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1. INTRODUCTION

Bipolar disorder (BD) is a chronic mood disorder alternating maniac/depressive with euthymic
episodes. Its onset is conditioned by the environment and genetic inheritance (Bauer M. et al.,
2014; Martinez-Cengotitabengoa et al., 2014; Bauer et al., 2015a,b), often during youth producing
cognitive, affective, and functional impairment (Forcada et al., 2014). Late onset BD (LOBD)
corresponds to ages above 50 years (Depp and Jeste, 2004; Zanetti et al., 2007; Prabhakar and
Balon, 2010; Besga et al., 2011; Carlino et al., 2013; Chou et al., 2015). At this period of life it can be
difficult to differentiate LOBD fromAlzheimer’s disease (AD) (Zahodne et al., 2015). Recent studies
have found shared biomarkers between LOBD and AD patients (Berridge, 2013). Similar roles of
inflammation and oxidative stress biomarkers have been found in AD (Akiyama et al., 2000; Kamer
et al., 2008; Sardi et al., 2011), LOBD (Goldstein et al., 2009; Konradi et al., 2012; Leboyer et al.,
2012; Lee et al., 2013; Bauer I et al., 2014; Hope et al., 2015), depression, and mania (Brydon et al.,
2009; Dickerson et al., 2013; Castanon et al., 2014; Singhal et al., 2014). Further details of shared
LOBD and AD traits are given in Besga et al. (2015b). Specific common psychiatric symptoms
are: agitation, euphoria, disinhibition, over-activity without agitation, aggression, affective liability,
dysphoria, apathy, impaired self-regulation, and psychosis (Albert and Blacker, 2006; Zahodne
et al., 2015). The demographic, neuropsychological, clinical, imaging, and blood plasma analytics
data used in our study, as well as the rules for eligibility and discarding of patients, appear in Graña
et al. (2011) and Besga et al. (2012, 2015a, 2016, 2017), hence reproducing them here would be
self-plagiarism according to journal rules. The content of this paper is as follows: first we refer the
contents of the dataset and its location for downloading, then we summarize previously published
results. We include the ethics statement and the trial registration reference.

2. CONTENTS OF THE DATASET

The dataset has been published in the Zenodo public repository (Besga et al., 2020). Its contents are
as follows:

• The clinical data includes the following information

– Demographics data, such as age, sex, civil state, environment conditions, and others
– Results of neuropsychological examination: we have carried out tests for executive function,

learning and memory, and attention. Details are given in Besga et al. (2015a).
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– Clinical observation: we carried out the Neuropsychiatric
Inventory and the functional assessment staging (FAST).
Details are given in Besga et al. (2015a).

– Blood plasma biomarkers: Neurotrophins, inflammation
biomarkers, and oxidative stress biomarkers. Details are
given in Besga et al. (2017).

• Magnetic Resonance Imaging (MRI) data obtained on a 1.5
Tesla scanner, that includes the following (details of data
capture and preprocessing are given in Graña et al., 2011;
Besga et al., 2012, 2016):

– Diffusion weighted imaging (DWI) with high b and 30
gradient directions. The original data is provided in the
dataset.

– Fractional Anisotropy (FA) volumes computed from the
DWI data after noise correction, registration, and diffusion
tensor (DTI) computation. The original FA data and the
FA volumes co-registered to MNI template using the
T1-weighted data non-linear registration parameters are
provided.

– T1-weighted anatomical volumes at 1 mm resolution. Both
original and non-linearly registered to MNI template data
are provided in the published dataset.

• Results: we provide the following results that can be used as
reference for checking the integrity of the data

– Voxel based morphometry (VBM) computed using
Statistical Parametric Mapping (SPM) software.1

– Tract based spatial statistics (TBSS) intermediate and final
results, as well as the correlations with blood sample
biomarkers computed using the FSL software (Smith et al.,
2004)2 as published in Besga et al. (2017).

3. PUBLISHED RESULTS

Previously reported results of this study are as follows:

1. Machine learning based computer aided diagnosis (CAD)
(Sigut et al., 2007; Salas-Gonzalez et al., 2009; Ramirez et al.,
2010; Savio et al., 2011; Westman et al., 2011; Termenon et al.,
2013) achieved high accuracy discrimination between AD and
LOBD populations using whole brain FA (Graña et al., 2011;
Besga et al., 2012).We discuss there that the good classification
performance was not enough due to poor brain localization
results causes by the feature extraction process.

2. Again, machine learning techniques applied on the clinical,
neuropsychological test, and blood plasma biomarkers give
good LOBD vs. AD classification performance (Besga
et al., 2015a). Clinical variables reported the highest
discriminant power, while blood plasma biomarkers reported
low discriminant power. Combinations of both, improved the
classification results, showing some indirect effects of blood
plasma biomarkers.

3. Using eigenanatomy tools (Avants et al., 2012, 2014) we
found an optimal decomposition of the FA volumes that show

1https://www.fil.ion.ucl.ac.uk/spm/
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS

maximal correlation with plasma biomarkers (Besga et al.,
2016). This decomposition provides the features for classifier
model building to discriminate AD vs. LOBD classification,
providing anatomical localization of the effects corresponding
to the classification features, which are consistent with
differential diagnostics.

4. The Tract-Based Spatial Statistics (TBSS) (Smith et al.,
2006; Bach et al., 2014) allows us to identify strongly
significant clusters in behavioral impairment relevant tracts.
These clusters show specific correlation with neurotrophins
biomarkers in an AD population but none with a LOBD
population. We also found a strong positive correlation of
inflammation biomarkers with the LOBD population (Besga
et al., 2017).

4. LIMITATIONS

The major limitation for the data is the small sample size.
Recruiting was a long process that took several years due to
the advanced age of the participants. Another limitation to
keep in mind is that the plasma biomarkers were not extracted
specifically from the central nervous system (CNS) tissues, so
they are biomarkers of the general state of the body not of specific
locations in the CNS.

5. CONCLUSIONS

We introduce a public dataset that can be exploited for the
identification of biomarkers that allow enhanced differential
diagnosis of AD vs. LOBD. We summarize our findings, already
published in the literature, in order to encourage innovative
computational approaches to be tested on this dataset.
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