
Phys.Med. Biol. 66 (2021) 175020 https://doi.org/10.1088/1361-6560/ac1b1d

PAPER

Amultichannel feature-based approach for longitudinal lung CT
registration in the presence of radiation induced lung damage

AStavropoulou1, A Szmul1, E Chandy1,2 , CVeiga1, D Landau2 and J RMcClelland1

1 Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, United
Kingdom

2 University CollegeHospital London, UnitedKingdom

E-mail: alkisti.stavropoulou.16@ucl.ac.uk

Keywords: radiation-induced lung damage, lung cancer, radiotherapy, computed tomography, longitudinal image registration

Abstract
Quantifying parenchymal tissue changes in the lungs is imperative in furthering the study of radiation
induced lung damage (RILD). Registering lung images fromdifferent time-points is a key step of this
process. Traditional intensity-based registration approaches fail this task due to the considerable
anatomical changes that occur between timepoints. Thiswork proposes a novelmethod to successfully
register longitudinal pre- and post-radiotherapy (RT) lung computed tomography (CT) scans that
exhibit large changes due to RILD, by extracting consistent anatomical features fromCT (lung
boundaries,main airways, vessels) and using these features to optimise the registrations. Pre-RT and
12month post-RTCTpairs fromfifteen lung cancer patients were used for this study, all with varying
degrees of RILD, ranging frommild parenchymal change to extensive consolidation and collapse. For
eachCT, signed distance transforms from segmentations of the lungs andmain airways were
generated, and the Frangi vesselnessmapwas calculated. Thesewere concatenated intomulti-channel
images and diffeomorphicmultichannel registrationwas performed for each image pair using
NiftyReg. Traditional intensity-based registrationswere also performed for comparison purposes. For
the evaluation, the pre- and post-registration landmark distancewas calculated for all patients, using
an average of 44manually identified landmark pairs per patient. Themean (standard deviation)
distance for all datasets decreased from15.95 (8.09)mmpre-registration to 4.56 (5.70)mmpost-
registration, compared to 7.90 (8.97)mmfor the intensity-based registrations. Qualitative improve-
ments in image alignmentwere observed for all patient datasets. For four representative subjects,
registrationswere performed for three additional follow-up timepoints up to 48months post-RT and
similar accuracy was achieved.We have demonstrated that our novelmultichannel registration
method can successfully align longitudinal scans fromRILDpatients in the presence of large
anatomical changes such as consolidation and atelectasis, outperforming the traditional registration
approach both quantitatively and through thorough visual inspection.

1. Introduction

Non-small cell lung cancer (NSCLC) is one of themost common cancers in theUK.Historically, the prognosis
for lung cancer patients has been poor, but advancements in treatments have causedmortality to decline
(Howlader et al 2020). However, survivors ofNSCLC can experience poor quality of life due to the toxicity of
radiotherapy (RT) (Marks et al 2000, Fan et al 2001, LopezGuerra et al 2012). The study of the negative long-
term effects of radiation is becoming evermore important as patient survival rates increase. Radiation received
during radiotherapy can lead to radiation induced lung damage (RILD). RILD is a time-dependent process, often
split into two phases. Acute RILDor pneumonitis, is a phase of inflammationwhich occurs a fewweeks or
months after RT and is reversible. Chronic damage (pulmonary fibrosis) is the permanent scarring of the lung
tissue that leads to impairment of oxygen transfer (Mehta 2005).
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RILD canmanifest as anatomical changes in the thoracic cavity such as consolidation, collapse and pleural
effusion and can be detected in computed tomography (CT) images as changes in shape, density, texture and
position between scans at different time points post-RT (Ikezoe et al 1988, Choi et al 2004, Veiga et al 2020). It is
routine clinical practice for RTpatients to be scanned every 3–6months for up to 5 years after treatment.
Studying the time-evolution of the radiological changes in these post-RT scans can provide a better
understanding of RILD and potentially provide insight in the relationship betweenRT dose and clinical
outcomes (Rosen et al 2001,Ma et al 2009, Simone 2017).

Existing scoring systems of RILD are limited, and there is yet no acceptedmethodology to quantify and
measure RILD.Work has previously been done by our group to study global changes in the lungs (Veiga et al
2018, 2019). Objective image-based biomarkers were developed to quantify and evaluate such global changes as
normal lung volume shrinkage, changes in lung shape, distortions of the diaphragm, etc. To calculate these
biomarkers, it is only necessary to rigidly align theCT scans fromdifferent timepoints pre- and post-RT.
Recently, we have been extending our suite of biomarkers to studylocal parenchymal tissue changes occurring
due to RILD.However, to analyse the temporal evolution of the parenchymal changes it is necessary to align
corresponding regions of the lungs. Due to the large anatomical distortions that can occur, accurate alignment
cannot be achieved by simple rigid or affine registrations. Deformable image registration (DIR) can potentially
be used to align the image fromdifferent time points, but the large anatomical distortions and considerable
changes to the appearance of the images due to RILDmake these registrations extremely challenging.

Traditional intensity-basedDIR algorithms align the images based on the similarity of the intensity
information in the images. However, the radiological appearance of healthy lung tissue is very different to that of
damaged tissue and therefore it is unlikely that accurate alignment can be achieved using this intensity
information. Furthermore, there can be large anatomical differences between the pre- and post-RT scans, such
as tumour regression, tissue collapse, and fibrosis, which all violate the assumption of a one-to-one
correspondence between the imagesmade bymost registration algorithms andmake it difficult to obtain a
meaningful alignment between the scans. Evenwhen a one-to-one correspondence does exist, some
manifestations of chronic RILD such as consolidation, atelectasis and cavitation can result in extreme
geometrical deformations between theCTs. Consequently, attempting to align the pre-RT and the post-RT
scans using traditional intensity-based algorithms usually gives unsatisfactory results. Veiga et al (2016)
investigated and outlinedmany of the challenges in registering longitudinal RILD lungCTs. Additionally, the
difficulties inworkingwith clinical data frommultiple institutionsmust also be considered. There can be large
differences in image acquisition parameters and setup such as image resolution, field of view, patient setup and
use of contrast that lead to differences in the scans thatmust be accounted for. Finally, even though follow up
scans are usually acquired at breath-hold, baseline scans can sometimes be 4DCT scans, adding to the potential
variability between time points.

Intensity-basedDIR algorithms have previously been used to co-register pre- and post-RT scans. Cunliffe
et al evaluated the accuracy of the Plastimatch (http://plastimatch.org) and the FraunhoferMEVIS Fast
deformable registration algorithms in registering CT scans before and 3months after RT. They identified 8 out
of 24 patients to havemoderate to severe radiation induced changes and it was consistently shown that while the
MEVIS algorithmperformed better acrossmost patients, the presence of RILD increased registration error for
both algorithms (from1.3 to 2.5 mm forMEVIS and from2.4 to 4.6 mm for Plastimatch, almost 2 times the
error in both cases). Spijkerman et al compared the accuracy of aDemons (Thirion 1998, Vercauteren et al 2009)
andMorphons (Wrangsjö et al 2005) deformable registration algorithmwith a rigid registration. Twenty-two
NSCLCpatient datasets were used, with pairs of pre and 3month post-RTPET/CT scans. Two patient datasets
were excluded due to the presence of atelectasis and pneumonitis in the follow-up scans. For the remaining
datasets, while nomajor differences were observed between theDemons andMorphons algorithm, both showed
improvement compared to the rigid registrations alone. Results were split into three groups according to
alignment improvementwith themajor improvement group having a landmark error decrease from
9.5±2.1 mm to 3.8±1.2 mm, theminor improvement group from5.6±1.3 mm to 4.5±1.1 mmand the
insufficient improvement group from13.6±3.2 mm to 8.0±2.2 mm.While there have been several studies
attempting pre- to post-RT lungCT registration, registration of scans further than 3months post-RT is still
largely unexplored. This is likely due to themore dramatic changes seen at longer follow up scans as radiological
changes continue to progress up to 24months post treatment (Veiga et al 2020). Additionally, scanswith
significant consolidation and atelectasis are consistently excluded from these studies due to the known
difficulties they pose to traditional intensity-basedmedical image registration algorithms.

More recently, the use of feature-based information alongwith intensity-based information has been
explored as amean of improving the performance of registration algorithms in aligning lungCTs byGuy et al
(2018). They developed aDIR framework that employs a combination of the lungCTs, lobe segmentations,
vesselnessmeasure images and amass preserving transformation to register longitudinal images in the presence
of atelectasis with considerable success. Although scans with presence of atelectasis were purposefully included,
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the scan pairs were only a fewweeks apart (pre- andmid-treatment). Lobe segmentation inmoderately damaged
lungs is in itself a very challenging task; in severely damaged or collapsed cases it is often impossible.

To address current challenges in the co-registration of CT scans in the presence of RILD, in this workwe
have developed aDIRmethod that aims to enhance and utilise salient features that aremostly unchanged
between time points in order to successfully register scans that are 12months apart. In our approach however,
we discard intensity information to remove the impact that non-deformable parenchymal changewould have
during registration optimisation. This way, we aim to accurately align the consistent anatomical features
between time points and hypothesise that the surrounding tissues will be driven into place accordingly. To the
best of our knowledge, this is the first time thatmultichannel, feature-basedDIR has been used to successfully
align longitudinal lungCTswith extensive RILD.

2.Methods

2.1.Data
The patient datawere derived from the IDEALCRT trial cohort, a phase 1/2 nonrandomizedmulticentre trial
that enrolled phase I and IINSCLCpatients. 120 patients were enrolled to receive isotoxic tumour RTdoses
between 63 and 73 Gy in 30 daily fractions over 5 or 6weeks, concurrent with 2 cycles of cisplatin and
vinorelbine (Landau et al 2016). Fifteen patient datasets from this trial were selected for use in this study, with
each patient having aCT scan at baseline (before RTwas administered) and 3, 6, 12, and 24months post-RT.
These patients were selected so as to be representative of the changes seen over all patients.Most scanswere
acquired at breath-hold (deep inspiration)with the remaining being three-dimensional free-breathing CTor
average 4DCT. Therewas both inter- and intra-patient variability in terms of scan acquisition parameters aswell
as scan resolution. The in-plane scan resolution ranged between 0.61 mm×0.61 mmand
0.98 mm×0.98 mmand the slice thickness from0.5 to 5 mm.

The imaging datawas visually reviewed, and each patient dataset was placed into one of four categories
according to the expected difficulty of registration between the baseline and 12month follow up scan. The
categories corresponded to: (1) low, (2)medium, (3) high, or (4) very high estimated difficulty of registration.
Four scanswere placed in each of the low,medium and very high estimated difficulty categories and three scans
in the high difficulty one. The criteria considered for this scoringwere based on the severity of radiological
changes present and scan quality, including: the extent and location of consolidation present in the follow up;
the presence and extent of pleural changes and/or atelectasis in the followup; the differences in lung shape and
size; the presence of other anatomical changes associatedwithfibrosis such as tenting of the diaphragm and
mediastinal shift; the presence and extent of cavitation in the followup; the presence and extent ofmotion
artifacts; whether an imagewas stitched frommultiple scans; the difference in resolution between scans; and
howdifficult it was to visually determine correspondence between scans. An example from each category is
presented infigure 1.

2.2. Feature representation andpre-processing
The principal idea behind our approach is to enhance and utilise features that are salient andmostly unchanged
between time points while ignoring any informationwhere theremay be no clear one-to-onematching that
couldwrongfully guide the registration. The selected salient features include the lung boundaries, the airways,
and the vessel tree.

2.2.1. Lung boundaries andmain airways
Segmentation of the lungs and the airwayswere performed semi-automatically as described inVeiga et al (2018),
by using the open-source Pulmonary Toolkit (PTK) (Doel 2012) to generate automated results. PTK first
performsGaussian smoothing and thresholding on theCT images. Airway segmentation starts with region
growing from a point in the trachea and a 26-way connected component approach is applied to organise the
airways into a tree-like structurewithmultiple generations. The segmented airways are removed from the
thresholded initial lungmasks. The next step separates the lungs into left and right lung, which is initially
approachedwith reversable opening of the lungmasks. If that approach is unsuccessful, thewatershedmethod is
applied. Thefinal step smooths the separated lungs individually usingmorphological operations. All
segmentationswere subsequentlymanually edited by a radiation oncologist or amedical physicist (EC/CV)
using ITK-SNAP (Yushkevich et al 2006).

Instead of using the binary segmentations directly, we opted to use signed distance transforms derived from
the segmentations. Intensity based registrations are driven by the intensity gradient in the images being
registered, but for binary segmentations the image gradient is 0 everywhere except directly at the boundary of the
segmentations. This can cause problems in cases where the structure is significantlymisaligned to start with, as

3

Phys.Med. Biol. 66 (2021) 175020 A Stavropoulou et al



no gradient information is available in the segmentations to drive the structures together. A common approach
to combat this, is to smooth the binary images before registration, but this also has the effect of smoothing the
segmentation boundary. Therefore, by using signed distance transforms instead, we introduce the necessary
gradient while simultaneously enhancing the structure boundary. However, using a Euclidean distancemap
would cause the registration to align all voxels that are equidistant from the segmentation boundary, regardless
of how far they are from that boundary. Amore desirable behaviour is to only align voxels near the boundary,
withmoreweight placed on the voxels the closer they are to the boundary. This can be achieved using a distance
transformwith a steep gradient at the boundary that quickly drops off away from the boundary. Therefore, a
distance transformof the form = -

+
y 1

x

1

1
was used. The distance transformsweremasked out after a

distance of 12 voxels from the boundary so that their effect in the registration is nullified once the distance from
the structure boundary becomes too large to be relevant. Examples of the distance transforms generated are
presented infigure 2.

2.2.2. Vessels
The vesselnessmeasurewas used to capture and represent the vessel information. The vesselnessmeasure
(Frangi et al 1998) is a vessel detection approach that uses theHessianmatrix of each voxel to describe the
curvature at that voxel. The eigenvalues of theHessian can indicate if the voxel is part of a blob-like, tube-like, or
plate-like structure, and the relative brightness or darkness of the structure compared to the background.
Computing these values atmultiple scales enables a vesselness value to be calculated for each voxel, which
effectivelymeasures how likely it is that the voxel belongs to a vessel. The PTK (Doel 2012)was used to calculate
the vesselness.

Once generated, the two distance transforms and the vesselness imagewere concatenated to form amulti-
channel (4D) image, with the lung boundary distance transform in the first channel, the airway boundary
distance transform in the second channel, and the vesselness in the third. Examples of the vesselness images
generated can be found infigure 2.

2.3. Registrations
TheCT images were co-registered using the open-sourceNiftyReg registration software (https://github.com/

KCL-BMEIS/niftyreg)which implements a B-spline based free formdeformation (FFD) algorithm (Modat et al

Figure 1.Baseline and 12month follow upCT scan pairs of four patients with increasing registration difficulty. It can be seen that the
scans in category 1 are very similar to each other, withmost differences resulting from tumour regression in the left lung and
inhalation level of the scans. In category 2, there are noticeable parenchymal and lung volume differences in the ipsilateral lung (left),
butmainly contained in the upper lobewhere the tumour is located. In category 3 such differences between the scans becomemore
pronounced. Consolidated tissue is present in all three ipsilateral (right) lobes of the 12month scan and the damage has extended past
the region the tumour originally occupied. There are also changes in the size and shape of the ipsilateral lung between timepoints, with
diaphragm tenting present in the followup scan. In category 4, themost extreme changes are present with the upper right lobe
completely collapsed in post-RT. The resolution is very different between the baseline (5 mmslice thickness) and followup (1 mm
slice thickness) scans, adding to the challenge in the registration.
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2010). Good initial alignment of the source and target images is vital for the success of a deformable registration.
The imageswere initially rigidly co-registered using the block-matching algorithm (Ourselin et al 2001) available
inNiftyReg, using a strategy for bone anatomy alignment described inVeiga et al (2018). Diffeomorphic
deformable registrationswere then performed using the stationary velocityfield parameterisation available in
NiftyReg (Modat et al 2012).

Figure 2. Feature images of patient 6 at baseline (category 2) and patient 15 at 12months (category 4). From eachCT the lung distance
transform, airway distance transform and vesselness are extracted. Note that atelectatic tissue (patient 15, upper right lobe) is
encompassed in the lung feature image.

5

Phys.Med. Biol. 66 (2021) 175020 A Stavropoulou et al



InNiftyReg, transformations are parameterised by a control point grid. The FFD algorithm locally deforms
the underlying control point grid of the image and interpolates the deformation field using cubic B-splines. The
transformation is optimised using a conjugate gradient ascent optimiser. Diffeomorphic registrations have been
implemented inNiftyReg using a log-Euclidean FFD approachwhere a splinemodel of a stationary velocity field
is exponentiated to yield a diffeomorphism. This implementation results in invertible transformations that
preserve the topology of the input images. These diffeomorphic transformations are performed symmetrically,
with the backwards and forwards transformations being calculated simultaneously.

NiftyReg can performmulti-channel registrations.Withmulti-channel registrations, each input image
(source and target) can consist ofmultiple channels, each holding complementary information. The similarity
between the images is calculated independently for each channel and then summed.Different similarity
measures can be used for each channel, and the channel similarities can beweighted relative to each other to
control the influence that each channel has on the registration.

Optimisation of the registration parameters was carried out for those parameters that were expected to have
the greatest effect on the registration results, namely: choice of image similaritymeasure andweight for each
channel, choice of andweight of the penalty term, and spacing of the B-spline control point grid. Over 50
combinations of parameter values were examined and since each registration requiredmultiple hours to
complete, the optimisationwas only performed on four representative test cases instead of on the full data set.
Similaritymeasures consideredwere the SSD (sumof square difference), LNCC (local normalised cross
correlation) andNMI (normalisedmutual information), with relative weights for each channel ranging from0.5
to 100. Bending energy and linear energy were considered for the penalty term, but ultimately the linear energy
was not used as it penalises stretching and shearing, which are useful deformations for these registrations. The
control point grid spacing tested ranged from1mm to 7 mm. The best parameters were chosen after evaluating
the registration results visually and quantitatively by landmark registration error (see section 2.4 for how this was
calculated). The results with lowestmean andmedian landmark errorwere selected to be closely visually
inspected, and the parameters providing the best alignment in the structures of interest while also keeping to
plausible deformationswere favoured. Overall, it was observed that the registrationswere robust to small
changes in individual parameter values, therefore themost important aspect of the optimisationwas achieving
appropriate balance between the terms. It was also observed that changes in the control point grid spacing had a
stronger regularising effect than changes in the regularisation term itself. Finally, the best results were given
when the vesselness channel was weighed considerably higher than the lungs and airways, due to the large-scale
structures being easier to align than the smaller andmore detailed vessels. The best parameters were found to be
the SSDwith aweight of 1 for the lung and airways distance transform channels and theNMIwith aweight of 2.5
for the vesselness channel; bending energywith aweight of 0.001 for the penalty term; an isotropic control point
spacing of 5 mm.

The optimised parameters were then used to performpairwise registrations for each of the 15 patient
datasets, registering the baseline scanwith the 12month follow up. For 4 out of the 15 patients (one from each
category), pairwise registrations were also performed between the baseline and remaining follow up scans (at 3,
6, and 24months), in order to investigate the effect of temporal distance on registration accuracy.

2.4. Landmark placement and landmark registration error
In order to evaluate the registrations corresponding landmarks weremanually identified in the images using the
NiftyView application (https://github.com/NifTK/NifTK). Landmarkswere placed on vessel and airway
bifurcations. The landmarks were distributed over both lungs and for all datasets at least half the points were
located in the ipsilateral lung, where larger changes were expected.Where possible, landmark points were
concentrated close to the tumour (in the baseline) andRILD (in the followup), as those are the areas of interest
thatmust be assessed.However, in cases where the geometrical changes were substantial and the damagewas
particularly severe, it was impossible to identifymatching landmark pairs in those areas of interest. Asmanual
landmark identification is a time consuming and laborious task, landmarks were identified for all 5 timepoints in
only 4 out of the 15 patients (one from each category). For the remaining 11 patients, landmark pairs were
identified between the baseline and 12month followup scan only. An average (range) of 44 (38–65) landmarks
were identified per CT. An example of landmark distribution for one dataset is available infigure 3.

Quantitative evaluation of the registrations is achieved through calculation of the post-registration
landmark distance (Dreg).Dreg is calculated as the Euclidean distance between the landmark points in the source
image and the corresponding landmark points from the target image transformed by the registration result.
Since the registrations were symmetrically performed in two directions,Dregwas calculated for both registration
directions and averaged. For comparison, the pre-registration landmark distance (Dpre)was also calculated as
the Euclidean distance between the corresponding landmarks in the imageswithout any deformable
transformation being applied.
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2.5. Intensity only registrations
Todemonstrate the differences between the feature-based approach presented in this work and traditional
intensity-based approaches, an intensity-based registrationwas performed for each of the 15 datasets using the
12month follow up scan. The same diffeomorphicNiftyReg registration algorithmwas employed butwithout
themultichannel implementation. The original CT images were used as the inputs and parameters were kept
consistent with the parameters of themultichannel registrationswhere appropriate (e.g. control point spacing,
similaritymeasure (NMI), regularisation).

3. Results

3.1.Multichannel registrations
3.1.1. 12months
A summary of the numerical results of co-registering pre and 12months post-RT scans using the proposed
multichannelmethod is reported in table 1. Across all patients, themean (standard deviation)Dpre is 15.95 (8.09)
mm, and after deformable registration,Dreg decreases to 4.56 (5.70)mm.A clear improvement in themean and
medianDreg is noticeable for all 15 patients. For four patients, themeanDreg is smaller than the corresponding
mean slice thickness and for nine patients, theirmeanDreg is less than twice theirmean slice thickness. The
medianDreg is less than the slice thickness for 12 out of 15 patients.

Infigure 4, the distributions of landmark errors before and after the registration are presented for all four
categories. In all cases, a decrease in themedian, 25th percentile and 75th percentile distance as well as a
narrowing of the distributions can be observed. As expected, in the two easier categories (1 and 2) corresponding

Figure 3.Coronal, axial and sagittal views of a 3D rendering of the baseline lungs andmain airways of patient dataset with the
landmark points in red.

Table 1. Summary statistics for pre- and post-registration landmark distance.

Category PatientNo

No of

landmarks

Mean slice

thickness (mm)
MeanDpre

(mm)
MeanDreg

(mm)
MedianDpre

(mm)
MedianDreg

(mm)

St.

Dev.

(mm)

1 1 65 1.25 3.68 1.03 3.35 0.84 0.65

2 50 2.50 14.47 2.77 10.29 1.97 3.41

3 48 2.75 10.19 1.82 10.26 1.49 1.25

4 42 1.00 7.50 1.13 4.78 0.68 2.64

2 5 48 3.75 16.97 3.13 13.78 2.05 3.69

6 42 0.85 14.99 2.80 14.46 0.79 5.46

7 43 1.25 24.59 7.69 25.23 4.77 8.57

8 41 2.50 15.54 2.18 16.53 1.39 2.76

3 9 36 5.00 25.57 8.38 22.48 2.44 9.89

10 38 2.00 20.36 5.97 16.83 1.86 8.08

11 43 5.00 12.01 6.54 6.27 1.90 10.25

4 12 38 2.10 13.81 6.16 12.23 5.19 4.47

13 38 1.25 20.45 6.21 17.47 1.47 8.58

14 45 5.00 16.65 6.34 13.93 1.91 7.81

15 39 3.00 22.46 6.27 22.46 2.61 8.00
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to cases withmild ormoderate changes, higher registration accuracywas achieved compared to the categories
that correspond to cases withmore extensive damage (3 and 4), as demonstrated by the lowerDreg. The relative
improvements between theDpre andDreg are also larger for the lower categories, as can be seen in table 1. It is
important to acknowledge the presence of outlierDreg values in these results, with a number of individualDreg

over 25 mm for categories 2–4, as can be seen infigure 4. These errors aremainly present in themore difficult
cases and usually in the ipsilateral lungwhere damage is present and the deformations to recover are the largest.
Figure 5 shows examples of results from each category.

When looking at theDpre andDreg for each patient, it becomes apparent that even though some patients have
a similarmeanDpre, theDreg can vary substantially. For example, patient 2 has ameanDpre of 14.47 mmand a
meanDreg of 2.77 mm, but patient 12 has a lowermeanDpre of 13.81 mmand ameanDreg of 6.16 mm,which is
more than double that for patient 2. This suggests thatDpremaynot be the only factor that determines the
success of a registration. Other important factors include the type of damage, its location, and how extensive it is.
Some casesmight have very largeDpre but thatmay be due to global rotations or shearing of the lung tissue. These
global changes are easier to align compared tomore localised and less well-defined changes such as the
appearance of consolidation or atelectasis.

3.1.2. Qualitative observations
In addition to the quantitative evaluation performed above, it is vital to visually inspect the registered images in
order to gain insight intowhere andwhy the registrations failed to align the two scans. Qualitative observations
generally agreewell with the quantitative results. As expected, the contralateral lung is verywell aligned for
almost all patient datasets. The largest errors are always located in the ipsilateral lung and usually close to areas of
damage, as can be seen in the examples infigure 5. The lung boundaries are well aligned for all patients, both in
the ipsilateral and contralateral lungs, which can be seen in the colour overlays infigure 5. This is especially
important in the case of patient 15, where even though the upper right lobe has completely collapsed, the lung
boundary is correctly aligned. Themain airways are also generally well aligned. The lung boundaries and airways
are alignedwell even in cases with extreme deformation between scans, such as patient 10 and 15 shown in
figure 5.While the achieved registration results are promising, there are some regionswhere the alignment could
still be improved, especially in cases with extreme deformations. Localmisalignmentmay remain, for example,
at smaller airways and vessels, as can be seen in the ipsilateral lungs of patients 10 and 15 (see figure 5).

It is important to highlight that the aimof the registrations is not always tomake the deformed image look
exactly like the target image. For our application, the goal is to align corresponding regions of the images such
that the local changes that have occurred between them can then be studied. This ismost prominent in examples
like patients 10 and 15 infigure 5, where the scans appear reasonably well aligned and the differences between the

Figure 4.The distribution ofDpre andDreg for each data category presented in box plots. The red line represents themedian and the
bottom and top edges of each box plot represent the 25th and 75th percentiles respectively. Thewhiskers extend to themost extreme
data points that are part of the distribution and the outliers are points beyond±2.7 std and are plottedwith the+symbol.

8

Phys.Med. Biol. 66 (2021) 175020 A Stavropoulou et al



deformed scan and target image represent non-deformable changes characteristic of RILD (atelectasis,
consolidation) rather than registration errors.

3.1.3. Serial time-point analysis
Temporal evolution of themeanDreg for the four cases of increasing difficulty included in this analysis is
presented infigure 6. For three out of the four cases, the landmark errorDreg is relatively stable with a general
trend to slightly increase over time. This is an expected trend, as the effects of RILD tend to becomemore
pronouncedwhen chronic changes settle in. For patient 15 there is a considerably abrupt increase inDreg at 24
months. The increased error is likely due to the extreme anatomical change present in the 24month scan, even
more so than the 12month as can be seen infigure 7. These extreme changes also affect the accuracy of the
landmark point selection. This higherDreg, therefore, could partially reflect user errors in landmark selection
rather than significantly poorer registration accuracy. The lowest errors across all patients are at 3months, with
all of thembelow 5.5 mmand theirmean at 3.5 mm. Even though this is the time point where radiation

Figure 5. From left to right: example CTs of patients of increasing difficulty. Top to bottom: coronal slices from source CT (12month
follow up), target CT (baseline), deformedCT, colour overlay of target (red) and deformedCT (cyan), landmark points displayed over
the deformedCTwhere the size of the landmark point corresponds to the size ofDreg at that point.
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pneumonitis appears, its effects seem to have a less negative effect on the registrations compared to the chronic
effects of RILD. This is substantiated byVeiga et al (2020)where it was observed that in the long term,
parenchymal change is accompanied by anatomical distortion but at 3months, less distortion is present.

3.2.Multichannel versus intensity-based
The overallmean (standard deviation)Dreg for the intensity registrations is 7.90 (8.97)mm,which is
considerably higher than for the proposedmultichannel registrations at 4.56 (5.70)mm. For some cases in
categories 1 and 2, where the deformations are smaller and there are no extreme anatomical changes (atelectasis,
cavitation, etc), the intensity approach performs similarly to the proposedmultichannel approach, aligning the
baseline and 12month scanswell, withDreg close to that of themultichannel registrations. However, that is not
the case for the remaining cases withmore complex deformations and anatomical changes. The shortcomings of
the intensity approach canmainly be seen in the cases where lung tissue or structures expand, contract or change
beyond visual recognition, for examplewhere there is collapse or extensive consolidation. An example of this
can be seen in the registration result of patient 15 (figure 8)where in the registration result, the airway in the
followup scan has been extremely stretched to alignwith the upper right lobe and tumour boundaries of the
baseline scan. These deformations are not only anatomically implausible but also fail to align corresponding
regions of the lungs.

Figure 6.MeanDpre (triangles) andDreg (squares) for patients 3, 7, 10 and 15 (increasing difficulty) at 3, 6, 12, 24months post-RT.

Figure 7.Top row: patient 15 atfive time points. Upper right lobe collapsefirst appears in 12month scan and remains in the 24month
scan. At 24months new texture appears in the lower right lobe. Bottom row: colour overlays between baseline CT and registration
results from registering all time points.
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4.Discussion

Baseline and 12month post-RTCTpairs from15 patient datasets with RILDwere split into four categories
according to expected registration difficulty and registered using the softwareNiftyReg. Diffeomorphic feature-
based registrationswere performedwhere only salient features thatwere consistent between the two images of a
pair were used. These features included the lung boundaries,main airways and vessels. TheCT intensity
informationwas disregarded in order tominimise the effect of severe, non-deformable tissue damage on the
registration results. The results were evaluated quantitatively by calculation of the post-registration landmark
distance at a number ofmanually identified anatomical landmark pairs distributed across both lungs.
Quantitativefindings were critically evaluated using visual inspection.We have demonstrated that our proposed
method is suitable for aligning pre-RT and follow-upCTs from lung cancer RTpatients exhibiting considerable
anatomical changes due to RILD. This will facilitate future investigations into longitudinal changes to the local
parenchymal tissue occurring due toRILD, and to relate these to theRT dose thatwas delivered.

Improvement in image alignment was achieved for all patient datasets. Categories 1 and 2 cases saw the
biggest improvements in alignment and the best overall results. Categories 3 and 4 cases saw smaller quantitative
improvements in comparison, however visually notable improvements in alignmentwere observed for all

Figure 8.Multichannel versus traditional intensity-based registration results for patient 15. The anatomically implausible
deformations of the intensity approach are apparent in the bottom right image, where the displacement field of the registration is
displayed over the registration result. The trachea in the deformed image has been stretched to the size of the upper right lobe in the
baseline scan. The green arrow in the colour overlay (top right) points to the airway boundary of the baseline scan that has been
stretched and is thereforemissing from the deformed image. In comparison, the displacement field in themultichannel result is
smooth, with no implausible or extreme deformations present.
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patients. Overall, good local alignment was achieved for all patients. The performance of the registrations for
other timepoints (3, 6, 24month follow-up)was investigated for four patient datasets. It was found that the
landmark distancesDregmostly increased over time, as is expected due tomore the extreme deformations of
chronic RILD. The lowest registration errors for all patients weremeasuredwhen registering 3month scans.

Results from the proposedmulti-channel feature-basedmethodologywere compared to results from a
traditional intensity-basedDIRmethodology. Our results indicate that for co-registration of serial CT scans in
the presence of RILDour novelmethod is superior to the traditional intensity-based approach. The intensity-
based registration achieved comparable results to ourmethod for patients withmodest anatomical changes
between baseline and 12months but produced highly implausible results when the damagewasmore
pronounced.

Even though the intensity information of theCT is excluded from the registrations in order tominimise the
effects of the extensive tissue damage on the results, large geometric changes also occur in the vasculature of the
patients. For example, in atelectatic parts of the lung, vessels collapse under the pressure of the surrounding
tissue,making themunrecognisable in a CT. If a region of the lung is damaged by radiation and is caused to
shrink, consolidate ormove, vessels supplying that region of the lungwill follow along. Thismeans that there is
not a perfect correspondence even between ‘consistent’ anatomical features when somuch time has passed after
radiotherapy. These geometric changes also affect themain airways and lung boundaries but, in those cases,
correspondence is considerably easier to establish due to the larger scale and less repetitive nature of these
structures compared to vessels. This is why the lung boundaries andmain airways are remarkably well aligned
even in themost difficult cases, but small-scale vessels and deeper airways can bemisaligned. This also has a
considerable impact on our ability to accurately evaluate the accuracy of the registrations. Landmark pair
identification is already a challenging and laborious task but evenmore so in datasets that carry such extreme
anatomical changes between time points. Inmany cases, it is impossible to identify corresponding landmarks
between scans in some regions, whichmeans that it is also impossible to quantitatively assess how successful the
registration is in those regions. Therefore, visual inspection of the registration results thus becomes very
important in challenging applications such as ours. Even so, it is not a perfect way to completely capture all facets
of the results.

Comparing our results with those achieved in other studies is informative but can also bemisleading. In the
literature, evenwhen theword ‘longitudinal’ is used to describe the temporal distance between scans, this usually
means 3months post-RT atmost and even in these cases, patients with dramatic geometric changes between
time points, and especially atelectasis, are usually excluded. In themost comparable piece of work byGuy et al
(2018), some level of atelectasis was present in all the scans. In that study amean (st. dev.) of 2.60 (0.90)mm
landmark error was achieved, however, the scans were only a fewweeks apart, asmid-treatment scanswere used.
Thismeans that geometric changes that comewith chronic RILDhave not yet developed,making the
registration process less complex. Additionally, theirmean landmark distance beforeDIRwas 9.93 mmwhereas
for our data it was considerably higher at 15.95 mm. InCunliffe et al (2015), mean errors of 2.5 mmand 4.6 mm
were foundwhen registering pre-RT and 3month post-RTCTs in the presence of damage by twodifferent DIR
algorithms, namelyDemons andMorphons.However, the analysis was carried out only in a number of small
regions across the lungs, and the PTV, a region that is hard to align and can give high errors, was excluded.On
the other hand, we tried to focus on landmarks around the tumour and areas of RILD, as, although these are the
regions that are hardest to align, they are also the ones ofmost interest. In Spijkerman et al (2014), the best
performing,medium, andworst performing groups had errors of 3.8 mm, 4.5 mmand 8.0 mmrespectively.
Once again, the temporal distance between scanswas only about 4months. The EMPIRE10 challengewas a chest
CT registration challenge held atMICCAI 2010 (Murphy et al 2011). Some teamsmanaged to obtain low
landmark errors of<1 mm, however, only 8 out of 30 scan pairs available were longitudinal (9–14months
between baseline and follow-up scan) and no radiation damagewas present,meaning that standard intensity-
based approaches could be successfully applied.

Themean landmark error for our 3month registrations of 3.5 mmmight be amore appropriate comparison
with the results in the literature, however, this number is only based on four datasets so further evaluation is
needed.When taking into consideration that the scans used in our study include later follow-up time-point
scans, displaymore pronounced anatomical and geometrical changes due to RILD, and that our evaluation
deliberately tried to includemore landmarks from themost challenging regions, we consider our results
competitive to those presented in the literature. Furthermore, we expect that our approachwould achieve better
results than other publishedmethods on scans from6months or later follow-up, that are ofmost interest when
studying chronic effects of RILD.

This studywas limited by the need for detailedmanual editing of the lung segmentations as accurate
automatic segmentations of this data were not available at the time of this study. Currently, we are developing an
automatic lung segmentation that can successfully be applied to RILDdatasets andwe aim to utilise it for future
studies once it has been validated. Lobe segmentations would have also been included if available as theywould
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provide additional corresponding elements throughout the lungs.However, current lobe segmentation
algorithms do not yet performwell on scanswith severe damage, especially atelectasis, or on scanswith large slice
thicknesses such as some of those included in this study. An attempt at automatically generating themusing the
pulmonary lobe segmentation algorithmpublished byXie et al (2020)was unsuccessful when atelectasis was
present in the scans.

In the futurewe intend to develop a fully automated pipeline for registrations. This will requiremethods to
accurately and robustly segment the salient features without anymanual intervention, possibly including
additional structures such as lobe fissures and deeper airways. These automatic segmentationmethodswill need
to be thoroughly validated, and the sensitivity of the registration results to the segmentation accuracywill be
investigated and compared to the results presented in this paper.Wewill also explore the use of weakly
supervised deep learning based registration approaches (Fu et al 2020), that can take advantage of features and
structures that have been delineated in the training data, but are not requiredwhen applying the trained network
to new, unseen data.

5. Conclusion

In this work, we proposed a novel registrationmethodology tailored to co-register longitudinal CT scans in the
presence of RILD.We have demonstrated that ourmethod is able to successfully align 12month followup scans
with pre-radiotherapy scans, even in the presence of large anatomical changes such as consolidation and
atelectasis. Themethodwas also shown to performwell on follow-up scans acquired at 3, 6, and 24months after
radiotherapy. The quality of the registration varies with the extent of anatomical and geometrical changes
characteristic of RILDpresent in the scans. This workwill facilitate future work studies aiming at better
understanding the local parenchymal tissue changes caused byRILD, aswell as provide insights into dose-
response relationships.
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