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Abstract

CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essen-
tial in Streptococcus pneumoniae (the pneumococcus). A published codY mutant pos-
sessed suppressing mutations inactivating the fatC and amiC genes, respectively
belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are di-
rectly repressed by CodY. Here we analyzed two additional published codY mutants to fur-
ther explore the essentiality of CodY. We show that one, in which the regulator of glutamine/
glutamate metabolism g/nR had been inactivated by design, had only a suppressor in feck
(a gene in the fat/fecoperon), while the other possessed both fecE and amiC mutations. In-
dependent isolation of three different fat/fec suppressors thus establishes that reduction of
iron import is crucial for survival without CodY. We refer to these as primary suppressors,
while inactivation of ami, which is not essential for survival of codY mutants and acquired
after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability
of codY ami* cells allowed us to establish that CodY activates competence for genetic
transformation indirectly, presumably by repressing ami which is known to antagonize com-
petence. The ginR codY fecE mutant was then found to be only partially viable on solid
medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic
cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composi-
tion uncovered no alteration in the ginR codY fecE mutant compared to wildtype, electron
microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that
co-inactivation of GInR and CodY regulators impacts pneumococcal cell wall physiology. In
light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal iso-
lates, GInR and CodY constitute potential alternative therapeutic targets to combat this de-
bilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to
iron and PG-targeting agents.
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Introduction

The global nutritional regulator CodY is highly conserved in low G+C Gram-positive bacteria
[1], and regulates up to 200 genes in Bacillus subtilis [2]. The B. subtilis CodY regulon concerns
not only metabolic pathways, but also cellular processes such as sporulation, motility and com-
petence for genetic transformation [1,3,4]. Most of these genes are directly repressed by CodY
during exponential growth and induced upon nutrient starvation. In other species, CodY has
also been shown to regulate a number of major virulence genes (for reviews, see references
[1,3]) by directly binding DNA and repressing the target genes. CodY is activated by branched
chain amino acids [5] but also by GTP in certain species, such as B. subtilis [6].

Transcriptome analysis of a codY mutant in the human pathogen Streptococcus pneumoniae
showed that CodY mainly regulated amino acid metabolism, biosynthesis and uptake [7]. How-
ever, it was recently demonstrated that the codY mutant used in this study had accumulated sup-
pressing mutations allowing tolerance of codY inactivation (collectively called socY for
suppressor of codY), and that the codY gene could not be readily inactivated by insertion of an
antibiotic cassette [8]. A first suppressing mutation was identified in the fatC gene by whole-ge-
nome sequencing of the codY mutant [8]. This gene belongs to the fatD-fatC—fecE-fatB operon;
this operon (also called piuBCDA or pit1) [9], which is directly repressed by CodY [7], encodes
the major ferric iron ABC permease of S. pneumoniae [10], with FatB also shown to bind heme
[11]. While the fatC mutation was present in the entire codY™ population, a second suppressing,
variable mutation was found in the amiC gene [8], encoding a subunit of the Ami oligopeptide
ABC permease [12]. It was concluded that the three different amiC mutations identified in the
codY” population arose subsequently to fatC in an otherwise codY fatC mutant lineage, presum-
ably providing a selective advantage over ami" cells. Based on these data, CodY was suggested to
be an essential protein in S. pneumoniae primarily because repression of the fat/fec operon by
CodY was required to avoid uncontrolled iron import resulting in toxicity [8].

Two further pneumococcal codY mutant strains have been published [13,14], including one
in which glnR, encoding a regulator of glutamine/glutamate (Glu/Gln) metabolism, was also in-
activated by design [13]. Because CodY was previously concluded to be an essential protein in
S. pneumoniae [8], we analyzed these mutants to establish whether new suppressing mutations
allowed tolerance of codY inactivation in these strains. Here we show that both strains contain
mutations truncating the fecE gene, encoding another subunit of the Fat/Fec permease. The inde-
pendent isolation of three different mutations in the fat/fec operon crucial for tolerance of codY in-
activation demonstrates that codY essentiality results from the deregulation of iron import when
CodY is absent and unable to repress fat/fec. Furthermore, we provide evidence that the published
gInR codY mutant, while possessing no other suppressor than the fecE mutation, is only partially
viable on solid medium. We establish that this reduced/poor viability is linked to the co-inactiva-
tion of codY and glnR. This mutant was also found to be hypersensitive to the peptidoglycan (PG)
targeting antibiotic cefotaxime, as well as to the PG-targeting muramidase enzyme lysozyme, to
which the pneumococcus is normally naturally resistant [15]. Although biochemical analysis re-
vealed normal PG composition in the mutant, electron microscopy analysis showed mutant cells
to have thicker, irregular and yet less dense cell wall leading us to conclude that co-inactivation of
GInR and CodY regulators impacts pneumococcal cell wall physiology.

Results
Genetic dissection of the ginR codY double mutant

We began our study by investigating whether inactivation of glnR could be responsible for sup-
pressing the essentiality of codY in strain TK108, the published D39 ginR codY::trim double
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Fig 1. Genetic dissection of codY mutants. (A) Transformation efficiency of the ginR::kan®?° cassette into
wildtype (wt) recipient. Transformation efficiencies calculated from triplicate repeats. Donor strain, R3154; wt
recipient strain, TD198. (B) Transformation efficiency of the codY::trim cassette present in the ginR codY
(fecE) mutant into wt and mutant recipient strains. Transformation efficiencies calculated as in panel A. Donor
strain, TD196 (i.e. TK108 but rpsL41). Recipient strains, wt, TD198; glnR", TD195; gInR" fecE", TD227; fecE,
TD230; socY, TD142. (C) Transformation efficiency of the codY::trim cassette from the suppressed codY::
trim, socY strain into a wt recipient. Transformation efficiencies calculated as in panel A. Donor strain, TD80;
wt recipient as in panel A. (D) Inactivation of fatC and fecE has the same suppressive effect on codY
inactivation. Transformation efficiency of the codY::trim cassette present in the TK108 mutant into wt and
mutant recipient strains. Transformation efficiencies calculated as in panel A. Donor strain, TD196. Recipient
strains, feck’, TD230; fatC’, TD141; fecE” amiC", TD228; socY, TD142.

doi:10.1371/journal.pone.0123702.g001

mutant [13]. We initially determined that a glnR::kan®*C cassette, conferring kanamycin resis-
tance (Kan®), transformed with normal efficiency into a wildtype recipient strain (Fig 1A).
Throughout this study, transformation efficiencies of mutations were always compared to the
same reference marker, the rpsL41 point mutation, conferring streptomycin resistance (Sm®)
[16] and carried on the same donor DNA as the mutation under investigation. An efficiency of
0.25 for the Kan® cassette relative to Sm™ (Fig 1A) is in the range expected for transformation
of a heterologous insert compared to a point mutation [17], showing that ginR could readily be
inactivated without additional suppressing mutations.
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To establish whether the inactivation of glnR could suppress codY essentiality, we trans-
formed a glnR mutant with genomic DNA from TD196 (i.e. TK108 but rpsL41; S1 Table). The
transformation efficiency of codY::trim (conferring trimethoprim resistance, Trim") was over
350-fold lower than normal efficiency and was comparable to that observed in a wildtype recip-
ient (Fig 1B). This result established that mutation of glnR does not allow cells to tolerate
codY inactivation.

Interestingly, the wildtype recipient was transformed with similar efficiency using as donor
TD196 or the previously characterized codY::trim socY strain (Fig 1C). Since in the latter case
survival of codY™ transformants required the simultaneous co-transfer of two independent sup-
pressors (the amiC and fatC mutations to be referred to as socY hereafter) [8], explaining the
very low frequency of Trim® clones recovered, these results suggested that yet uncharacterized
suppressing mutations could also be present in the glnR codY mutant to allow tolerance of
codY inactivation.

A fecE mutation suppresses inviability of codY mutants

Sequence analysis of targeted PCRs showed that the glnR codY mutant possessed wildtype fatC
and amiC genes, suggesting the presence of alternative suppressor(s) than the previously de-
tailed socY mutations. Whole-genome sequencing of TK108 was then used (Materials and
Methods), identifying only 6 single nucleotide polymorphisms (SNPs) compared to D39 [18],
and no mutation in the entire ami operon. Localized PCR and sequencing of TK102, the glnR
parent of TK108, showed that 5 of the 6 SNPs were already present prior to codY::trim transfor-
mation and thus unlikely to be involved in suppression of codY essentiality. Interestingly, the
only remaining mutation was a C—T mutation introducing a stop codon in the fecE gene (re-
ferred to as fecE™ hereafter), resulting in the truncation of the FecE protein after 13 of 250
amino acids. This gene is part of the fat/fec iron permease operon, as is fatC. It seemed there-
fore likely that the fecE mutation was responsible for tolerance of codY inactivation.

To determine whether fecE™ suppressed codY essentiality, the point mutation was intro-
duced into the glnR™ parent without selection (Materials and Methods) to create a glnR fecE
mutant (TD227). The codY:trim cassette was transformed into both fecE™ and glnR’ fecE" recip-
ient strains, and results showed that this cassette transferred with ~ 10-fold higher efficiency
into both strains than into the glnR™ parent or the wild type (Fig 1B). However, this efficiency
remained lower than into the fully suppressed socY recipient strain, showing that fecE™ only
partially suppressed codY::trim lethality. To confirm the equivalence of fecE and fatC mutations
as suppressors of codY” inviability, the fecE” mutation was inserted into a strain mutant for
amiC, thus recreating a socY-like combination, and the transformation of codY::trim repeated.
Unlike both fatC and fecE single mutants, the fecE amiC and fatC amiC double mutants readily
accepted the codY::trim cassette, showing that both mutations of the fat/fec operon are equally
suppressive of codY::trim lethality, resulting in full suppression in conjunction with amiC mu-
tation (Fig 1D).

Interestingly, a third pneumococcal codY mutant was recently published [14]. These authors
showed that this codY mutant harbored a mutation in the amiC gene [14] but possessed a wild-
type fatC gene (Sven Hammerschmidt, personal communication). However, we discovered by
sequencing that a deletion of base 409 (G) resulted in truncation of the fecE gene in this codY
mutant. Thus, all three independently constructed codY mutants of S. pneumoniae possess an
inactive fat/fec encoded iron permease, providing strong evidence that this inactivation is nec-
essary to allow pneumococci to tolerate codY inactivation. Since it is impossible to create a
pneumococcal strain with only glnR and codY inactivated, we will hereafter refer to the mutant
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doi:10.1371/journal.pone.0123702.9002

under study as glnR™ codY” (fecE’) to highlight the presence of an accompanying necessary sup-
pressing mutation in fecE.

The glnR codY (fecE) mutant displays a severe colony-forming defect

Comparison of growth of glnR™ codY™ (fecE’), codY socY and wildtype strains in liquid media
(C+Y, CAT, TSB and THY) showed that codY mutants grew slower than wildtype cells in all
instances (Fig 2A and S1 Fig). However, the codY socY mutant generally grew even slower and/
or displayed a longer lag than its gInR codY (fecE) counterpart (particularly in C+Y medium,
Fig 2A). This supported our conclusion that ginR™ codY™ (fecE") cells were ami* as inferred
from whole-genome sequencing data, since ami- cells have been repeatedly observed over years
in our laboratory to grow significantly slower than wildtype cells.

We then analyzed glnR codY (fecE) mutant cells by fixing them on microscope slides using
polylysin (Materials and Methods), and exploring their morphology (S1 Text and S2 and S3
Figs). Mutant cells appeared to form short chains, with an average number of cells per chain of
4.6 compared to 1.7 for the wild type (S2G Fig), where one chain should give rise to one cfu
after plating. Notably, we observed a ~3-fold reduction in individual cell numbers (counted ir-
respective of whether these were part of chains or not) compared to wild type for aliquots from
cultures of the same initial optical density, suggesting that a significant proportion (>66%) of
the glnR codY (fecE) mutant cells lysed in these conditions (S2F Fig). To account for such a def-
icit in cell numbers, which is unlikely to come from a loss of viability in liquid culture since
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cells were grown to the same OD and we do not see a substantial difference in doubling time in
liquid culture (Fig 2A), we suggest that fixing the cells on microscope slides using polylysin
may have caused lysis of a fraction of the population. In contrast to glnR codY (fecE) mutant
cells, the codY™ socY mutant while also forming short chains (average number of cells per cfu of
5.7; Fig 2G) showed only a modest deficit (~25%) in individual cell numbers compared to
wild type (as well as to a glnR fecE mutant and a codY" complemented glnR codY (fecE) mutant;
S3E Fig), suggesting more limited cell lysis (S2F Fig). On the other hand, a glnR fecE mutant
displayed characteristics similar to wildtype (S3 Fig).

Comparing viable counts of the glnR codY (fecE) mutant with wild type and the codY socY
mutant then revealed that the former displayed a ~20-fold loss of colony-forming units (cfu)
compared to wild type when plated on CAT-agar (a deficit also observed in THY-agar, and
using either Select Agar from Invitrogen or Ultrapure Agarose from Sigma) (data not shown).
Viable glnR" codY™ (fecE") clones picked and regrown in liquid medium displayed the same loss
of viability upon plating, indicating that these clones had not accumulated suppressing muta-
tions but represented random low frequency survivors. In contrast, the codY™ socY strain was
fully viable, establishing that mortality is specific to the glnR codY (fecE) mutant. glnR" codY
(fecE') colonies were nevertheless similar in size to wild type, in contrast to codY socY, where
ami inactivation results in very small colonies, further confirming that the former were ami+.
Altogether, these observations suggested that the loss of viability was unrelated to overall
growth rate but could be associated with plating on solid medium.

To further document the loss of viability, time-lapse microscopy was used to visualize the
morphology and growth of glnR codY (fecE) mutant cells on CAT-agarose (Materials and
Methods). Firstly, the rather low cell density of these cultures compared to control culture re-
vealed that the majority of cells lysed shortly (i.e. within less than 1 hour) after transition from
liquid to solid medium, leaving only cell debris. Secondly, cells that did not lyse immediately
displayed aberrant cell morphology, generally being significantly larger than wildtype cells, and
started lysing after 75-100 min growth on solid medium (Fig 2B). Clearly some of these cells
must survive, as colonies are formed on solid medium, but these results confirm that the major-
ity of cells are rapidly lost.

To confirm that the colony-forming defect observed was really due to the co-inactivation of
codY and gInR (and accompanying necessary suppressor mutation in fecE or fatC), we recreat-
ed strains by transforming a codY::trim PCR fragment into glnR fatC, glnR fecE and fecE mu-
tants. Three Trim® transformants were recovered from each transformation, and grown in
identical conditions to determine viable counts. Results showed that unlike the generated fecE
codY double mutants, the resulting glnR fecE codY and glnR fatC codY triple mutants all dis-
played a loss of viability upon plating (Fig 2C). These observations established that it is the si-
multaneous inactivation of glnR and codY which results in lysis and associated loss of viability
in solid medium.

Restoration of normal colony-forming ability of the ginR codY (fecE)
mutant

We then checked whether reintroduction of an ectopic, wildtype copy of codY into the glnR
codY (fecE) mutant restored full viability. This experiment involved transformation with DNA
from two strains in parallel, one possessing a CEPy;-codY" cassette introducing wildtype codY
at an ectopic chromosomal location [19] and the other possessing the same cassette but with
codY inactivated by insertion of a mariner minitransposon (CEPy;-codY:spc®®). Transforma-
tion efficiency of CEPy-codY ™ was ~100-fold higher than CEPy;-codY::sp, establishing that in-
troduction of ectopic codY™ restored normal viability on solid medium (Fig 3A). The
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doi:10.1371/journal.pone.0123702.g003

abnormally high codY"/Sm" ratio observed (almost 90-fold excess codY" cassette transfor-
mants over the expected number) providing strong support for this conclusion is fully ex-
plained by the fact that the Sm® but not the codY" transformants display the glnR™ codY" (fecE’)
specific colony-forming defect. A large proportion of Sm" transformants are thus lost, skewing
the resulting codY"/Sm" ratio.

Secondly, since codY can be readily inactivated in a fecE amiC mutant (Fig 1D), we hypothe-
sized that inactivation of ami would rescue glnR codY (fecE) mutants from plating mortality.
To check this, we compared the efficiency of transformation of amiC9, a point mutation
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inactivating the Ami permease, into wildtype and glnR™ codY" (fecE’) recipients. Whilst amiC9
transformed into wild type with expected efficiency compared to Sm", a ~110-fold excess in
amiC9 transformants over the expectation was observed in the triple mutant (Fig 3B), estab-
lishing that inactivation of ami restored colony-forming ability of glnR codY™ (fecE’) cells to the
same extent as a second, ectopic copy of codY. In parallel, introduction of ectopic codY" and of
amiC9 into fecE™ codY cells occurred with efficiencies similar to wild type (Fig 3) providing
turther support to the conclusion that the mortality observed is linked to the co-inactivation of
codY and glnR.

CodY and competence for genetic transformation

The finding that the fecE codY double mutant was fully viable (Fig 2C) offered us the opportu-
nity to reinvestigate the effect of codY inactivation on pneumococcal competence for genetic
transformation [4,20], in the presence of a functional ami operon. CodY actively represses
competence in B. subtilis [4,21], but a previous study in an S. pneumoniae codY mutant did not
provide a clear answer as to whether CodY played a regulatory role on pneumococcal compe-
tence [8]. This is because at the time, the only characterized codY mutant was a codY fatC
amiC mutant and ami mutations strongly upregulate competence [22], masking any potential
role of CodY.

Competence profiles of codY fecE mutant cells were therefore analyzed throughout incuba-
tion at 37°C in C+Y medium with initial pH values between 6.6 and 7.6, since spontaneous
competence induction is known to be strongly dependent on the initial pH [8,23] (Materials
and Methods). The codY fecE mutant displayed a competence-down phenotype compared with
wildtype and fecE mutant strains, as illustrated by the failure to develop competence at pH 6.9
and the strongly reduced competence at pH 7.1 (S4A—S4C Fig), suggesting that CodY may in
fact activate pneumococcal competence.

Since CodY represses ami [7], and ami itself antagonizes spontaneous competence develop-
ment [22], ‘activation’ of competence by CodY could rely primarily on repression of the ami
operon. We therefore mutated the CodY binding site (CYbs) in the ami promoter, creating the
i“Y0 mutation to abolish repression of ami despite the presence of CodY (Materials and

Methods). Monitoring competence of ami“***’ and fecE ami**” mutants revealed that ami

derepression by the ami“"* mutation decreased competence in a similar manner to the inacti-
vation of codY (54D and S4E Fig). These results show that unlike in B. subtilis, CodY activates
competence in S. pneumoniae but this activation is probably indirect, resulting from CodY-me-

diated repression of ami.

am

Sensitivity of glinR codY (fecE) mutant cells to lytic enzymes and
cefotaxime

We then wished to establish whether the rapid lysis of glnR" codY™ (fecE") cells in solid medium
was dependent on the major pneumococcal autolysin LytA. LytA is an amidase enzyme which
cleaves the stem peptide of PG, separating it from the glycan strands at its base thereby disrupt-
ing the integrity of the cell wall and causing lysis [24,25]. A IytA::cat cassette [26] was trans-
formed into the glnR codY (fecE) mutant and wild type, comparing its efficiency of
transformation to Sm®. A ratio of ~0.1 was observed for both recipient strains (data not
shown), indicating that in contrast to ami inactivation (Fig 3B), inactivation of [ytA did not re-
store colony-forming ability of glnR codY™ (fecE’) cells. Moreover, three ginR codY (fecE) IytA
transformants picked at random still displayed reduced colony-forming ability (data not
shown). Both results established that LytA is neither responsible nor required for the lysis and
resulting loss of viability of the triple mutant in solid medium.
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Fig 4. Sensitivity to DOC and lysozyme of various codY derivatives. (A) Sensitivity of various strains to
0.02% or 0.05% DOC. Strain identities: wt, D39; ginR", TD195; codY socY, TD75; ginR" codY (fecE’),
TK108; gInR codY (fecE’) lytA", TD272; ginR codY" (fecE’) CEPy-codY", TD273; ginR™ codY (fecE’) amiC’,
TD247. (B) Sensitivity of strains to lysozyme. Lysozyme spotted onto plates in 5 pyL volumes at the
concentrations shown in the 4-panel grid. Spotting positions represented as white circles on the plates. Strain
identities, wt; D39, glnR" codY" (fecE’); TK108.

doi:10.1371/journal.pone.0123702.9g004

In fact, a puzzling observation was made when comparing the sensitivity to deoxycholate

(DOC), a well-known inducer of LytA-dependent autolysis, of the [ytA” derivative and its par-
ent (Fig 4A). The glnR™ codY (fecE’) parent itself appeared more resistant to DOC than the
wild type. On the other hand, a glnR mutant behaved as wild type, while a codY™ socY strain
and a glnR codY fecE amiC mutant were also resistant to DOC (Fig 4A). Altogether, these re-
sults suggested that the inactivation of codY was responsible for this phenotype, a conclusion
tully supported by the restoration of normal DOC sensitivity through ectopic expression of
codY in otherwise codY™ cells (Fig 4A).

The resistance of codY mutant cells to DOC appeared surprising and quite antagonistic with

the rapid lysis of gInR codY (fecE) mutant cells upon plating. This apparent contradiction
prompted us to examine other phenotypes, such as sensitivity to B-lactam antibiotics, which is
frequently modified in pneumococcal isolates harboring peptidoglycan (PG) modifications
[27-29]. A comparison of the effect of cefotaxime on various codY mutants and the wild type
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Table 1. Sensitivity to cefotaxime of S. pneumoniae strain D39 and its gInR, codY and/or fat-fec mutant derivatives used in this study, measured

as size of inhibition zone (mm).

Genotype? Cefotaxime (ug mL™)
4 1 0.25 0.062 0.016 0.0039

wit 22014 10.8+04 1.0+£1.4 0 0 0
fece’ 21.3+04 105+ 0.7 0 0 0 0
glnR 225+14 15.0£2.8 25+35 0 0 0
glnR" fecE’ 208+ 1.1 11.0+£0.7 0 0 0 0
codY feckE 235+1.4 15.8+2.8 4.0+0.7 0 0 0
codY fatC amiC 23.0+14 13.5+0.7 30x14 0 0 0
glnR" codY (fecE) 31.7+£04 27.3+0.4 18.0+1.4 UISESEERIFES: 8.0+0.7 0
glnR" codY feckE amiC 255+ 0.7 17.8+1.8 10.0+2.8 3.0+14 0 0

& Strains used from top to bottom: TD249, TD230, TD195, TD227, TD268, TD75, TK108 and TD247.

doi:10.1371/journal.pone.0123702.1001

revealed that the glnR codY (fecE) mutant was much more sensitive to this antibiotic than the
wild type, while glnR and fecE single mutants, a fecE codY double mutant and a codY™ socY
strain all behaved similarly to wild type (Table 1). Similarly, the glnR codY (fecE) mutant was
hypersensitive to ampicillin and ceftriaxone, suggesting that sensitivity may extend to all B-lac-
tam antibiotics (S2 Table).

The B-lactam sensitivity of the glnR™ codY™ (fecE’) mutant together with its colony-forming
defect suggested some alteration of the cell wall. This led us to investigate its sensitivity to lyso-
zyme, a muramidase enzyme also targeting PG (Fig 5A). While S. pneumoniae is normally re-
sistant to lysozyme [15], the triple mutant turned out to be hypersensitive (Fig 4B). Altogether,
these observations suggested that the simultaneous absence of CodY and GInR affected cell
wall physiology.

Simultaneous inactivation of g/lnR and codY impacts cell wall physiology

Inactivation of both glnR and codY is expected to strongly affect Gln metabolism, as a result of
tull derepression of Gln synthetase and Glu dehydrogenase (Fig 5B). Since D-Gln is a key com-
ponent of the PG stem peptide (Fig 5A), we hypothesized that imbalance in Gln/Glu could in-
terfere with PG synthesis, resulting in the sensitivity phenotypes of the glnR codY (fecE)
mutant. To establish whether the glnR codY (fecE) mutant displayed cell wall modifications,
the composition of its PG was determined and compared with that of the wild type and other
mutants used in this study. No difference was observed in the PG composition, including the
percentage of unamidated peptides, the degree of stem peptide cross-linkage, and the deacety-
lation of muropeptides of the glnR codY (fecE) mutant compared to other strains (52 Table and
S5 Fig). In addition, we analyzed lipoteichoic acid (LTA; Materials and Methods) as a represen-
tative for pneumococcal teichoic acids, since both LTA and wall teichoic acid (WTA) have the
same structure within their repeating units [30-32] and share the same biosynthesis pathway
[33]. This analysis revealed no significant difference between the wild type and the glnR codY
(fecE) mutant (S6 Fig).

Despite their normal PG and LTA composition, it was possible that mutant cells had alter-
ations in their cell wall architecture. To assess this, gInR™ codY™ (fecE’) cells were visualized by
transmission electron microscopy (TEM). Interestingly, these cells displayed a number of al-
tered morphological features compared to wildtype and CEPy-codY™" complemented ginR*
codY (fecE’) cells (Fig 6A). Firstly, cell shape was altered, consistent with observations in S2
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Fig 5. Pneumococcal cell wall composition, documented alterations and potential connections with
GInR-CodY through Glu/GIn metabolism. (A) Diagram of pneumococcal cell-wall composition, with LytA,
LytB and lysozyme cleavage sites, as well as cell-wall alterations known to affect hydrolytic activities. The
glycan chains in pneumococcal PG are made of alternating MurNAc (M) and GlcNAc (G) residues. WTA is
composed of repeating units containing two N-acetylgalactosamine residues (Gn), ribitol phosphate (R),
glucose (Gc) and 2-acetamido-4-amino-2,4,6-trideoxygalactose (Ga). WTA chains are linked to PG via an
unknown linkage (dotted line). Each R moiety can further be alanylated, although an initially proposed a-
GalpNAc substitution [48] could not be confirmed in a later work [32]. The amino acids in the stem peptide are
designated in single-letter code, with an asterisk indicating p-configuration. Modifications in the cell wall are
indicated by numbers: (1) decoration of WTA by phosphocholine (P-Cho); (2) deacetylation of G by PgdA; (3)
O-acetylation of M by Adr; (4) Branching between muropeptides by MurMN; (5) Amidation at 2" stem peptide
residue by MurT/GatD. (B) GInR and CodY in the regulation of GIn/Glu metabolism of S. pneumoniae. Both
regulators directly repress gdhA, involved in Glu synthesis. GInR also represses g/nA, involved in GIn
synthesis, with DNA binding of GInR to DNA shown to depend on GInA [13]. GIn acts as a donor for amidation
of the 2" stem peptide residue (see panel A) catalyzed by the MurT/GatD amidotransferase.

doi:10.1371/journal.pone.0123702.g005

Fig. Secondly, the cell wall of mutant cells appeared altered and less homogenous than that of
wildtype cells. Indentations into the PG were frequently observed (green arrows), as well as
areas where the PG was detached from the membrane (red arrows). Thirdly, we observed
oddly shaped mutant cells with small blebs on the cell surface (yellow arrows). Fourthly, septa

PLOS ONE | DOI:10.1371/journal.pone.0123702  April 22,2015 11/22



@‘PLOS | ONE

CodY and GInR Impact Pneumococcal Cell Wall

A wt gInR- codY- (fecE-)

CEPMm-codY+

B wt glnR- codY- (fecE-)
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e D

i

Fig 6. Altered cell morphology of the ginR codY (fecE) mutant visualized by TEM. (A) Visualization of
wt, gInR" codY (fecE) CEPy-codY" and ginR™ codY" (fecE’) cells by TEM. Strains used, wt, D39; ginR” codY”
(fecE") CEPy-codY*, TD273; ginR™ codY (fecE’), TK108. Red arrows, detached cell wall; green arrows, gaps
in cell wall; white arrows, circular clear bodies present within cells; blue arrow, aberrant septum formation.
Black scale bars represent 0.2 um. (B) Visualization of zoomed images of the strains in panel A focusing on
cell wall. Blue scale bars represent 0.1 ym.

doi:10.1371/journal.pone.0123702.g006

were frequently wrongly positioned and sometimes thicker than normal (blue arrow) suggest-
ing that the mutations affect the cell division process. In addition, the cell wall of the ginR
codY (fecE’) cells was less electron-dense and defined than the cell wall of wildtype or CEPy-
codY" complemented cells (Fig 6B). Finally, we observed electrolucent foci within the mutant
cells (white arrows) which were much less frequent in wildtype cells (Fig 6A). Their origin re-
mains elusive but they do not appear to be surrounded by a membrane and may reflect the ac-
cumulation of some unknown metabolite, like fatty acids, that are extracted during the sample
preparation and treatment for TEM analysis. We suggest that the morphological changes ob-
served by TEM are caused by alterations in cell wall architecture and/or composition, explain-
ing also the sensitivity to PG-targeting agents as a consequence of co-inactivation of glnR and
codY.

Discussion

CodY is essential for control of iron import in pneumococci via the Fat/
Fec permease

We previously showed that the global nutritional regulator CodY was essential in the human
pathogen S. pneumoniae [8] and that a published codY::trim mutant [7] had a suppressing
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mutation inactivating the fatC gene [8], belonging to the fat/fec operon which encodes the
major ferric iron ABC permease of S. pneumoniae [10]. In this study, we analyzed two further
published codY mutants [13,14], showing that both possessed point mutations truncating the
fecE gene, which also suppressed CodY essentiality. The detection of fat/fec suppressors in all
three published pneumococcal codY mutants implies that co-inactivation of the fat/fec operon
is crucial for survival of pneumococci lacking CodY. These data fully support the view that re-
pression of iron transport is primarily responsible for the essentiality of CodY and that muta-
tion of codY can only be tolerated if fat/fec is simultaneously inactivated to prevent iron
toxicity, as previously suggested [8]. As a result, all pneumococcal codY mutants studied always
have an obligate associated mutation inactivating the fat/fec operon. We refer to this mutation
as the primary suppressor of CodY essentiality, crucial for survival of pneumococcal cells lack-
ing CodY.

Control of the Ami permease by CodY is also important though not
essential

Suppressing mutations in the amiC gene were first identified through careful analysis of a pre-
viously published codY mutant [8]. amiC is part of the ami operon, which is also directly re-
pressed by CodY and encodes the Ami oligopeptide permease. This previous study showed the
fatC mutation in 100% of codY™ cells but three different amiC mutations in the codY mutant
population [8], consistent with a scenario in which the fatC mutation arose first, justifying ap-
plication of the moniker ‘primary’ suppressor, and the various amiC mutations appeared sub-
sequently, making them secondary suppressors. This suggested that inactivation of the Ami
permease aids in tolerance of codY inactivation. The report that another codY mutant also had
an inactivated amiC gene [14] (resulting from the very same GGA—TTGC mutation we dis-
covered in our original analysis of codY essentiality [8]; Sven Hammerschmidt, personal com-
munication) provided further support for this interpretation. However, we show that ami
inactivation is not compulsory, as indicated by the observation that the glnR codY (fecE) mu-
tant, which harbors no ami mutation, is fully viable in liquid medium (Fig 2A). The ami muta-
tions can thus be viewed as accessory, aiding in but not essential for tolerance of codY
inactivation. Nevertheless, the frequent occurrence of ami mutations in pneumococcal codY”
strains suggests some level of toxicity when the ami operon is derepressed due to the absence of
Cody.

CodY indirectly activates pneumococcal competence by repressing ami

In B. subtilis, CodY plays a regulatory role on competence for genetic transformation, directly
repressing the comK gene, encoding the transcriptional activator of competence, as well as
sfrA, an operon important for comK activation [4,20,21]. Interestingly, mutation of opp, which
encodes the Ami orthologue, resulted in loss of CodY-dependent repression of comK and sfrA,
essentially activating competence [21]. Presumably, inactivation of oligopeptide import im-
pacts CodY co-factor (i.e. branched chain amino acids) metabolism in B. subtilis.

In contrast, CodY is not known to directly repress any com gene in S. pneumoniae. Instead,
we showed here that CodY activates competence by direct repression of ami (S4 Fig). As Ami
antagonizes pneumococcal competence [22] through a mechanism which remains unknown,
CodY thus contributes indirectly to the activation of pneumococcal competence. The opposite
effects of CodY mutation on competence induction in B. subtilis and S. pneumoniae suggest
different ways of responding to nutritional changes in these species. The reason for this differ-
ence could lie in the growth phases during which competence is induced in each species. In B.
subtilis, competence is induced post-exponentially [34], in conditions of likely nutrient
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limitation. In contrast, competence in S. pneumoniae is transiently induced during exponential
growth phase [35], when nutrients are generally abundant. It therefore makes sense for CodY
to regulate competence induction differently in these two bacteria, which develop competence
in conditions of widely different nutritional availability. Since it appears beneficial for B. subtilis
to induce competence upon nutrient starvation, direct repression of competence by CodY, fol-
lowed by derepression upon nutrient starvation, regulates the competence circuit to permit
this. In the pneumococcus, direct repression by CodY would antagonize competence develop-
ment during exponential growth, and thus no such direct regulation has been selected

during evolution.

CodY also impacts LytA-dependent autolysis

All codY mutants tested, including in combination with ami and fec/fat mutations, displayed
increased resistance to DOC, an inducer of LytA-mediated autolysis, compared to wildtype
cells (Fig 4A). The activity of the autolysin LytA is dependent on the decoration of WTA by
choline (Cho; Fig 5A). LytA activity could therefore be affected as a consequence of altered
Cho decoration. However, the putative N-acetylglucosaminidase LytB (Fig 5A), involved in
daughter cell separation, is also dependent on Cho-decorated WTA for activity [36]. Although
short chains can be observed in the glnR codY (fecE) mutant (S2A Fig), none of the codY mu-
tants formed long chains (hundreds of cells), a hallmark of LytB inhibition [36], which suggests
that LytB is at least partly active. However, it is interesting that both tested codY mutants had a
propensity to form short chains (S2A Fig). Together with the increased resistance to DOC of
all tested codY mutants, this observation suggests that cells lacking CodY may have reduced ac-
tivity of both LytA and LytB resulting respectively in reduced lysis and increased chaining. It is
possible that this is due to an alteration in the Cho-decoration of WTA, which could perturb
the activity of these enzymes. However, this phenotype would be specific to all codY mutants,
and thus remain separate from the phenotypes observed specifically in the glnR codY (fecE)
mutant. The observed loss of cell viability upon plating (Fig 2C) is specific to the latter, and
most probably linked to the altered sensitivity to PG-targeting agents observed.

Co-inactivation of ginR and codY severely affects pneumococcal cell
wall physiology

ginR™ codY™ (fecE") cells display a unique combination of phenotypic traits not observed with
other codY mutants. These cells were viable in liquid medium (Fig 2A), but showed a large loss
of viability when plated on solid medium (Fig 2B and 2C). Visualization of glnR" codY" (fecE")
cells on CAT-agarose showed cells which lysed rapidly (Fig 2B), confirming the conclusion
based on examination of cells fixed on microscopy slides (S2F Fig). On the other hand codY
fecE cells appeared fully viable (Fig 2C). Inviability is therefore presumably due to derepression
of both GInR and CodY regulons. The major autolysin LytA was not responsible for the colo-
ny-forming defect observed in these cells. A specific hypersensitivity to other PG-targeting
agents cefotaxime (Table 1), ampicillin, ceftriaxone (S2 Table) and lysozyme (Fig 4B) was also
observed for glnR™ codY (fecE") cells grown on solid medium.

A number of cell wall alterations have been reported to alter pneumococcal sensitivity to
certain agents targeting PG (S1 Text and Fig 5A). Potentially connected to our observations,
amidation of the second residue of the stem peptide was required for efficient PG cross-linking
via transpeptidase activity [31,37]. This amidation, which alters the D-iso-Glu to D-iso-Gln
(Fig 5A), is dependent on the amidotransferase enzyme MurT/GatD using L-Gln as donor (Fig
5B) [37-39]. It has also been reported that inhibition of amidation reduced resistance to p-lac-
tam antibiotics and increased sensitivity to lysozyme in Staphylococcus aureus [38]. Apart from
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their decreased sensitivity to DOC which can be attributed to codY inactivation (see above), the
gInR codY (fecE) mutant shared a phenotype of sensitivity to lysozyme and B-lactams with cells
depleted for MurT/GatD. It was therefore tempting to speculate on the alteration in stem pep-
tide synthesis as a cause for phenotype of the glnR codY (fecE) mutant (S1 Text). However,
HPLC analysis of muropeptide composition revealed no difference in unamidated peptides as
well as in the degree of PG cross-linkage between wildtype and glnR™ codY™ (fecE") cells (S2
Table), providing no support to this hypothesis. In addition, while our analysis could not detect
O-acetylation, a potential mechanism for lysozyme resistance (Fig 5A, number 3), as (most of)
the O-acetyl groups are lost during routine sample preparation, we were able to detect deacety-
lated muropeptides (another mechanism for lysozyme resistance; Fig 5A, number 2). However,
there was no dramatic difference in levels of deacetylated muropeptides in the glnR codY (fecE)
mutant that could explain its lysozyme sensitivity.

Despite this, visualization of cells by TEM uncovered stark differences in cell wall morpo-
hology between wildtype and glnR codY (fecE) mutant cells, with less dense cell wall observed
in the mutant (Fig 6B), along with regions where the cell wall appears disrupted or detached
from the cell (Fig 6A). These results strongly suggest that the glnR codY (fecE) mutant has al-
tered PG, which we propose results in the increased sensitivity to PG-targeting agents. Howev-
er, both the exact physical nature of the alterations observed and the underlying mechanism(s)
which can be indirect, owing to alterations in central metabolism in the absence of both CodY
and GInR regulators, remain to be established.

Connections between iron toxicity, cell wall physiology and Ami

While glnR™ codY™ (fecE’) cells display a unique phenotype among codY mutants, the observa-
tion that inactivation of ami restored viability of these cells (Fig 3B) indicates that the very
same combination of suppressing mutations allowing survival of codY mutant cells (i.e. ami
and fat/fec) can compensate for the absence of both GInR and CodY. The nature of the com-
pound(s) imported via the Ami permease which is ‘toxic’ for the cell remains unknown. In
view of the observation that an Ami homologue allowed use of heme as an iron source by
Escherichia coli [40], we previously suggested that Ami could similarly contribute to iron toxic-
ity in S. pneumoniae [8]. However, no direct support for this hypothesis could be obtained
since we observed that plating with or without horse blood (i.e. in the presence of widely differ-
ent heme concentrations) did not alter survival of glnR" codY™ (fecE") cells (data not shown). In
addition, even if iron toxicity proved to be responsible for inviability of codY and codY gInR
mutants, the link between cell wall physiology and iron toxicity would remain unclear. Alterna-
tively, Ami toxicity may not be connected with iron toxicity but somehow linked to the recy-
cling of peptidoglycan during growth. In Escherichia coli, peptidoglycan recycling is known to
rely primarily on the AmpG transporter, which is specific for uptake of anhydromuropeptides,
whilst the oligopeptide permease Opp (the orthologue of Ami) has only a minor role in uptake
of cell wall derived peptides. In contrast, with Gram-positives lacking AmpG, Ami-like perme-
ases may constitute the major cell wall recycling pathway [41]. It is thus possible that Ami is re-
sponsible for peptidoglycan recycling in S. pneumoniae, and altered recycling in the absence of
codY is toxic on solid medium. Alternatively, the effect of ami inactivation could be indirect, re-
sulting from the reduced growth rate conferred by ami mutations. A reduction in growth rate
could for example compensate for metabolism jamming by allowing more time to the cell to
build the envelope.
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Concluding remarks

The genetic dissection of previously published codY mutants allowed us to demonstrate here
that the primary suppressing mutation necessary to tolerate absence of CodY is inactivation of
the fat/fec iron permease operon. This strongly suggests that unregulated iron import is toxic
to codY” pneumococci. Furthermore, we showed that a glnR codY (fecE) mutant was only partly
viable on solid medium and displayed a unique phenotype among codY mutants, suggestive of
altered cell wall physiology, a conclusion fully supported by TEM analysis of mutant cells.
While increasing resistance to PG-targeting antibiotics such as p-lactams is problematic for
treatment of pneumococcal infections, hypersensitivity of this mutant to PG-targeting agents
suggests GInR and CodY as novel therapeutic targets. Simultaneous targeting of these impor-
tant nutritional regulators would render pneumococci hypersensitive to both iron and classic
PG-targeting antibiotics, and could thus be useful in the constant fight against this

debilitating pathogen.

Materials and Methods
Bacterial strains, growth and transformation conditions

S. pneumoniae strain growth and transformation were carried out as described [8]. Strain and
primer information can be found in S1 Table. Unless stated, recipient strains were rendered
hex by insertion of the hexA::ermAM cassette as previously described [42], to negate any effect
of the mismatch repair system on transformation efficiencies via rejection of mismatched
DNA in transformation heteroduplexes [43]. Antibiotics were used at the following concentra-
tions; trimethoprim 200 pg mL’l, erythromycin 2 ug mL’l, kanamycin 250 pg mL’l, streptomy-
cin 200 ug mL ™', methotrexate ug mL™". Previously described cassettes used for transfer were
glnR::kanZZC [17] and AcodY::trim [13]. Growth curves were followed in a 96-well Spectropho-
tometer (ThermoScientific) with OD 49, readings every 10 min after 1/100 dilution of cultures
grown to OD 0.2 into a final volume of 300 uL. Doubling times were calculated as the time re-
quired to observe a doubling of OD during the fastest phase of exponential growth. As a result,
this figure does not take into account any lag phase prior to active growth that can be seen in
certain conditions with different mutants.

Competence was monitored as previously described [44] in pH gradients in C+Y medium
on strains containing the ssbB-luc transcriptional fusion between the promoter of the single-
stranded DNA-binding protein SsbB, which is induced during competence [4], and the firefly
luciferase gene luc, the fusion thus reporting on competence through light emission by lucifer-
ase [45]. Briefly, cells were grown in conditions where competence does not spontaneously de-
velop (2 mL C+Y pH 6.6) to ODs5, 0.11, pelleted and resuspended in 1 mL C+Y. 100 pL
aliquots were diluted 1/10 in C+Y, and 30 uL added to 250 pL C+Y culture of desired pH and
20 pL luciferin (3 mg mL") in microtitre plate wells. Emission of light and OD,y, values were
followed throughout growth.

Genome sequencing

Genome sequencing of the TK108 strain was carried out by LGC genomics. The resulting se-
quence was aligned to the D39 genome present in the NCBI database (NCTC 7466), and point
mutations, insertions and deletions were identified by LGC genomics.

Transfer of fecE™ point mutation without selection

Transfer of the fecE™ point mutation of TK108 into a D39 recipient strain was achieved without
selection. The mutation was amplified from TK108 by PCR with 500 bp flanking DNA on
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either side. The PCR product (~1,000 bp) was purified using a purification kit (QIAGEN), and
transformed into the TD195 strain to create strain TD227. Briefly, 100 uL pre-competent
TD195 cells were resuspended in 900 pL C+Y medium with 100 ng uL™* CSP. Cells were incu-
bated at 37°C for 10 min to induce competence, and 1 ug of fecE" PCR product was added to
100 uL competent culture. This transformation mixture was incubated at 30°C for 20 min,
before addition of 1.4 mL C+Y medium, and further incubation at 37°C for 4 h to allow
correct integration of the mutation and cell separation. Cells were then plated on CAT agarose
plates + 5% defibrinated horse blood (Biomérieux), and incubated overnight at 37°C. Colonies
are then picked and analyzed by PCR and sequencing to identify those that had acquired the
fecE” point mutation, before sub-cloning to ensure a pure fecE mutant culture.

Mutation of CodY binding site in ami promoter

In order to mutate the CYbs in the ami promoter region, a fragment of DNA of 1,000 bp, with
the CYbs (AATTTTCAGAATATT) replaced by a sequence containing an Ncol restriction site
(GCTAGGGATCCGCTA) and flanked on either side by 500 bp of DNA was synthesized
(Genscript). This fragment was transformed into S. pneumoniae strains, as described for fecE’,
in the absence of antibiotic selection, and transformant clones were identified by PCR of the
ami promoter and restriction by Ncol.

Microscopy

For static images of cells analyzed in S2 and S3 Figs, cells were grown in C+Y medium to an
OD,, 0f 0.2, and 2 pL of these cultures was spotted onto a microscope slide. A polylysin-coat-
ed coverslip was placed on top to fix the cells in position. Images were captured and processed
using the Nis-Elements AR software (Nikon). Analysis of cell dimensions was carried out using
the MATLAB-based open source software MicrobeTracker [46]. Cell contours were obtained
using the alg4 spneumoniae3 algorithm implemented in MicrobeTracker, a derivative of alg4
ecoli2 with parameters spliltTreshold, joindist and joinangle refined to fit the shape of S.
pneumoniae.

Time-lapse microscopy was carried out as previously described [47], with modifications.
Briefly, pneumococcal precultures were grown in liquid CAT medium at 37°C to an OD 9, of
0.2, and 2 pL of these cultures was spotted onto a microscope slide containing a slab of 1.2%
CAT agarose before imaging. Images were captured at 5 min intervals for 6 hours and pro-
cessed using the Nis-Elements AR software (Nikon).

Sensitivity tests

Sensitivity to cefotaxime, ampicillin, ceftriaxone and lysozyme was measured by growing
strains to ODss, 0.2 in C+Y medium, followed by plating ~400-600 cells on CAT-agarose sup-
plemented with 5% horse blood (Biomérieux). After drying, the inhibitory agent was spotted
onto these plates in 5 uL volumes (4 spots per plate) at 4-fold dilutions starting at 4 ug mL™"
(see Table 1). Plates were incubated at 37°C overnight and inhibition zones were measured.
Sensitivity to DOC was measured by growing strains to ODssq ~0.4 in C+Y medium, followed
by addition of 0.02% or 0.05% DOC to 1 mL of culture. ODss, readings were taken every 15 sec
for 150 sec.
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Isolation and analysis of peptidoglycan

Peptidoglycan was isolated as previously published [31]. Digestion of peptidoglycan with cello-
syl (kindly provided by Hoechst, Germany) yielded muropeptides, which were reduced with
sodium borohydride and analyzed by high-pressure liquid chromatograhy as published [31].

Isolation and analysis of LTA

LTA from S. pneumoniae D39 and TK108 (glnR™ codY™ (fecE’)) was isolated as previously de-
scribed [32]. Pneumococci were grown in 5 L cultures THY medium. Samples were dissolved
in a water/propan-2-ol/7 M triethylamine/acetic acid mixture (50:50:0.06:0.02, v/v/v/v) and
analysed using a APEX Qe Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer
(Bruker Daltonics, USA) equipped with the Triversa Nanomate (Advion, USA) as ion source
applying a spray voltage of -1.1 kV. Mass spectra were recorded in negative-ion mode in the
broadband acquisition mode, the mass scale was externally calibrated with glycolipids of
known structure, and spectra were smoothed, baseline corrected, and charge deconvoluted.

TEM

Wild type and glnR" codY™ (fecE") cells were exponentially grown at 37°C in C+Y medium.
Samples were then collected, centrifuged and fixed overnight with 5% glutaraldehyde in 0.1 M
cacodylate buffer (pH 7.5) at 4°C. Postfixation with 1% osmium tetroxide in cacodylate buffer
was carried out for 1 h at room temperature. These fixed cells were dehydrated using a graded
series of ethanol and embedded in LR White at 60°C for 48 h. Ultrathin sections (50 nm) were
obtained using a Leica UC7 microtome and were counterstained with uranyl acetate and lead
citrate (Reichert Ultrostainer, Leica, Germany). Samples were examined with a Philips CM120
transmission electron microscope equipped with a Gatan Orius SC200 CCD camera.

Supporting Information

S1 Fig. Growth curves of codY mutants in different media. (A-C) Growth curves of strains in
CAT, TSB and THY media respectively. After initial growth to identical cellular densities (OD
0.2) in medium, cells were diluted 1/100 in 300 pL final volume of appropriate medium in
microtitre plate and OD,g, readings taken every 10 min for 600 min. Strain identities, wt, D39;
gk codY (fecE"), TK108; codY socY, TD75.

(TIF)

S2 Fig. Exploring cell morphology by microscopy. (A) Wildtype, glnR" codY (fecE’) and
codY socY cells observed on polylysin slides. Strains used, wt, D39; glnR™ codY™ (fecE"), TK108;
codY socY, TD75. (B) Length of cells observed on polylysin slides. Data represented as percent-
age of cell population fitting into different length fractions. It is of note that every cell in a
chain (panel G) was nevertheless treated as a single cell; therefore chaining should have had no
influence on the calculation of the cell length parameter. The vertical dashed red line represents
the average value (indicated above the line) of wildtype cells. Strains used as in panel A. (C)
Width of cells observed on polylysin slides. Strains and analysis as in panel B. (D) Area of cells
observed on polylysin slides. Strains and analysis as in panel B. (E) Hypothetical volume of
cells observed on polylysin slides. Hypothetical value calculated from other values of cell di-
mension. Strains and analysis as in panel B. (F) Mean number of individual cells counted per
image. Strains as in panel A. (G) Percentage of cells per image which form part of chains.
Strains as in panel A.

(TTF)
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S3 Fig. Exploring cell morphology by microscopy in control strains. (A) Length of cells ob-
served on polylysin slides. Data represented as percentage of cell population fitting into differ-
ent length fractions. Strains used, wt, D39; glnR’ fecE', TD227; glnR" codY™ (fecE") CEPy-codY™,
TD273. (B) Width of cells observed on polylysin slides. Strains, cells and analysis as in panel A.
(C) Area of cells observed on polylysin slides. Strains, cells and analysis as in panel A. (D) Hy-
pothetical volume of cells observed on polylysin slides. Strains, cells and analysis as in panel A.
Hypothetical value calculated from other values of cell dimension. (E) Mean number of cells
counted per image. Strains as in panel A. (F) Percentage of cells per image which form part of
chains. Strains as in panel A.

(TIF)

$4 Fig. Monitoring spontaneous competence development in connection with codY inacti-
vation. (A) Development of competence in wt background monitored by following expression
of ssbB-luc transcriptional fusion. Competence development (RLU/OD) was plotted against
growth (OD,g,) in a gradient of varying starting pHs. Strain used, TD259. (B) Development of
competence in a fecE mutant. Strain used TD263. Experimental information and figure layout
as in panel A. (C) Development of competence in a fecE codY double mutant. Strain used
TD265. Experimental information and figure layout as in panel A. (D) Derepression of ami an-
tagonizes competence revealed by monitoring competence development in an ami“***’ mu-
tant. Strain used TD260. Experimental information and figure layout as in panel A. (E)
Development of competence in a fecE ami“”*” double mutant. Strain used TD264. Experimen-
tal information and figure layout as in panel A.

(TTF)

S5 Fig. HPLC analysis of muropeptide composition. Peptidoglycan was digested with the
muramidase cellosyl and the resulting muropeptides were reduced with sodium borohydride
and analysed by high-pressure liquid chromatography. Strains used (from top to bottom: R6,
TD249, TD227, TK108, TD247 and TD75) are indicated on the right side.

(TTF)

S6 Fig. Analysis of pneumococcal LTA. (A) Section (5500-10500 Da) of the charge deconvo-
luted ESI-FT-ICR-MS spectrum of pnLTA isolated from strain D39 (wt, black) and TK108
(gInR" codY™ (fecE’), red). (B) Enlarged image of the ion cluster with highest intensity (8450-
8750 Da). Differences in the signal pattern of the two strains are caused by varying percentage
of sodium adduct ion cluster, as indicated. For a clear visualization of mass differences, the
most intensive peak of an ion cluster has been chosen instead of the monoisotopic peak.

(TTF)

S1 Table. Strains, plasmids and primers used in this study.
(DOCX)

S2 Table. Sensitivity to ampicillin and ceftriaxone of S. pneumoniae strain D39 and its
gInR, codY (fecE) derivative TK108.
(DOCX)

§3 Table. Peptidoglycan composition of wildtype and mutant strains.
(DOCX)

S1 Text. Supporting Discussion.
(DOCX)
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