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Abstract

Background: The begomoviruses are the largest and most economically important group of plant viruses
exclusively vectored by whitefly (Bemisia tabaci) in a circulative, persistent manner. During this process,
begomoviruses and whitefly vectors have developed close relationships and complex interactions. However, the
molecular mechanisms underlying these interactions remain largely unknown, and the microRNA profiles for
viruliferous and nonviruliferous whiteflies have not been studied.

Methods: Sequences of Argonaute 1(Ago1) and Dicer 1 (Dcr1) genes were cloned from B. tabaci MEAM1 cDNAs.
Subsequently, deep sequencing of small RNA libraries from uninfected and Tomato yellow leaf curl China virus
(TYLCCNV)-infected whiteflies was performed. The conserved and novel miRNAs were identified using the release of
miRBase Version 19.0 and the prediction software miRDeep2, respectively. The sequencing results of selected
deregulated and novel miRNAs were further confirmed using quantitative reverse transcription-PCR. Moreover, the
previously published B. tabaci MEAM1 transcriptome database and the miRNA target prediction algorithm miRanda
3.1 were utilized to predict potential targets for miRNAs. Gene Ontology (GO) analysis was also used to classify the
potential enriched functional groups of their putative targets.

Results: Ago1 and Dcr1orthologs with conserved domains were identified from B. tabaci MEAM1. BLASTn searches
and sequence analysis identified 112 and 136 conserved miRNAs from nonviruliferous and viruliferous whitefly
libraries respectively, and a comparison of the conserved miRNAs of viruliferous and nonviruliferous whiteflies
revealed 15 up- and 9 down-regulated conserved miRNAs. 7 novel miRNA candidates with secondary pre-miRNA
hairpin structures were also identified. Potential targets of conserved and novel miRNAs were predicted using GO
analysis, for the targets of up- and down-regulated miRNAs, eight and nine GO terms were significantly enriched.
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Conclusions: We identified Ago1 and Dcr1 orthologs from whiteflies, which indicated that miRNA-mediated
silencing is present in whiteflies. Our comparative analysis of miRNAs from TYLCCNV viruliferous and nonviruliferous
whiteflies revealed the relevance of deregulated miRNAs for the post-transcriptional gene regulation in these
whiteflies. The potential targets of all expressed miRNAs were also predicted. These results will help to acquire a
better understanding of the molecular mechanism underlying the complex interactions between begomoviruses
and whiteflies.

Keywords: Tomato yellow leaf curl China virus, Whitefly Bemisia tabaci, Gene silencing machinery, Differentially
regulated miRNA profiling
Background
RNA silencing, including post-transcriptional gene
silencing (PTGS) in plants, RNA interference (RNAi)
in animals and gene quelling in fungi, represents a
sequence-specific RNA degradation mechanism di-
rected against invasive nucleic acid molecules, which
plays an evolutionarily conserved role in gene regula-
tion and defense [1–3]. Recently, significant progress
has been made in understanding the various silencing
pathways. At least three basic silencing pathways have
been identified: (1) siRNA-mediated degradation of
abundant or aberrant mRNAs (PTGS or RNAi); (2)
microRNA (miRNA)-mediated silencing involved in
translational inhibition or degradation of mRNAs; and
(3) siRNA-directed de novo methylation of DNA and
histone proteins, leading to transcriptional gene silen-
cing (TGS).
miRNAs are small 19–24 nucleotide (nt) RNAs that

play critical roles in diverse biological processes. In
the nucleus, the primary transcript (pri-miRNA), from
which the miRNA is derived, can be several kilobases
in size and generally transcribed by RNA polymerase
II [4, 5]. The pri-miRNA is then processed by Dicer-1
(Dcr1 or Dicer-like1) into the precursor miRNA (pre-
miRNA), which is further processed into the mature
miRNA-miRNA* duplex [6–8]. This duplex is trans-
ported into the cytoplasm, unwound and loaded into
an Argonaute (Ago) protein, which is part of the RISC
(RNA induced silencing complex) and guides RISC to
cleave or suppress target mRNA [6, 7, 9]. In animals,
it has been shown that miRNAs can repress the
expression of target genes by binding to sequences in
both the 3′-UTR [10, 11] and the protein-coding
region [12, 13].
The whitefly Bemisia tabaci causes severe crop losses by

direct feeding on plants as well as vectoring more than 200
different species of begomoviruses [14–16]. Recent phylo-
genetic analyses and crossing experiments have indicated
that the whitefly B. tabaci is a complex containing at least
34 morphologically indistinguishable species [17–20].
Within this whitefly complex, the Middle East-Asia Minor
1 (MEAM1) [21–23], previously referred to as the “B
biotype”, has become an international concern since the
1980s because of its rapid spread [17, 24–26]. With inva-
sions of whiteflies from this complex, diseases caused by
begomoviruses simultaneously increase and pandemics
have been frequently recorded in tobacco, tomato, pump-
kin, papaya and some other crops throughout the world
[15, 27–31]. Among them, one of the major causative
agents of begomovirus diseases in Southwest China is To-
mato yellow leaf curl China virus (TYLCCNV) [32].
The RNAi pathway is functional in whiteflies [33–35]

and RNAi has been speculated to be responsible for the
inhibition of viral gene expression following acquisition
of geminiviruses by whiteflies [36]. However, the roles of
RNAi in the complex interactions between begomo-
viruses and the whitefly remain largely unknown, and
miRNA profiles for viruliferous and nonviruliferous
whiteflies have not been reported. In this study, we first
demonstrated that the core miRNA pathway machinery
is present in the whitefly B. tabaci MEAM1. We then:
(1) investigated the expression profiles of miRNAs in vir-
uliferous and nonviruliferous whiteflies, by utilizing deep
sequencing; (2) identified the conserved and novel
miRNA candidates of whitefly; and (3) identified targets
of the differentially regulated miRNAs in viruliferous
and nonviruliferous whiteflies. Our objective is to gain a
better understanding of the role of miRNA in the com-
plex interactions between the whitefly vector and
TYLCCNV.

Results and discussion
Identification of Argonaute 1 and Dicer 1 orthologs in
whiteflies
Ago1 and Dcr1 genes are key elements involved in
miRNA-mediated silencing. To determine whether the
core RNA-induced gene silencing machinery is present
in B. tabaci MEAM1, we cloned partial sequences for
Ago1 and Dcr1 orthologs. A partial fragment of a puta-
tive whitefly Ago1 gene (encoding 743 amino acids) was
sequenced and compared to orthologs from other spe-
cies, including Drosophila melanogaster, Tribolium cas-
taneum, Bombyx mori, Rattus norvegicus and Homo
sapiens. As expected, all the sequences analyzed were
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conserved and the typical PAZ and Piwi-like domains re-
ported for other Argonaute family proteins were also
present in the whitefly Ago1 (Fig. 1). The entire 743
amino acids of the cloned B. tabaci MEAM1 Ago1 ex-
hibited approximately 90 % sequence identity to Ago1
from other insects (Fig. 1a), and approximately 95 and
90 %, within the PAZ and Piwi-like motifs respectively
(Fig. 1b). Similarly, the partial sequence of the whitefly
Dcr1 gene (encoding 480 amino acids) was also con-
served amongst different insects and the typical Ribonu-
lease III domain reported for other Dicer family proteins
was also present in whitefly Dcr1 (Fig. 2). The 480
amino acids of B. tabaci MEAM1 Dcr1 exhibited 70 %
sequence identity to Dcr1 from other insects (Fig. 2a)
and approximately 77 % identity for the Ribonulease III
Fig. 1 a Sequence alignment of Argonaute 1 (Ago1) from whitefly B. tabac
Tribolium castaneum, Bombyx mori, Rattus norvegicus and Homo sapiens. b
Conserved Domains Server. Conserved PAZ and Piwi-like domains were ide
motif (Fig. 2b). These results indicate that two of the
core components of the miRNA-mediated silencing sys-
tem exist in the whitefly.
The presence of this system in whiteflies has implica-

tions regarding recent studies demonstrating differences
in the global gene expression profile in viruliferous and
nonviruliferous whiteflies [37]. It has been found that after
TYLCCNV infection a number of genes involved in cell
cycle regulation, primary metabolism, the immune re-
sponse, Toll-like signaling and mitogen-activated protein
kinase (MAPK) pathways were differentially regulated in
the viruliferous whiteflies [37]. As miRNAs are now recog-
nized as critical regulators of gene expression, we suggest
that identification and comparison of miRNAs in virulifer-
ous and nonviruliferous whiteflies could provide new
i MEAM1 and other species including Drosophila melanogaster,
Structure of the partial Argonaute proteins predicted using the NCBI
ntified in the assembled B. tabaci Ago1



Fig. 2 a Sequence alignment of Dicer 1 (Dcr1) from whitefly B. tabaci MEAM1 and other species including Drosophila melanogaster, Acyrthosiphon
pisum, Tribolium castaneum, Rattus norvegicus and Homo sapiens. b Structure of partial Dicer proteins predicted using the NCBI Conserved
Domains Server. The conserved Ribonulease III domain was identified in the assembled B. tabaci MEAM1 Dcr1
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information concerning biological changes in the vector
upon virus infection.

Overview of the analysis of small RNA libraries
In order to identify differentially expressed miRNAs
involved in begomovirus-whitefly interactions, we
constructed small RNA libraries from uninfected and
TYLCCNV-infected whiteflies. High throughput
Solexa sequencing of these two small RNA libraries
was performed and low-quality sequences and se-
quences <18 nt or >31 nt were eliminated. A total of
1,910,274 reads (948,290 unique sequences) in the
nonviruliferous library and 5,663,142 reads (1,910,584
unique sequences) in the viruliferous library were ob-
tained. Analysis of the size distribution indicated that
the highest percentage of small RNAs in both libraries
were 21–23 nt (26.9 and 47.5 % of all reads in nonvir-
uliferous and viruliferous libraries respectively) and
28–30 nt (47.5 and 27.6 % of all reads in nonvirulifer-
ous and viruliferous libraries respectively) in length
(Fig. 3a). The small RNAs in the 21–23 nt range are
consistent with that observed for miRNAs in animals
[38], and small RNAs in the 28–30 nt range are con-
sistent with pi-RNA-like sequences. A previous study
on identification of miRNAs in B. tabaci B and Q has
showed that the distribution of sequence lengths from
both B and Q libraries were enriched with small RNAs
of 21–23 and 28–30 nt [39]. Our data are consistent
with this previous report for nonviruliferous white-
flies, which provide confidence in the reliability of the
data.
Subsequent sequence analysis (NCBI GenBank and

Rfam Version 10.1) indicated that, among these small
RNAs, a total of 128,523 (nonviruliferous) and 613,517
(viruliferous) were rRNAs (71,238/3.73 % for nonviru-
liferous library and 356,499/6.30 % for viruliferous li-
brary), snRNAs (13/0.00; 35/0.00 %, respectively), or
tRNAs (57,272/3.00; 256,983/4.54 %, respectively)
(Fig. 3b). After eliminating reads corresponding to
these RNAs, both libraries contained a large fraction
of reads derived from unannotated genome sites
(82.87 and 66.95 %, respectively) and miRNAs (9.44
and 21.27 %, respectively) (Fig. 3b). These unique data
sets and read counts were used to identify conserved
and novel miRNAs in whiteflies. The coverage of small
RNAs is also consistent with previous report for non-
viruliferous whiteflies [39]. It is interesting that the
corresponding coverage of reads for rRNAs, snRNAs



Fig. 3 Size distribution (a) and coverage (b) of small RNAs identified in libraries from nonviruliferous and viruliferous whiteflies
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or tRNAs shows a similar trend in both libraries ex-
cept for the miRNAs, which were expressed at a much
higher level in the library from viruliferous whiteflies.
Differentially expressed conserved miRNAs in viruliferous
relative to nonviruliferous whiteflies
To identify conserved miRNAs in B. tabaci MEAM1, all
clean small RNA tags were annotated into different cat-
egories to remove rRNAs, tRNAs, snRNAs, and snoRNAs
using the Rfam database (Version 10.1). The remaining
small RNAs from the nonviruliferous and viruliferous
whitefly libraries were used to identify conserved miRNAs
in B. tabaci MEAM1 by comparison to known miRNAs
in the miRBase database (Version 19.0). Sequences in our
libraries identical to or related to (having four or fewer nu-
cleotide substitutions) miRNA sequences of D. melanoga-
ster or other insects (Aedes aegypti, Apis mellifera, B.
mori, and T. castaneum) were considered to be potentially
conserved miRNAs. After BLASTn searches and further
sequence analysis, a total of 112 conserved miRNAs were
identified from the nonviruliferous whitefly library and
136 conserved miRNAs were identified from the virulifer-
ous whitefly library (Additional file 1: Table S1).
We then compared expression levels of putative

conserved miRNA between nonviruliferous and viru-
liferous whitefly libraries. For the comparison, we first
normalized the expression of miRNAs (normalized
expression = actual miRNA count/total count of clean
reads × 100000), and then set a threshold of a 2-fold
difference in normalized expression and a representa-
tion of 0.1 % (actual miRNA count/total count of
clean reads) in both miRNA libraries. Between the
nonviruliferous and viruliferous libraries, we identified
52 miRNAs that were differentially expressed. Among
these, 26 miRNAs were unique to the viruliferous
library and 2 miRNAs were unique to the nonvirulifer-
ous library (Additional file 2: Table S2). Among the 24
miRNAs that were identified in both libraries, 15 miR-
NAs were up-regulated and 9 reduced relative to the
nonviruliferous library (Fig. 4). The strongest relative
induction was observed for bantam (43-fold), let-7a-5p
(26-fold), miR-1175-3p (13-fold) and miR-219 (10-fold),
while the strongest reduction was observed for miR-306-



Fig. 4 Expression patterns of deregulated conserved miRNAs identified in libraries from nonviruliferous and viruliferous whiteflies. The left panel
(a) shows up-regulated miRNAs and the right panel (b) represents down-regulated miRNAs in viruliferous as compared to nonviruliferous whiteflies.
Only miRNAs with at least a two-fold difference in expression levels and an expression of at least 0.1 % in both whitefly libraries are shown
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5p (6-fold), miR-993a-5p (5-fold), miR-2779 (4-fold) and
miR-307 (3-fold) (Fig. 4).
Bantam miRNA has been reported to simultaneously

stimulate cell proliferation and prevent apoptosis in
response to patterning cues in Drosophila [40]. In our
study, bantam miRNA was significantly up-regulated in
the viruliferous whiteflies as compared to the nonviruli-
ferous controls. It has been reported that TYLCCNV
can activate whitefly immune responses, including au-
tophagy. The induction of autophagy can inhibit cell
growth and induce apoptotic cell death, which might
lead to a gradual decrease of viral particles within the
body of viruliferous whiteflies [37, 41]. An enhanced
level of bantam in the viruliferous whiteflies suggests
that bantam may act to arrest the apoptotic response
and help to maintain homeostasis in the presence of
virus.
The let-7 miRNA family, which includes let-7a, let-

7b, let-7c, let-7d, let-7e, let-7f, has been known to play
an important role in cell cycle, proliferation and apop-
tosis. Moreover, let-7 has been implicated in post-
transcriptional control of responses to pathogenic
agents [42, 43]. Significant up-regulation of let-7 was
also detected in viruliferous whiteflies, suggesting that
this miRNA may act to perturb the cell cycle in the
whitefly, thus offering one explanation for the negative
effect of this virus on the longevity and fecundity of B.
tabaci MEAM1. Recently, miR-219 has been con-
nected with NMDA receptor signaling in humans, and
it has been shown that deregulation of this miRNA
can lead to the development of mental disorders such
as schizophrenia [44]. Viruliferous whiteflies also
showed a significant increase in miR-219 expression
level, although how this is relevant to the presence of
virus in the whitefly is unknown. While the physio-
logical functions of other up- and down-regulated
miRNAs are still unknown, their specific expression
patterns indicate that they are also likely to play crit-
ical roles in hypometabolic processes in whiteflies.
Further experiments are needed to elucidate their po-
tential roles in this process.

Identification of novel miRNA candidates
Next, we used the miRNA prediction software miRDeep2
[45] to identify putative novel miRNAs by searching
against the previously published B. tabaci MEAM1 tran-
scriptome database [46]. In total, 7 potential novel miRNA
candidates were identified from both the nonviruliferous
and viruliferous libraries (Table 1). The length of the 7
predicted novel miRNA candidates ranged from 18 to
23 nt. The miRDeep2 scores for these novel miRNA
candidates were all ≥4. Interestingly, we found that the
expression levels of all 7 novel miRNA candidates were
up-regulated in the viruliferous as compared to the non-
viruliferous library. To investigate whether these novel
miRNA candidates are conserved in a wide range of ani-
mal species, we used these miRNAs as query sequences to
perform BLASTn search against all nucleotide sequences
in miRBase Version 19.0. The results indicated that these
miRNAs candidates were not found in other species,
possibly indicating that they are specific to whiteflies and
thus have a species-specific role(s). Interestingly, we found
the sequence of bta-miRn16 also map into the genome of a
primary endosymbiont, Candidatus Portiera aleyrodidarum
[47], which has been found to accompany whiteflies in our
laboratory without any treatment [48, 49]. Furthermore, to
evaluate the novel miRNA candidates represent true miR-
NAs, the hairpin structures for putative pre-miRNA



Table 1 Novel miRNA candidates identified from whitefly B. tabaci MEAM1

Name Sequence (5′-3′) Length
(nt)

miRDeep2
score

Reads in libraries

Nonviruliferous Viruliferous

bta-miRn16 caagauggagguuuacugguucu 23 971.7 140 1114

bta-miRn17 ccuaaaucagagaucuuugacg 22 213.1 81 121

bta-miRn18 uuggccauccugacaccccuug 21 99.6 13 102

bta-miRn19 caaagucuaagauuuuuugcg 21 21.2 5 20

bta-miRn20 ugucgugaugauuuucau 18 4.2 4 8

bta-miRn21 cgucgcauggcgcuugugaua 21 4.1 1 4

bta-miRn22 uuacguacucaaacaacacaag 22 4 35 143
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hairpins were generated using RNAfold [50]. As shown in
Fig. 5, although differing complexities, all novel miRNA
candidate precursor sequences fold into hairpin structures
characteristic of miRNA precursors.

Validation of miRNA sequencing data by qRT-PCR
To further validate the miRNA sequencing data, we used
qRT-PCR to examine the expression levels of four up-
regulated miRNAs (bantam, miR-1, −2b, and −124) and
four down-regulated miRNAs (miR-306-5p, −307, −317,
and −993a) in the viruliferous relative to nonviruliferous
library. As shown in Fig. 6, these miRNAs showed an
expression pattern consistent with the results obtained
from Solexa sequencing (Fig. 4), except miR-306-5p that
exhibited similar levels of expression in the two libraries.
For the potential novel miRNA candidates identified in

both nonviruliferous and viruliferous libraries, we also ex-
amined the expression level of four novel miRNAs by
qRT-PCR. All of them could be amplified by qRT-PCR
Fig. 5 Secondary structures of putative precursor hairpins corresponding to
sequences are highlighted in red
using specific primers (Fig. 7). Three of the potential novel
miRNA candidates showed higher expression in virulifer-
ous than in nonviruliferous whiteflies, which was the same
trend observed in the sequencing data of novel miRNA
candidates (Table 1). However, one novel miRNA, bta-
miRn17, exhibited a decrease in expression in viruliferous
as compared to nonviruliferous whiteflies (Fig. 7a), which
is the opposite to that of Solexa sequencing. The reason
for these differences is currently unknown.

miRNA target prediction and GO analysis
The function of a miRNA is ultimately defined by its
effects on the expression of target genes. To reveal the
possible functions of the miRNAs identified in whiteflies,
potential targets of conserved and novel miRNAs were
predicted using the previously published B. tabaci
MEAM1 transcriptome database [46] with the miRNA
target prediction algorithm miRanda 3.1. In total 193,090
targets were obtained. The length of the target sequences
seven novel miRNA candidates. The predicted miRNA mature



Fig. 6 Validation of deregulated conserved miRNA expression levels by quantitative reverse transcription-PCR. The left panel (a) shows up-
regulated miRNAs and the right panel (b) represents down-regulated miRNAs in viruliferous as compared to nonviruliferous whiteflies. The level
measured for bantam and miR-306-5p in the nonviruliferous whitefly library was arbitrarily set to 1. Student’s t-test in EXCEL was performed and double
asterisks indicate a significant difference (P < 0.01) between the two-paired samples

Fig. 7 Validation of novel miRNA expression by quantitative reverse transcription-PCR. The diagram (a) and the electrophoretogram (b) show the
novel miRNA comparisons between nonviruliferous and TYLCCNV viruliferous whiteflies. N: nonviruliferous whiteflies, V: TYLCCNV viruliferous
whiteflies, M: marker. The level measured for bta-miRn16 in the nonviruliferous whitefly library was arbitrarily set to 1. Student’s t-test in EXCEL was
performed; single and double asterisks indicate significant difference (P < 0.05 and P < 0.01, respectively) between the two-paired samples
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varied from 200 to 5926 bp, and the binding energy
between the miRNAs and the target varied from −20.01 to
−48.05 kCal/mol. All of the miRNAs had more than 100
predicted targets. Some miRNAs had more than 1000
predicted targets, and some target genes were putatively
regulated by more than two miRNAs. For a better under-
standing of the functions of the miRNAs, we analyzed the
number of miRNA targets in a specific GO. Predicted
targets covered three main categories: biological process,
cellular component, and molecular function (Additional
file 3: Figure S1).
To gain insight into the potential functions of the differ-

entially expressed miRNAs of the nonviruliferous and
viruliferous libraries, GO analysis was also used to classify
the potential enriched functional groups of their putative
targets. For both up- and down-regulated miRNAs in the
target libraries, the biological processes most represented
are cellular and metabolic processes, whereas binding and
catalytic activity are among the most represented molecu-
lar function categories, which is similar to the GO analysis
of all conserved and novel miRNA targets. To identify the
relatively enriched GO terms for up- and down-regulated
miRNAs, we first normalized the up- and down-regulated
miRNA target genes (normalized target genes = up- or
down-regulated miRNA target gene count/total up- or
down-regulated miRNA target gene count), and then set a
threshold of a 1.5-fold difference in normalized target
genes (Table 2). The target genes of up-regulated miRNAs
were significantly enriched in eight GO terms, including
antioxidant activity, translation regulator activity, protein
binding transcription factor activity, structural molecule
activity, growth, immune system process, negative regula-
tion of biological process and membrane-enclosed lumen.
The targets of down-regulated miRNAs were enriched in
nine GO terms, including channel regulator activity,
metallochaperone activity, virion, virion part, synapse,
synapse part, cell junction, transporter activity and
biological adhesion (Fig. 8). Of particular interest is
the enrichment of the targets of up-regulated miR-
NAs in growth. This may be linked to the global
transcriptional depression of growth-related genes and
contribute to the reduced fecundity and longevity in
viruliferous whiteflies [37, 51]. For the targets of
novel miRNAs, as compared with the targets of con-
served miRNAs, there was a very similar GO distribu-
tion (Additional file 4: Figure S2). This suggests that
the novel miRNAs might be functionally divergent.

Conclusions
In summary, we identified Ago1 and Dcr1 orthologs
from whiteflies, which indicated that miRNA-mediated
silencing is present in whiteflies. Our comparative ana-
lysis of miRNAs from TYLCCNV viruliferous and non-
viruliferous whitefly libraries revealed the relevance of
deregulated miRNAs for the post-transcriptional gene
regulation in these whiteflies. The potential targets of all
expressed miRNAs were predicted. These results will
help to acquire a better understanding of the molecular
mechanism underlying the complex interactions be-
tween begomoviruses and whiteflies.

Methods
Whitefly, plant and virus
A colony of the whitefly B. tabaci MEAM1 (GenBank
accession no. GQ332577) was maintained on cotton
(Gossypium hirsutum cv. Zhe-Mian 1793) [37] in a
climate-controlled chamber at 27 ± 1 °C, with a photo-
period of 14 h light/10 h darkness and relative humidity
of 70 ± 10 %. The purity of the colony was monitored
every 3–5 generations using the random amplified poly-
morphic DNA PCR technique combined with sequen-
cing of the mitochondrial cytochrome oxidase 1 gene,
which has been widely used to differentiate species of
the whitefly complex [52, 53].
To obtain virus-infected tomato (Solanum lycopersi-

cum cv. Hongbaoshi), plants at the 6–8 leaf stage were
agroinoculated with an infectious clone of TYLCCNV
isolate Y10 (pBinPLUS-Y10 1.7A) in combination with
its associated betasatellite (pBinPLUS-2β) at a 1:1 ratio
as described previously [32]. Inoculated plants were kept
in an insect-free chamber for 21 days post inoculation
and then used for the experiments. Infection of test
plants was assessed by the appearance of symptoms typ-
ical of TYLCCNV and further confirmed by PCR using a
procedure described previously [54].

Identification and cloning of Argonaute 1 and Dicer 1
orthologs from whiteflies
The Drosophila melanogaster Ago1 and Dcr1 sequences
(GenBank accession no. 36544 and no. 42693) were used to
identify whitefly orthologs using the B. tabaci transcrip-
tome database [46]. B. tabaci MEAM1 cDNAs were gener-
ated by reverse transcription using an Oligo (dT) primer,
and partial fragments of the Ago1 and Dcr1 genes amplified
with gene specific primers (Additional file 5: Table S3). The
resulting fragments of 2229 and 1440 nucleotides for Ago1
and Dcr1, were then cloned into the pGEM-T Easy vector
(Promega, Madison, USA), respectively.

Sample preparation and RNA extraction
Ten TYLCCNV-infected and ten uninfected tomato
plants were placed in insect-proof cages as the inoculum
sources [30]. Approximately 10,000 newly emerged adult
whiteflies (0–24 h after emergence) were collected from
the colony maintained on cotton and released onto
either the TYLCCNV-infected tomato plants, or unin-
fected tomato plants in separate insect-proof cages. The
whiteflies were reared under the conditions of



Table 2 Go terms of up-regulated and down-regulated miRNA target genes

GO term Up-regulated miRNA
target genes

Down-regulated miRNA
target genes

Normalized up-regulated
miRNA target genes

Normalized down-regulated
miRNA target genes

Biological adhesion 17 9 1.07 % 1.65 %

Biological regulation 291 94 18.32 % 17.28 %

Cellular component
organization or biogenesis

152 38 9.57 % 6.99 %

Cellular process 899 295 56.61 % 54.23 %

Developmental process 91 26 5.73 % 4.78 %

Establishment of localization 198 85 12.47 % 15.63 %

Growth 17 3 1.07 % 0.55 %

Immune system process 10 2 0.63 % 0.37 %

Localization 205 89 12.91 % 16.36 %

Locomotion 16 6 1.01 % 1.10 %

Metabolic process 875 266 55.10 % 48.90 %

Multicellular organismal
process

106 34 6.68 % 6.25 %

Multi-organism process 5 2 0.31 % 0.37 %

Negative regulation of
biological process

48 10 3.02 % 1.84 %

Positive regulation
of biological process

31 10 1.95 % 1.84 %

Regulation of
biological process

277 92 17.44 % 16.91 %

Reproduction 25 8 1.57 % 1.47 %

Reproductive process 21 6 1.32 % 1.10 %

Response to stimulus 205 73 12.91 % 13.42 %

Rhythmic process 3 1 0.19 % 0.18 %

Signaling 143 51 9.01 % 9.38 %

Single-organism process 471 171 29.66 % 31.43 %

Cell 615 198 38.73 % 36.40 %

Cell junction 17 12 1.07 % 2.21 %

Cell part 615 198 38.73 % 36.40 %

Extracellular matrix 7 3 0.44 % 0.55 %

Extracellular matrix part 4 2 0.25 % 0.37 %

Extracellular region 30 13 1.89 % 2.39 %

Extracellular region part 12 3 0.76 % 0.55 %

Macromolecular complex 294 85 18.51 % 15.63 %

Membrane 260 101 16.37 % 18.57 %

Membrane-enclosed lumen 104 23 6.55 % 4.23 %

Membrane part 171 71 10.77 % 13.05 %

Organelle 387 100 24.37 % 18.38 %

Organelle part 229 59 14.42 % 10.85 %

Synapse 12 11 0.76 % 2.02 %

Synapse part 10 9 0.63 % 1.65 %

Virion 1 1 0.06 % 0.18 %

Virion part 1 1 0.06 % 0.18 %

Antioxidant activity 5 0 0.31 % 0
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Table 2 Go terms of up-regulated and down-regulated miRNA target genes (Continued)

Binding 906 280 57.05 % 51.47 %

Catalytic activity 905 295 56.99 % 54.23 %

Electron carrier activity 29 10 1.83 % 1.84 %

Enzyme regulator activity 42 21 2.64 % 3.86 %

Molecular transducer activity 36 15 2.27 % 2.76 %

Nucleic acid binding
transcription factor activity

20 6 1.26 % 1.10 %

Protein binding transcription
factor activity

15 2 0.94 % 0.37 %

Receptor activity 27 12 1.70 % 2.21 %

Structural molecule activity 27 4 1.70 % 0.74 %

Translation regulator activity 1 0 0.06 % 0

Transporter activity 81 48 5.10 % 8.82 %

Channel regulator activity 0 1 0 0.18 %

Metallochaperone activity 0 1 0 0.18 %

Fig. 8 GO classification of putative functions of targets of differentially expressed (up- and down-regulated) miRNAs from the nonviruliferous and
viruliferous whitefly libraries. The x axis shows subgroups of molecular functions from GO classification and the y axis shows the number and the
percent of the matched unigene sequences
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temperature, photoperiod and humidity as stated above.
Previous studies have demonstrated that MEAM1 white-
flies acquire TYLCCNV rapidly, usually within 12 h of
feeding on virus-infected plants [55, 56]. Whiteflies were
therefore given an acquisition access period (AAP) of
24 h on both TYLCCNV-infected and uninfected tomato
plants, and then transferred to cotton, a non-host plant
of TYLCCNV, and reared for 5 days. This procedure was
intended to clear as much as possible effects of the test
plant on miRNA expression prior to collection for RNA
preparation. Whiteflies were tested to verify their status
of virus acquisition.
Total RNA was extracted from viruliferous and non-

viruliferous whiteflies using TRizol Reagent as described
(Invitrogen, Carlsbad, USA). Low molecular weight
(LMW) RNAs were enriched using PEG (molecular
weight 8000) and NaCl as described [57, 58] and were
electrophoresed through a 15 % TBE-urea PAGE gel.
The region of the gel containing RNA molecules be-
tween 18–28 nt in length was excised and used for small
RNA library construction.
Small RNA library preparation and high-throughput
sequencing
Small RNA libraries were constructed as described previ-
ously [32, 59]. In brief, 18–28 nt small RNAs were sequen-
tially ligated to a 3′ adapter and a 5′ adapter. After each
ligation step, small RNAs were purified using 15 % denatur-
ing PAGE as described above. Subsequently, the final puri-
fied ligation products were reverse transcribed into cDNA
using Superscript III reverse transcriptase (Invitrogen,
Carlsbad, USA). First strand cDNA was amplified by PCR
using Taq polymerase (Roche, Basel, Switzerland) and DNA
amplicons from each library purified and then separately
submitted for high-throughput sequencing using the Solexa
platform (Illumina, SanDiego, CA).
Identification of conserved miRNAs
Tags less than 40 nt were first subjected to data cleaning
to remove low quality tags and several kinds of contami-
nants. The distribution of the lengths of the clean tags was
summarized. The clean tags were annotated into different
categories using the Rfam Version 10.1; and rRNAs,
tRNAs, snRNAs, and snoRNAs were filtered out. The
remaining small RNA tags were used to search the latest
release of miRBase Version 19.0 to identify conserved
miRNAs in B. tabaci MEAM1. Conserved miRNAs were
defined as sequences present in our libraries that were
identical or related to (having four or fewer nucleotide
substitutions) sequences from D. melanogaster or other
insects (A. aegypti, A. mellifera,T. castaneum and B. mori)
as outlined previously [39].
Identification of novel miRNAs
Although the characteristic hairpin structure of miRNA
precursors could be used to predict novel miRNAs, it is
very challenging to define novel miRNAs. We used the
prediction software miRDeep2 [48] to predict novel
miRNAs. As no completed genome sequences for white-
flies are available, 27,288 nucleotide sequences of B.
tabaci obtained from the NCBI were used as a reference
for the prediction of novel miRNAs as described [39].
We explored the secondary structure, the Dicer cleavage
site and the minimum folding free energy of any unan-
notated small RNA tags that could be mapped to the
whitefly genome. To be considered as a potential novel
miRNA candidate, the predicted sequences should also
meet the default parameters according to miRDeep2. To
further evaluate the novel miRNA candidates represent
true miRNAs, the secondary structures of putative pre-
miRNA hairpins were generated using RNAfold [50].

Quantitative reverse transcription-PCR (qRT-PCR) of
miRNAs
qRT-PCR of miRNAs were conducted as described previ-
ously [60]. Briefly, 1 μg of RNase-free DNaseI-treated
RNA isolated from viruliferous or nonviruliferous white-
flies was polyadenylated using the Poly (A) Tailing Kit
(Ambion, Austin, USA) following the manufacturer’s di-
rections. After phenol-chloroform extraction and ethanol
precipitation, the RNAs were reverse-transcribed with 200
U SuperScript™ II Reverse Transcriptase (Invitrogen,
Carlsbad, USA) and 0.5 μg poly (T) adapter. For each
PCR, 1 μL of template cDNA was mixed with 12.5 μL 2 ×
SYBR Green PCR master mix (Roche, Basel, Switzerland)
and 5 pmoL each of the forward and reverse primers in a
final volume of 25 μL. Amplification program was per-
formed as follows: 15 s at 95 °C, followed by 15 s at a
temperature 5 °C below the primer’s true Tm, and 20 s at
72 °C for 45 cycles. A thermal denaturing step to generate
the dissociation curves was included to verify amplifica-
tion specificity. All reactions were run in triplicate, and
the results were analyzed by the 2-ΔΔCT method [61, 62].
Student’s t-test in EXCEL was used to analyze the qRT-
PCR data of miRNA comparisons between nonviruliferous
and viruliferous whiteflies. The primers used in this ana-
lysis are listed in Additional file 5: Table S3.

Target prediction and GO analysis
In the absence of a completed genome sequence, we
utilized the previously published B. tabaci MEAM1 tran-
scriptome database [46] and the miRNA target prediction
algorithm miRanda 3.1 (http://www.microrna.org/micro-
rna/getDownloads.do) to predict potential targets for
conserved and novel miRNAs. For miRanda, default pa-
rameters were used with the following exceptions: the
score was set to ≥130 and the free energy was set to ≤ −16

http://www.microrna.org/microrna/getDownloads.do
http://www.microrna.org/microrna/getDownloads.do


Wang et al. Virology Journal  (2016) 13:20 Page 13 of 14
kCal/mol. Predicted targets were further filtered using
more stringent criteria in which they had to contain either
(1) a match between nucleotides 2–8 of the miRNA with
the target sequence or (2) a match between nucleotides
2–7 and 13–16 of the miRNA with the target sequence
(G:U base-pairing was tolerated). To reveal functions re-
lated to the putative target genes, Gene Ontology (GO)
analysis was performed on predicted target gene candi-
dates for conserved and novel miRNAs and differentially
expressed miRNAs using three ontologies: molecular
function, cellular components and biological process.

Additional files

Additional file 1: Table S1. Conserved miRNAs from the
nonviruliferous and viruliferous whitefly libraries (DOCX 21 kb)

Additional file 2: Table S2. Induced miRNAs only in TYLCCNV
viruliferous whiteflies (DOCX 14 kb)

Additional file 3: Figure S1. GO classification of putative functions of
targets of all conserved and novel miRNAs from the nonviruliferous and
viruliferous whitefly libraries. The X axis shows subgroups of molecular
functions from GO classification and the Y axis shows the number and
the percent of the matched unigene sequences. (DOCX 362 kb)
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