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Introduction

A network of nodes connected by edges provides a pow-

erful framework to model connectivity in epidemiology

(Proulx et al. 2005). Network topology, specified by the

connections among nodes, is used to represent host or

pathogen dispersal pathways at various scales, from con-

tacts between individuals (Eubank et al. 2004) to links

between cities along transportation networks (Grais et al.

2003; Colizza et al. 2006), and provides an effective

framework to test different disease control strategies

(Eubank et al. 2004). Hence, empirically determining

network topology is a key component of efforts aimed at

enhancing infectious disease control strategies.

In vector-borne diseases, such as dengue fever, analysis

of disease spread at broad spatial scales (e.g., across cities,

countries, or continents) requires knowledge about poten-

tial vector movement pathways (Takahashi 2004). Takah-

ashi (2004) showed through modeling that intercity

dispersal of Aedes aegypti can significantly influence the

spatial dynamics of dengue. These models, however, made

a number of simplifying assumptions, such as symmetri-

cal movement between cities and a stepping-stone con-

nectivity structure among cities. Examining the validity of

these assumptions by testing hypotheses about vector

movement at appropriate scales would increase the mod-

el’s resolution and utility.

Two main approaches have been used to study Ae. aegypti

dispersal: mark–recapture (Trpis and Hausermann 1986)

and population genetic analysis (Urdaneta-Marquez and

Failloux 2011). Mark–recapture studies report female dis-

persal distances >500 m only when there is a lack of
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Abstract

The mosquito Aedes aegypti, the dengue virus vector, has spread throughout

the tropics in historical times. While this suggests man-mediated dispersal, esti-

mating contemporary connectivity among populations has remained elusive.

Here, we use a large mtDNA dataset and a Bayesian coalescent framework to

test a set of hypotheses about gene flow among American Ae. aegypti popula-

tions. We assessed gene flow patterns at the continental and subregional (Ama-

zon basin) scales. For the Americas, our data favor a stepping-stone model in

which gene flow is higher among adjacent populations but in which, at the

same time, North American and southeastern Brazilian populations are directly

connected, likely via sea trade. Within Amazonia, the model with highest sup-

port suggests extensive gene flow among major cities; Manaus, located at the

center of the subregional transport network, emerges as a potentially important

connecting hub. Our results suggest substantial connectivity across Ae. aegypti

populations in the Americas. As long-distance active dispersal has not been

observed in this species, our data support man-mediated dispersal as a major

determinant of the genetic structure of American Ae. aegypti populations. The

inferred topology of interpopulation connectivity can inform network models

of Ae. aegypti and dengue spread.
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local oviposition sites (Trpis and Hausermann 1986;

Harrington et al. 2005; Reiter 2007). Such small dis-

tances are relevant at the single-site scale, but do not

assist in understanding movement patterns at broader

national, regional, or continental scales. Limited dispersal

implies that strong genetic structure should exist among

populations (Wright 1943). Most studies, however, have

rejected this hypothesis (Gorrochotegui-Escalante et al.

2002; Bosio et al. 2005; Urdaneta-Marquez et al. 2008;

Hlaing et al. 2010), describing instead a paradoxical pat-

tern of high levels of genetic differentiation within and

low differentiation among urban sites. This observation

has led to the proposal of man-mediated passive dis-

persal of eggs, larvae, and adults artificially increasing

gene flow at broad spatial scales (Huber 2004). This

hypothesis predicts that genetic similarity should be cor-

related with the rate of transportation, in particular

commercial traffic, between localities. Thus, Ae. aegypti

interpopulation differentiation would be lower among

large, commercially important cities than among smaller

rural towns, and a pattern of isolation-by-distance would

be expected between rural towns and the urban centers

with which they trade, reflecting some intermediate,

restricted level of traffic.

Support for this hypothesis is compelling, with

genetic studies across the species distribution describing

the expected pattern (Gorrochotegui-Escalante et al.

2000, 2002; Huber 2004; Bosio et al. 2005; Merrill et al.

2005; Dueñas et al. 2009; Sukonthabhirom et al. 2009;

Hlaing et al. 2010). However, Bosio et al. (2005) cau-

tioned that multiple processes could generate similar

allele frequency distributions (Holsinger and Weir

2009). Thus, genetic drift, natural selection, and com-

mon ancestry are also plausible mechanisms to account

for the observed pattern of population differentiation.

In addition, most studies to date have relied on esti-

mates of gene flow (Nm) derived from fixation indices

(FST) through Wright’s equation, which are not robust

to violations of the assumptions underlying the island

model of population genetic structure (Whitlock and

McCauley 1999). Thus, published information on

Ae. aegypti dispersal do not provide adequate data to

inform a network model such as that described by

Takahashi (2004).

Yet, genetic data can shed light on the problem if ana-

lyzed within a coalescent framework. The coalescent

model can ultimately tease apart different deterministic

and stochastic effects by accounting for genealogical dif-

ferences across loci and estimate relevant parameters, such

as gene flow, for specific loci (Rosenberg and Nordborg

2002). While coalescent models are more powerful when

used with multiple loci, one locus is often sufficient to

test simple gene flow network hypotheses (Beerli and Pal-

czewski 2010), which can be useful as a first step to

inform epidemiological network models.

Here, we use a Bayesian coalescent framework to test

the support for alternative gene flow network models

among American Ae. aegypti populations in mitochon-

drial NADH dehydrogenase subunit 4 (ND4) gene

sequence data (Fig. 1). The four models – panmixia, full

migration, stepping-stone migration, and complete isola-

tion – represent different hypotheses of population con-

nectivity and can thus inform the topology of network

models of dengue spread (Fig. 2).

The panmixia model represents a hypothesis of high

and constant exchange of genes across sites (Nm � 1),

with all sites behaving as a single, large, random-mating

population. The full migration model states that all popu-

lations are directly exchanging migrants, but at a level

allowing for some genetic drift within sites; under passive,

human-mediated dispersal, this means that transportation

networks are allowing for gene exchange, either directly

(e.g., two sites connected by road) or indirectly (e.g., two

sites connected by a third site, such as river trade switch-

ing to a road network at a certain node). The stepping-

stone model implies that migrants are only exchanged

among spatially neighboring populations; here, gene flow

occurs only between sites that are adjacent along the

transport network (e.g., two harbor cities between which

ships may move without stopping). Finally, the complete

isolation model represents the hypothesis that gene flow

across sites is nonexistent.

The data cover major cities in the Brazilian Amazon

and regions in the Americas; these nodes can be con-

nected by land (roads and trains), water (rivers and sea),

and air transport edges. A priori there is little evidence to

suggest complete isolation. On the other hand, it is plau-

sible that gene flow approaches panmixia at the Amazon

scale and possibly full migration at the continental scale.

This is because of the increase in commercial traffic as a

result of globalization of trade (Young et al. 2006; Stod-

dard et al. 2009). Explicitly testing the support for each

model will allow us to take an important step in inform-

ing network models for Ae. aegypti and dengue.

Material and Methods

DNA sequence database

A total of 3103 published ND4 sequences, 322 bp in

length, from Ae. aegypti sampled in the Americas were

obtained from GenBank (Table S1; Fig. 1). To this data-

base, we added 83 new and unpublished sequences (for a

total 3186 sequences) obtained from larvae collected in

the Amazon cities of Manaus (Amazonas State) by Rı́os-

Velásquez et al. (2007) and Boa Vista (Roraima State) by

Codeço et al. (2009).
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We isolated DNA from the 83 samples using the Qiagen

DNeasy Tissue Kit following the manufacturer’s protocol

(Qiagen, Inc., Valencia, CA, USA). Amplification of the

target sequence followed the protocol described by Gor-

rochotegui-Escalante et al. (2000). Consensus sequences

were obtained using GeneDoc 2.6.002 (Nicholas et al.

1997), verified using BLAST (Altschul et al. 1990), and

checked for missense mutations or stop codons that would

affect the open reading frame using MEGA 4.1 (Tamura

et al. 2007). Sequences were aligned manually.

Samples spanned seven countries across the Americas

and two major regions within Brazil. To simplify our

models, we grouped samples from USA (N = 4), Mex-

ico (N = 1972), and Central America (N = 7), as our

focus was on examining broader, continental-scale con-

nections. A separate analysis of these samples suggested

they are panmictic; thus, all reported results at this

scale refer to the complete sample Mexico/Central

America/USA group. Within Brazil, we split samples

from the Amazon basin and the southeast, and grouped

samples from Rio Branco and Porto Velho within the

Amazon basin.

Data quality control

Nuclear mitochondrial pseudogenes (NUMTs) are nuclear

insertions of mitochondrial genes that evolve indepen-

dently of the mitochondrial genome. Samples containing

(A)

(B)

Figure 1 Geographic location of Aedes aegypti populations included in the study: (A) in the Americas (N = 2811 specimens from five locations:

Mexico-North America, Venezuela, Peru, Brazilian Amazon, and southeastern Brazil); and (B) within the Amazon region (N = 74 specimens from

four locations: Boa Vista, Manaus, Belém, and Rio Branco-Porto Velho). In (A), the model ranked first at the continental scale is represented by

the arrows. In (B), major navigable rivers (Negro, Solimões, Purus, Madeira, Tapajós, Xingu, Tocantins, and Amazonas) and highways (BR174,

BR319, BR364, BR163, BR153, and BR316) are presented; the broken line for BR319 indicates that this highway is only in use during a few

months in the dry season and is therefore not used for routine commercial transport.

Gene flow networks among American Aedes aegypti populations Gonçalves da Silva et al.
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mixtures of mitochondrial DNA (mtDNA) and NUMT

sequences are expected to significantly affect the outcome

of genealogy- and frequency-based analyses (Triant and

DeWoody 2009). This is because mtDNA and NUMTs

have separate genealogies and thus evolutionary history.

To minimize the occurrence of NUMTs in our sample,

we compiled a list of previously verified mtDNA haplo-

types by Hlaing et al. (2009) and Black and Bernhardt

(2009)(Data S1). We subsequently removed all sequences

within our database that did not match one of these hapl-

otypes. Removing potentially or known non-mtDNA

sequences from mtDNA datasets is highly recommended,

even though some subjectivity may be involved in the

procedure (Yao et al. 2009).

Descriptive statistics and tests of assumptions

Using the sequences that passed the NUMT filter, we cal-

culated the number of segregating sites (S) and nucleotide

diversity (p), and estimated haplotype diversity (H;

Table S2) for each population at each sampling scale

using DnaSP 5.10.01 (Librado and Rozas 2009).

We used Migrate-N 3.2.6 (Beerli 2006, 2009) for our

coalescent-based analysis. The implementation of the coa-

lescent in Migrate-N assumes neutral evolution, no

recombination, and that population sizes, time since iso-

lation, and number of demes are finite and have

remained constant for at least the previous 2Nef genera-

tions (two times the effective female population size). In

addition, Migrate-N assumes an F84 model of nucleo-

tide substitution (Kishino and Hasegawa1989; Felsenstein

and Churchill 1996) with or without gamma-distributed

variable substitution rates across sites.

To check the neutrality assumption, we tested for

departures of the site frequency spectrum from the neu-

tral expectation with Tajima’s (1989) D and Fu and Li’s

(1993) D* and F* statistics using DnaSP. As these

tests are sensitive to demographic effects (Nielsen 2001),

we also tested the hypothesis that the ratio of non-

synonymous to synonyms substitutions was different

from 1 (dN/dS „ 1) by comparing ND4 sequences from

Ae. aegypti (GenBank accession number YP001649170.1)

to the closely related species Ae. albopictus (YP194919.1)

as described by Bielawski and Yang (2005).

(A)

(B)

Figure 2 Models examined at each sampling scale: (A) continent; and (B) Amazon. BrAM, Brazilian Amazon; SEBr, southeastern Brazil; PE, Peru;

VZ, Venezuela; M-NA, Mexico-North America; MAO, Manaus; BEL, Belém; BV, Boa Vista RB-PV, Rio Branco-Porto Velho. Arrows indicate gene

flow between nodes.
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The hypothesis that dN/dS „ 1 was tested against the

null (dN/dS = 1) using a chi-squared likelihood ratio test

(a = 0.05, 1 df). Log-likelihood values for each hypothesis

were calculated using the codeml package of PAML4 (Yang

2007) by setting x = 1 for the null hypothesis and allowing

the program to maximize x for the alternative hypothesis.

In either case, we set PAML4 to use the maximum-likeli-

hood estimate (MLE) of the transition/transversion ratio

(j) and used an F61 codon substitution model (Yang and

Bielawski 2000). The test is based on a maximum-likeli-

hood estimation of the ratio of synonymous to nonsynony-

mous amino acid changes across the protein sequence

(Goldman and Yang 1994). The F61 codon substitution

model describes the probabilities of any particular codon

changing to another, allowing for all nonstop codon sub-

stitutions to have a unique probability of occurrence.

We tested the assumption of constant population size

with Ramos-Onsins and Rozas (2002) R2 and Fu’s (1997)

Fs using DnaSP. Significance for all statistics was assessed

(a < 0.05) using empirical distributions based on 10 000

replicates of the neutral coalescent conditional on the

observed S and sample size, as described by Ramos-

Onsins and Rozas (2002).

Regarding separation times between populations, we do

not believe them to be ‡2Nef generations in our study set-

ting. Most Ae. aegypti populations in South America were

established in the 1970s and 1980s after being all but

eliminated earlier in the century (Vasconcelos et al.

1999). If we assume approximately 10–12 generations per

year (30 days/generation), about 400–480 generations

have passed since 1970. The most in-depth study on

Ae. aegypti effective population size we are aware of

reports wide 95% confidence intervals for most sampling

sites in Northern Queensland, Australia (Endersby et al.

2011). For instance, for one town, the estimate is

reported to be between 29 and infinity, with a mode of

103. Estimates improved when samples were grouped into

larger interconnected urban areas. The largest of which,

Townsville (Australia) and surroundings, is smaller than

our smallest urban center, Rio Branco (Acre, Brazil). In

this grouping, the effective population size estimate was

reported as 623 (95% CI = 40 to >10 000). Given the

preference of the mosquito for urban sites, it is likely that

more urbanized sites will have a higher carrying capacity

and thus a larger effective population size than those

observed in Northern Queensland.

Thus, because separation times are likely to be <2Nef,

at least in the case of Migrate-N, it is not possible to

distinguish between gene flow and shared ancestral poly-

morphism, likely resulting in overestimates of gene flow

rates. Nevertheless, simulated data show that the results

from this sampler are robust to violations of this assump-

tion when the aim is differentiating among hypotheses

about gene flow structure, even though the actual esti-

mate of gene flow may be biased (P. Beerli, personal

communication). Finally, we do not believe the data vio-

late the assumption of no recombination; mtDNA is gen-

erally accepted as a nonrecombining molecule because of

the nature of its inheritance (Birky 1995).

In regard to the nucleotide substitution model used by

Migrate-N, we used PAUP* (Swofford 2002) to derive

MLEs of its parameters. As mentioned previously,

Migrate-N uses an F84 model with or without assuming

variable substitution rates. We used a likelihood ratio test

to select between constant and variable substitution rates,

as described by Goldman and Whelan (2000). For each

dataset (as defined by geographic scale of analysis), we

first estimated a neighbor-joining (NJ) tree based on a

logDet/paralinear distance; we then calculated the MLEs

of the transition/transversion rate, nucleotide frequencies,

and a parameter of the gamma distribution (with four

substitution rate categories) based on the NJ tree. Subse-

quently, we set all parameters of the nucleotide substitu-

tion model to the MLE values, and ran a heuristic tree

search with an ML criterion, using random stepwise addi-

tion of samples and tree bisection–reconnection. We then

re-estimated the MLE for each model parameter based on

the retained tree(s). We repeated this procedure until the

MLEs stabilized between runs and inputted the values of

the last run into Migrate-N. In the case of multiple

trees, we planned to average MLE values across the trees

with the highest log-likelihood values; however, only one

tree was found in each case.

Coalescent-based analyses

We used a coalescent-based approach to examine the sup-

port of the data for gene flow structure hypotheses at the

continental and Amazon scales. At the continental scale,

we examined hypotheses of panmixia, full migration, two

stepping-stone scenarios, and complete isolation among

five regions or countries: (i) southeastern Brazil; (ii) Bra-

zilian Amazon; (iii) Peru; (iv) Venezuela; and (v) Mex-

ico-North America. As stated above, we grouped

Mexican, Central and North American samples in a ‘Mex-

ico-North America’ population (Table S1).

In the first stepping-stone scenario, the Brazilian Ama-

zon is connected by land and river with southeastern Bra-

zil, Venezuela, and Peru; in turn, Venezuela and

southeastern Brazil are connected by sea to Mexico-North

America. The second stepping-stone scenario differs from

the first in that there is no connection between southeast-

ern Brazil and Mexico-North America. A priori, the first

scenario should be favored over the second, as there is a

busy shipping lane between southeastern Brazil with Mex-

ico-North America (SEAS BBXX database, Global Ocean

Gene flow networks among American Aedes aegypti populations Gonçalves da Silva et al.
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Observing System Center, NOAA: http://www.aoml.noaa.

gov/phod/trinanes/BBXX/). We believe that any of the

scenarios hypothesizing some degree of gene flow at this

scale are plausible given the intensification of trade

through globalization (Young et al. 2006; Stoddard et al.

2009). Finally, we examine the hypothesis of isolation,

which if accepted would discredit the human-mediated

dispersal hypothesis.

Similarly, at the Amazon scale we examined panmixia,

full migration, stepping-stone, and isolation hypotheses of

gene flow among four areas encompassing major urban

centers: north (Boa Vista), center (Manaus), east (Belém),

and west (Rio Branco-Porto Velho) (Fig. 1). Again, pan-

mixia, full migration and stepping-stone hypotheses are

justified under a man-mediated dispersal hypothesis given

trade intensification and the building of transportation

networks within Brazil in the last 50–60 years. Regarding

the stepping-stone hypothesis, we proposed a star-shaped

network in which Manaus is connected to all localities

(Fig. 2).

Migrate-N estimates the posterior distribution of

mutation-scaled migration (M) and mutation-scaled

effective population size (Q) parameters, as well as the

marginal likelihood of each gene flow network hypothesis

(Beerli 2006). At each spatial scale, gene flow networks

were ranked according to their log Bayes factors (LBF)

calculated from the Bezier corrected marginal likelihoods

of the data given the model. The marginal likelihoods for

each model were approximated by thermodynamic inte-

gration of the Markov chain Monte Carlo (MCMC) over

four spaced heated chains (Metropolis coupled MCMC),

as described by Beerli and Palczewski (2010).

Each hypothesis differed in the number of parameters

to be estimated, from 1 (panmixia) to 25 (full migration;

Fig. 2). These differences affect the length of the MCMC

chain required to achieve convergence and thus reliable

estimates of the posterior distribution. To accommodate

these differences, we ran preliminary runs with the full

migration model, which requires the longest chains, and

used the same run conditions for all models. In all cases,

we ran four parallel static chains with temperatures 1.0,

1.5, 3.0 and 106, with swapping among chains potentially

occurring every 10 steps. For each model, we ran 100 rep-

licate runs, with each starting at random points within

the domains of the priors. This is a basic feature of

Migrate-N that is intended to speed up analyses (P. Be-

erli, pers. communication). Many smaller chains run in

parallel on a computer cluster will produce the same

result as one very long chain. Replicate runs are pooled,

and the marginal likelihood of each model is calculated

from the pooled chains.

We used a uniform prior for Q between 0 and 0.1 and

a sampling window of 0.01 on which to generate new

proposals; for M, we used a uniform prior between 0

and 1000 with a window of 100. The prior on Q is based

on the fact that it is a measure of Nefl per base for

mtDNA sequences. Hence, a Q of 0.1 means there is 0.1

chance of a new mutation occurring at any given base, or

the proportion of bases that are expected to mutate in

any given generation. The prior on M reflects that we are

estimating the proportion of migrants per generation

divided by the mutation rate (m/l). Therefore, M = 1000

means that m is 1000 times larger than l.

Each replicate run had a total of 104 recorded steps at

102 step intervals, for a total of 106 steps, and an initial

burn-in of 104 steps. For each replicate run, we analyzed

a random subset of 20 and 10 individuals from each pop-

ulation from the continental and Amazon spatial scales,

respectively. We assessed convergence by visual inspection

of individual chains to ascertain good mixing and lack of

trends (Kuhner 2009). We also used the Gelman-Rubin

diagnostic to assess convergence across replicate chains,

accepting convergence when values were £1.20 (Gelman

and Rubin 1992). To assess whether we had adequately

sampled the posterior distribution, we also required all

parameters to have an expected sample size (ESS) ‡105,

as calculated by Migrate-N. We plotted chains and cal-

culated the Gelman-Rubin diagnostic using the R (R

Development Core Team 2011) package CODA (Martyn

et al. 2006).

We report support for each model in terms of LBF

units and in terms of the posterior probability. The latter

informs on how well any given model is supported rela-

tive to other tested models. Furthermore, it is a more eas-

ily interpreted measure. The former, however, has

historically been used as a criterion in model choice. Kass

and Raftery (1995) suggest that a LBF of ‡10 units indi-

cates ‘very strong’ support.

Results

Data quality control

In total, we identified 31 haplotypes that were considered

to be mtDNA haplotypes by Hlaing et al. (2009) and

Black and Bernhardt (2009), with one haplotype exclusive

to Asia. Filtering the sequences from our database with

these haplotypes removed 292 sequences (12 of which

were new sequences generated by us), leaving a total of

2811 sequences in the database (Table S1). The remaining

sequences had none of the characteristics typical of

NUMTs, while having base frequencies and transition/

transversion biases expected for mtDNA sequences (as

shown below). Thus, we are confident that the final data-

set represents a sample of mtDNA haplotypes from

Ae. aegypti.
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Descriptive statistics and tests of assumptions

At the continental scale, we observed a total of 30 haplo-

types (h), with within-population values ranging between

2 and 22 (Table S2). Haplotype diversity was generally

high (Hd > 0.60) for all populations except Peru

(Hd = 0.42; Table S2), indicating relatively even haplo-

type frequencies within populations. Because we only

observed two haplotypes in Peru, an Hd approximately

0.50 also indicates an even distribution of haplotypes.

At the Amazon spatial scale, we observed a total of 12

haplotypes, with h ranging from four to seven within

populations (Table S2). Haplotype diversity was not as

uniform as seen at the continental spatial scale; Manaus

and Rio Branco-Porto Velho had values <0.50, suggesting

that some haplotypes were more abundant than others in

our sample, while Belém and Boa Vista had values >0.50

(Table S2). Nevertheless, sample sizes do not allow us to

confidently estimate number of haplotypes and haplotype

frequencies within these localities. Further results for both

scales can be found in Data S2.

At the continental spatial scale, Tajima’s D and Fu and

Li’s D* and F* did not suggest negative selection

(Table 1). In four of five populations, however, Tajima’s

D was significantly larger than expected by the neutral

coalescent. The same was observed for Fu and Li’s D* in

Peru, and for Fu and Li’s F* in Peru, Venezuela, and

Mexico-North America. Assuming demographic stability,

theory would indicate that this is evidence for balancing

selection. Nevertheless, in all four populations with signif-

icantly positive neutrality test indices, significantly posi-

tive values were also observed for Ramos-Onsis and

Rozas’ R2 and/or Fu’s F statistics, indicating a potential

bottleneck. Thus, the assumption of demographic stability

seems to be violated in these populations, as the signifi-

cantly positive values of neutrality statistics could also be

explained by population decline.

At the Amazon spatial scale, observed values for neu-

trality and demographic stability statistics in Manaus and

Boa Vista were within expectations of the neutral coales-

cent, but those observed in Belém and Rio Branco-Porto

Velho were not. Tajima’s D for Belém was significantly

larger than expected by the neutral coalescent

(P < 0.025). Yet, once again, the R2 value was also signifi-

cantly larger (P < 0.025), indicating that population

decline is also a plausible explanation for the large Taj-

ima’s D. In Rio Branco-Porto Velho, we observed values

significantly smaller than expected by the neutral coales-

cent (P < 0.025), and no indication of demographic

expansion as observed by the values of R2 and Fs. Thus,

it is plausible that negative selection is strong in this

region.

Further evidence for negative selection is obtained from

the more general results of the pairwise comparison of

Ae. aegypti and Ae. albopictus ND4 genes using PAML.

The neutral model (dN = dS) resulted in a log-likelihood

value of )2126.52, while the ML model (in which x is

estimated) resulted in a log-likelihood value of )1959.66;

a likelihood ratio test suggests that the MLE of x = 0.011

is significantly different (P < 0.05) from x = 1.00. The

between-species is thus strongly suggestive that ND4 is

likely under rangewide negative selection in Ae. aegypti.

The MLEs for the F84 nucleotide substitution model

parameters suggested unequal base frequencies in line

with observations from mtDNA of insects and Ae. aegypti

(Dueñas et al. 2006; Table S3). Across sampling scales,

differences in base frequency MLEs were on the order of

10)3 and were considered too small to be reported. Tran-

sition/transversion bias was higher at the Amazon scale

(8.08) than at the continental scale (3.75). These values

Table 1. Test of demographic stability and selective neutrality across 322 bp of the Aedes aegypti ND4 gene sampled across the Americas.

Scale Population

Demographic stability Neutrality tests

R2 Fs D D* F*

Continent Mexico-North America 0.15* 7.17* 3.45* 1.00 2.51*

Venezuela 0.14* 9.82* 2.25* 1.40 2.10*

Peru 0.21* 14.26* 2.63* 1.44* 2.16*

Brazilian Amazon 0.18* 1.93 2.16* 0.57 1.35

Southeastern Brazil 0.15 1.41 1.38 1.01 1.36

Amazon Boa Vista 0.13 0.31 )0.80 )0.44 )0.60

Manaus 0.09 0.19 )0.78 0.88 0.44

Belém 0.22* 0.97 1.75* 1.14 1.50

Rio Branco-Porto Velho 0.17 0.86 )2.04� )3.20� )3.33�

*Values significantly larger than expected by the neutral coalescent (P < 0.025).
�Values significantly smaller than expected by the neutral coalescent (P < 0.025).

R2 (Ramos-Onsins and Rozas 2002); Fs (Fu 1997); D (Tajima 1989); and D* and F* (Fu and Li 1993).
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are smaller than previously reported for mtDNA (9.0–

10.6; Wakeley 1996) and could be a function of different

levels of genetic drift or selective pressures occurring at

these scales (Wakeley 1996). Our analysis also showed

that including among-site rate variation modeled by a

gamma distribution provided a better fit of the nucleotide

substitution model to the data at both spatial scales

(P > 0.01 and P < 0.05 for continent and Amazon scales,

respectively). The shape parameter values are relatively

small (a = 0.031 and 0.004 for the Amazon and continen-

tal scales, respectively), suggesting a high proportion of

almost invariant sites and few highly variable sites. This is

expected for a gene under strong negative selection and is

mirrored in the finding of synonymous mutations at 17

of 22 segregating sites.

Coalescent-based analyses

Visual inspection of the MCMC chains showed no trends

and good mixing, suggesting convergence (data available

upon request). Values of the Gelman-Rubin diagnostic

were all £1.11, with the majority of values £1.05.

Expected sample size values were all ‡3.9 · 105, with a

maximum of 2.19 · 106. While it is always difficult to

conclude with certainty that convergence of the MCMC

has occurred, it is possible to infer with some degree of

certainty that convergence has not occurred (Kuhner

2009). By having suitably high ESS values, along with

multiple (100) replicates with evidence for convergence

across chains and visual inspection of individual chains

suggesting good mixing and a lack of trends, we are con-

fident that we generated a good sample of the posterior

distribution of the parameters of interest.

At the continental scale, stepping-stone model 1, which

includes a connection between Mexico-North America

and southeastern Brazil (Table 2), had the highest support

from the data. This model had a posterior probability of

0.99 and had a LBF of )33.58 relative to the second-rank-

ing model, stepping-stone 2, which did not feature the

Mexico-North America/southeastern Brazil connection. At

the Amazon spatial scale, the full migration model had

the highest support from the data (Table 2), with a pos-

terior probability of 0.94. However, the LBF when com-

pared to the panmixia model was )5.76. In the Kass and

Raftery (1995) scale, this provides some positive support

for the full-migration model, but should not be consid-

ered definitive, as discussed for instance in Clarke and

Middleton (2008). Posterior densities for each parameter

of the best ranking models are reported in Fig. S1 and S2.

Discussion

Our objective was to test the data support for alternative

gene flow network models in the dengue vector, Ae. ae-

gypti, at two different spatial scales and thus inform epi-

demiological network models of Ae. aegypti and dengue

spread. At the continental spatial scale, the model with

the highest support from the data (0.99 posterior proba-

bility) suggests a significant link between southeastern

Brazil and Mexico-North America, along with connec-

tions between Mexico-North America and Venezuela;

Venezuela and the Brazilian Amazon; and the Brazilian

Amazon, Peru, and southeastern Brazil. The LBF to the

second ranking model ()33.58) gives us confidence that,

among the tested models, this is the one that most likely

represents the process that generated the data (Table 2).

At the Amazon scale, we examined connectivity among

four major urban centers: Rio Branco-Porto Velho in the

west; Manaus in the center; Belém in the east; and Boa

Vista in the north. At this scale, a full-migration model of

connectivity had the highest support from the data (0.94

posterior probability), suggesting that all sampling sites

are exchanging migrants. However, the marginal log-like-

lihood difference between this model and the panmictic

model (LBF = )5.76) suggests that more data are

required to confidently distinguish between them

(Table 2). Alternatively, this could reflect seasonal

variation in gene flow networks, with higher connectivity

Table 2. Marginal log-likelihood values, log Bayes factor and ranks of continental and Amazon-scale gene flow network models.

Scale Model (N parameters) Marginal log-likelihood Log Bayes factor Posterior probability Rank

Continent Stepping-stone 1 (15) )692.40 0.00 0.99 1

Stepping-stone 2 (13) )709.19 )33.58 10)8 2

Full migration (25) )714.40 )44.00 10)10 3

Panmixia (1) )725.38 )65.96 10)15 4

Isolation (5) )947.11 )509.42 0.00 5

Amazon Full migration (16) )548.71 0.00 0.94 1

Panmixia (1) )551.59 )5.76 0.05 2

Stepping-stone (10) )574.02 )50.62 10)12 3

Isolation (4) )657.24 )217.06 10)48 4
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during the wet season when compared to dry seasons. If so,

a mixed model would be more appropriate. Nevertheless,

both models imply a significant degree of Ae. aegypti gene

flow across Amazonian urban centers. The isolation mod-

els at either spatial scale, on the other hand, produced the

worst fit to the data; while this result was not unexpected,

it underscores that locally isolated Ae. aegypti control

efforts are unlikely to succeed, implying that concerted

region-wide programs are needed to contain the spread

of Ae. aegypti and, consequently, the spread of dengue.

Our dataset violates a number of assumptions of the

coalescent model employed in Migrate-N. However, we

do not feel that this invalidates our results, because we did

not wish to obtain parameter estimates for Q or M but

rather wished to examine the support of the data in alter-

native gene flow network models (Beerli and Palczewski

2010). Below we argue our point for each assumption.

Violation of selective neutrality because of strong nega-

tive selection should not change the relative rank of gene

flow networks. As the selective pressure at this locus is

likely to be uniform across the species range, affecting all

populations equally, it should not skew gene flow esti-

mates as would be expected if selective pressures differed

among populations (Charlesworth et al. 1997; McCracken

et al. 2009). Furthermore, negative selection will affect the

length of gene genealogies (i.e., coalescence happens

<2Nef generations) but not the topology (Hudson and

Kaplan 1995). Therefore, while the actual estimate of gene

flow may be an underestimate, the relative difference

between gene flow networks will not be affected.

Unfortunately, the effects of violations of demographic

stability and time since divergence on the performance of

Migrate-N to rank gene flow network models are not as

clear. Simulations by Beerli (2009) show that the effect of

violating demographic stability on parameter estimates

depends on the magnitude and the timing of demo-

graphic events. Our results suggest recent bottlenecks in

Peru, Venezuela, Mexico-North America, and Belém,

which is consistent with a history of dengue prevention

programs relying exclusively on vector control, which has

likely caused several cycles of local extinction followed by

re-colonization (Figueiredo 2003). Thus, parameter esti-

mates may be biased in our analyses; yet, the effect on

the ranking of gene flow networks is still unknown. How-

ever, as long as there is some gene flow across popula-

tions, as explained below in regard to population

divergence, Migrate-N seems robust to such violations.

If population divergence occurred <2Nef generations

ago, populations are likely to share genetic variation

because of both migration events and shared ancestry.

Because Migrate-N assumes that shared variation is

attributed to migration, this can result in inflated esti-

mates of migration. However, as long as there is some

migration, Migrate-N is robust to violations of this

assumption and should be able to correctly infer gene

flow structure in most cases at divergence times of at least

Nef/2 generations or even more recent times if migration

rate is high (see http://popgen.sc.fsu.edu/Migrate/Blog/

Entries/2010/8/15_Violation_of_assumptions%2C_or_are_

your_migration_estimates_wrong_when_the_populations_

split_in_the_recent_past.html). Thus, it seems that the

crucial parameter determining the ability of Migrate-N

to infer the correct gene flow network given presence of

ancestral variation is the ratio of shared variation because

of migration to shared variation because of ancestry. In

the case of Ae. aegypti, high levels of gene flow across

major urban centers are plausible and generally accepted

(Urdaneta-Marquez and Failloux 2011); while gene flow

measures based on FST are not generally to be trusted,

there are at least two independent sources of evidence

that substantiate this belief: (i) the rapid spread of Ae. ae-

gypti across the globe starting in the 15th century, and

the rapid re-infestation of New World regions once eradi-

cation programs were discontinued in the 1950s (Groot

1980; Gubler 1989); and (ii) the continued reports of

mosquitoes and their larvae on boats, airplanes, trains

and trucks (Lounibos 2002).

Therefore, in light of the current understanding

of Migrate-N, the coalescent, and the evidence on

Ae. aegypti spread, we are confident that our results are

no more impacted by our data violating the coalescent

model implemented in Migrate-N than if we had ana-

lyzed them using an allele-frequency framework. Yet,

because we take a Bayesian coalescent approach, we are

able to explicitly test different hypotheses of gene flow

structure by examining their fit to the data. Future work

in Migrate-N would greatly benefit from adding coales-

cent models that explicitly account for selection, demo-

graphic instability and nonequilibrium divergence times.

Such models would allow us to properly gauge the effects

of the violations of the above assumptions in parameter

estimates and model selection. In the absence of a model

that incorporates selection, a simulation study should be

carried out to fully test the robustness of Migrate-N to

the violation of selection. Software such as SFS_CODE

(Hernandez 2008) could be used to generate the

necessary samples. Alternatively, the complex history of

Ae. aegypti might be ideally suited for analyses using

novel Approximate Bayesian Computation methods

(Beaumont 2010).

If we accept that Migrate-N is correctly ranking gene

flow models, how do the results inform on the man-med-

iated dispersal hypothesis? As mentioned previously, our

gene flow network hypotheses were derived from pre-

sumed connections between sampling sites along different

transportation networks. At the continental scale, at least
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in some cases, there is good evidence in support of these

hypotheses; for instance, land connection between Vene-

zuela and Boa Vista (northern Brazilian Amazon) is sug-

gested by the presence in Boa Vista of dengue serotypes

previously only recorded in Venezuela (Lourenco-De-

Oliveira et al. 2004; Figueiredo et al. 2008; Codeço et al.

2009), and river connection between Peru and the Brazil-

ian Amazon is supported by pupae surveys on boats

(Morrison et al. 2006).

On the other hand, the connections of Venezuela and

southeastern Brazil with Mexico-North America, as well

as the connection between the Brazilian Amazon and

southeastern Brazil, require more data. The presence of

major shipping lanes connecting the Gulf of Mexico with

Venezuela and Brazil, the fact that shipping is largely

responsible for the spread of Ae. aegypti globally, and

genetic data suggesting higher genetic variability in port

towns in Asia (Hlaing et al. 2010), southeastern Brazil

(Paduan and Ribolla 2008), and Belém (this study), how-

ever, suggest that this is a plausible scenario.

The connection between the Brazilian Amazon and

southeastern Brazil is often implied (Vasconcelos et al.

1999), in particular by the history of Ae. aegypti re-inva-

sion after the 1955 eradication, which presumably began

in southeastern Brazil, reached the central-west and

northeastern regions by the mid-1980s, and finally all

Brazilian states by 1998 (Figueiredo 2003). The second

half of the 20th century also saw the building of major

highways linking the south and southeastern regions of

the country with the northeast and northwestern regions

(e.g., the BR364 from São Paulo to Acre, and the BR153

from Rio Grande do Sul all the way to Belém; Fig. 1).

Thus, at the continental scale, there is some evidence to

support a correlation between the inferred gene flow links

and transportation networks.

At the Amazon scale, Porto Velho, Manaus and Belém

are all connected by river (Fig. 1), and Amazonian river-

boats are a known a mode of dispersal of Ae. aegypti lar-

vae (Morrison et al. 2006). Boa Vista and Manaus are

connected by a major highway (BR174) that has been

hypothesized as a route for Ae. aegypti and dengue spread

into Brazil from Venezuela, the Caribbean, Suriname and

the Guyanas (Lourenco-De-Oliveira et al. 2004; Figueired-

o et al. 2008; Codeço et al. 2009). Finally, we treated Rio

Branco and Porto Velho as one site because of the prox-

imity between the two cities (approximately 450 km along

the BR364 highway), and because all land commercial

transport between Rio Branco and the rest of Brazil

must, given the current highway system, go through

Porto Velho (Fig. 1).

Direct connections between sites without land or river

links (e.g., Boa Vista and Rio Branco-Porto Velho or Bel-

ém), as suggested by the full-migration model, may reflect

an intensification of regional air traffic; however, indirect

connections driven by the transportation of goods across

multiple nodes in the network are also plausible. There-

fore, the current transport network in the Brazilian Ama-

zon does not contradict the gene flow structure inferred

by our analysis and provides support for the hypothesis

that such networks are contributing to Ae. aegypti passive

dispersal in the region.

Our results, it should be noted, only reflect female dis-

persal because mtDNA is maternally inherited. A compar-

ison of nuclear single-nucleotide polymorphisms (SNPs)

and ND4 genes across Venezuela suggests spatial structure

in ND4, but no structure in SNPs (Urdaneta-Marquez

et al. 2008). Such a pattern is consistent with sex-biased

dispersal, with the female being the philopatric sex (Mel-

nick and Hoelzer 1992). If this is indeed the case, our

results reflect the minimum gene flow network.

Across scales, different gene flow networks models were

favored by the data. Our observation of full migration at

the Amazon scale suggests that as commercial traffic inten-

sifies, the continental stepping-stone gene flow structure

may shift to full migration or panmixia. The high levels of

connectivity observed at the Amazon scale are expected to

facilitate the spread of advantageous mutations (e.g., resis-

tance to insecticides) and potentially increase the costs of

control. It is difficult to infer how gene flow networks will

be at smaller spatial scales, and thus what to expect in

terms of spread and control at these scales. But if the trend

is toward increased gene flow at finer scales, then it is

expected that at such scales as between cities and some

nearby rural areas we might observe full-migration or pan-

mixia. Future work may benefit from more intense and

finer spatial scale sampling to evaluate such scenarios.

Even though our data demonstrate gene flow across

sampling sites at both spatial scales, and the inferred gene

flow networks can be largely explained in terms of the

transportation networks, we still do not have direct

evidence for the human-mediated dispersal hypothesis.

Targeted sampling within urban sites and on trucks,

boats, planes, and possibly trains arriving at each city

would be necessary to provide a definitive test of the

hypothesis. By noting the origin of the vehicles and using

genetic data from those sites to match samples, we would

be able to make definite links to the role of commercial

transport, estimating the contribution of each form of

transport to the total influx of Ae. aegypti at each locality,

as well as the proportional contribution from different

source sites.

The models we tested do not represent an exhaustive

search of all possible models. For instance, it is plausible

that gene flow is not symmetric across sites and, in some

cases, it may be largely unidirectional. This may occur if

vector control measures differ between sites. We have
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avoided more complex models because a one-locus data-

set has little power to correctly rank asymmetrical models

(Beerli and Palczewski 2010). In such cases, information

on multiple nuclear loci is needed to confidently rank

gene flow networks and estimate gene flow levels. Thus,

future work should focus on recently available nuclear

loci (e.g., Lovin et al. 2009), which will allow us to take

full advantage of the coalescent model (Nichols 2001; Bri-

to and Edwards 2009). Multiple loci will help minimize

coalescent variance and increase confidence in estimates

of directionality and amount of gene flow between nodes.

However, this does not decrease the value of our analyses.

In simpler network models, the connection pattern

among nodes is one of the most essential parameters

(Proulx et al. 2005). Hence, we consider the results pre-

sented here an important first step in the direction of

more detailed epidemiological network models.

In conclusion, our results shed light on the node-edge

structure of Ae. aegypti gene flow networks at two spatial

scales that are relevant to public health planning and

management; they can also contribute to the development

of network-based models of Ae. aegypti population

dynamics and dengue spread at these spatial scales.
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Dueñas, J. C. R., C. N., Gardenal, G. A. Llinás, G. M. Panzetia-

Dutari. 2006. Structural organization of the mitochondrial DNA

control region in Aedes Aegypti. Genome 49:931–937. doi:10.1139/

g06-053.
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