, a side product of the nonenzymatic condensation of HSO3

2� with S0 (16),
were also found, consistent with previous reports (3).

Genes encoding the two subunits of tetrathionate hydrogenase (tth1 and tth2) were
found in the genome. Tetrathionate hydrogenase is soluble, extracellular, and acido-
philic, and it is essential for growth with tetrathionate via its disproportionation to
sulfate, thiosulfate, and sulfite (5).

Genes encoding sulfur/polysulfide reductase (sreA, sreB, sreC, sreD, and sreE) were
also found. A. ambivalens also carries genes encoding a number of NiFe hydrogenases
(hydS, isp1, isp2, hydL, hypD, hypC, and hoxM), which hold a central role in electron-
donating reactions, including sulfur/polysulfide reduction. These hydrogenase enzymes
have been shown to exhibit a high optimum pH, which is puzzling given the low-pH
environments in which this archaeon optimally grows (17).

Data availability. This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number WHYS00000000. The fastq files of the
raw reads were deposited in the NCBI SRA under accession number SRR10430294.
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