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Abstract

Background

Making inferences about measles distribution patterns at small area level is vital for more

focal targeted intervention. However, in statistical literature, the analysis of originally col-

lected data on one resolution with the purpose to make inferences on a different level of spa-

tial resolution is referred to as the misalignment problem. In Namibia the measles data were

available in aggregated format at regional level for the period 2005 to 2014. This leads to a

spatial misalignment problem if the purpose is to make decisions at constituency level.

Moreover, although data on risk covariates of measles could be obtained at constituency

level, they were not available each year between 2005 and 2014. Thus, assuming that

covariates were constant through the study period would induce measurement errors which

might have effects on the analysis results. This paper presents a spatio-temporal model

through a multi-step approach in order to deal with misalignment and measurement error.

Methods

For the period 2005–2014, measles data from the Ministry of Health and Social Services

(MoHSS) were analysed in two steps. First, a multi-step approach was applied to correct

spatial misalignment in the data. Second, a classical measurement error model was fitted to

account for measurement errors. The time effects were specified using a nonparametric for-

mulation for the linear trend through first order random walk. An interaction between area

and time was modelled through type I and type II interaction structures.

Results

The study showed that there was high variation in measles risk across constituencies and

as well as over the study period (2005–2014). Furthermore, the risk of measles was found

to be associated with (i) the number of people aged between 0 and 24 years, (ii) the percent-

ages of women aged 15–49 with an educational level more than secondary, (iii) the
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percentages of children age 12–23 months who received measles vaccine, (iv) the percent-

ages of malnourished children under 5 years, and (vi) the measles cases for each previous

year.

Conclusion

The study showed some of the determinants of measles risk and revealed areas at high risk

through disease mapping. Additionally, the study showed a non-linear temporal distribution

of measles risk over the study period. Finally, it was shown that ignoring the measurement

errors may yield misleading results. It was recommended that group and geographically tar-

geted intervention, prevention and control strategies can be tailored on the basis these

findings.

Introduction

Measles is among the most transmissible of human infections, caused by a virus which is a

member of genus Morbillivirus of the family of Paramyxoviridae [1] and it is known to infect

any persons, via airborne droplet, who have not previously had the disease or been successfully

immunized [2]. It has an incubation period of 7 to 18 days from exposure to onset of fever [2].

Although the measles vaccine has been available for the past five decades, measles has remained

one of the leading causes of death among children, especially in developing countries with low

capita per incomes and poor health service systems [2, 3]. In communities and areas where the

immunization is not widely spread, more than 90% of people are infected by the age of 20.

Because there is no antiviral treatment for measles virus, vaccination and supportive care, such

as good nutrition and adequate fluid intake, are mainly used to fight measles [4].

The goal of elimination of measles has been reached in countries of the World Health Orga-

nization (WHO)Region of the Americas through measles vaccine and careful measles surveil-

lance. In other WHO regions, the complete elimination goals of measles were set for 2012 and

2015 in Western Pacific and European and Eastern Mediterranean regions, respectively,

whereas Africa and South-East Asia have set their target for 2020 [2]. Consequently, measles

cases are still reported in many countries [5]. Various studies have shown that the distribution

of measles risks vary quite often spatially due to different risk factors such as level of immuni-

zation, susceptible population, and other indicators, many socio-economic [6, 7]. Maps result-

ing from spatio-temporal analysis of variations in measles incidences are often used to identify

changes over time and areas of a region or a country with most disease occurrences in order to

plan for a proper intervention and targeted distribution of aid to most affected areas [7]. They

are indeed regarded as useful tools for geographically targeted interventions, monitoring, and

evaluation of infectious diseases such as measles. However, because of confidentiality issues,

spatio-temporal analyses of disease surveillance data, such as measles data, are often presented

in aggregated form over time or an area. Nevertheless, health decisions might be needed at

lower administrative boundaries from the levels where data were originally collected.

Direct inferences at such levels, which are made on basis of the original level of aggregation,

lead to complications known as a misalignment problem in the statistical literature [8]. More-

over, many researchers do not account for measurement error, despite the awareness of its

presence and potential effects on analysis results [9]. Such studies assume that surrogate vari-

ables are the same as the variables of interest. Research has shown that ignoring measurement
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error may, for example, lead to masking some important features of data, losing power of

hypothesis testing of relationships among variables, and introducing bias in estimates [10].

In this study, we used measles incidence data aggregated to regional level in Namibia dur-

ing 2005–2014 to fit spatio-temporal models, which would help to identify constituencies

(lower level of regions) at high risk, as well as to visualise smoothed patterns of measles risk.

Furthermore, the study aimed to determine factors associated with the distribution and the

dynamics of measles in Namibia while accounting for measurement error that might be pres-

ent in the covariates.

Methods

Settings

Each of the 14 administrative regions in Namibia is sub-divided into constituencies, giving a

total of 121 sub-regions (i.e. constituencies). Fig 1 shows the map of Namibia with14 regions

and its neighbouring countries.

From the 2011 Namibia population and housing census (NPHC), the Namibia population

stands at 2,113,077. Due to presence of the arid Namib Desert, the population densities vary

substantially among the regions, with more than two-thirds of the population estimated to live

in the northern regions, whereas less than one-tenth lives in the south.

Data

The Ministry of Health and Social Services (MoHSS) has granted permission to use measles

data. Additionally, measles data were accessed anonymously.

Data on reported measles cases over contiguous regions in Namibia are available from the

Ministry of Health and Social Services (MoHSS) database for the period 2001 to 2014. Due to

improvement of the Namibian surveillance health system, the period of 2005–2014 provided

consistent information for the entire country, and hence only data from this period were con-

sidered in this study. The database included all suspected measles cases from which confirmed

cases were extracted. A suspected case is any person with fever and maculopapular generalised

rash, and cough or red eyes. A confirmed case is any suspected case with laboratory confirma-

tion or epidemiological links to confirmed cases in any outbreak [2].

In this study, the determination of a measles case followed the WHO standard definition,

which considers a measles case as either a clinically-confirmed case or an epidemiological

linked case or a laboratory confirmed case [2].

The following variables, as identified through literature [6, 7, 11, 12, 13], were considered as

covariates in the model, each measured at constituency level.

i. Number of people aged between 0 and 24 years, which represents the proxy of the size of

susceptible group [6] for each constituency (LST)

ii. Employment rates (EmployR)

iii. Percentages of children aged 12–23 months who received measles vaccine (Vaccination

coverage (Vacc))

iv. Educational attainment of female household population (percentages of women aged 15–

49 years with an educational level more than secondary) (Edu)

v. Percentages of malnourished children under 5 years (Malnou)

vi. Measles cases for each previous year were treated as a determinant factor of the measles

count in the subsequent year (PrevCase)
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Table 1 gives the description of the variables used for this study. Administrative boundary

maps were obtained from the Namibia Statistics Agency (NSA) head office.

Statistical methods

The counts of measles cases were available at regional level, and the aim of this study is to esti-

mate the relative risk of measles at constituency level. In statistical literature, the analysis of

originally collected data on one resolution with the purpose to make inferences on a different

level of spatial resolution is referred to as the misalignment problem [14]. Thus, if the data are

to be analyzed at regional level with the purpose of making decisions at constituency level, a

misalignment is introduced in the analysis. To overcome misalignment, a multi-step approach,

discussed in Ntirampeba et al. [15], was used. Briefly, the multi-step approach fundamentally

Fig 1. Namibian regions (Source:https://en.wikipedia.org/wiki/Regions_of_Namibia).

https://doi.org/10.1371/journal.pone.0201700.g001
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involves two steps. First, a total count of measles cases for constituency i is computed using the

population proportional allocation of cases. Thereafter, the hierarchical smoothing techniques

are used to estimate the relative risk of measles. In this study, the number of measles cases in

the constituency i of region k in year j was computed as yikj ¼
Pikj
Pkj
Ykj, where Ykj is the number

of measles cases in the kth region for year j that contains the constituency i; Pikj is the total pop-

ulation of constituency i in the region k during year j; and Pkj is the total population of the

region k in year j.
A Poisson hierarchical regression model was used to estimate the spatial and temporal

dynamic of measles in Namibia. Thus, the following distribution for the computed measles

cases was specified:

yikjjmikj � PoissonðEikjmikjÞ; ð1Þ

where Eikj is the expected number of disease cases for constituency i in the kth region for year j.
λ is assumed to be the 2014 Namibia annualised measles incidence per 100,000 inhabitants

such that Eikj = λPikj, and mikj is the relative risk for contracting the disease in the constituency

i of region k during the year j.
The focus in the analysis is on the form of the regression model for the log relative risk mikj,

which is specified as a function of fixed effects (i.e. covariates, where some of the covariates

might not be directly observed, in the constituency i for year j), spatial random effects, tempo-

ral effects, and spatio-temporal interaction effects.

Fixed effects modelling. The fixed effects were modeled as a linear combination of covar-

iates available in constituencies for each year. That is XT
ikjb, where for fixed effect parameters β,

a weakly informative Gaussian prior b � Nð0; t� 1
b

IÞ with small precision tbði:e: t2
b
¼ 0:0001Þ

on identity matrix was assumed. By the rule of thumb, a covariate is significantly associated

with the measles risk if the credible interval (CI) corresponding to its fixed effects does not

contain zero.

Spatial random effects modelling. The spatial trends were modelled as a sum of constitu-

encies’ heterogeneities and spatial clustering effects. For the unstructured spatial random

effects, ;ikj, an independent and identically distributed (IID) latent model was assumed such

that is ;ikj * N(0,1/τ;). These spatial random effects control globally the extra- variability in

log relative risks. Under this model, the effect ;ikj for each constituency is independent of all

other constituencies. For the structured spatial random effects, ωikj, we assumed a Besag-York-

Mollie specification [16] such that ωikj is modeled using an intrinsic conditional autoregressive

Table 1. Description of variables considered for the analysis.

Description Min,

Max

Source

Number of people aged between 0 and 24 years 2691;

26605

2011 NPHC

Employment rates 28; 92.9 2011 NPHC

Percentages of children aged 12–23 months who received measles

vaccine (Vaccination coverage)

75; 98.7 2013 Namibia Demographic

Health Survey (NDHS)

Percentages of women aged 15–49 years with an educational level

more than secondary

2.7; 24.4 2013 NDHS

Percentages of children under 5 years classified as malnourished

according to anthropometric index of nutritional status (weight-for

age: % below -3SD)

0.9; 5.7 2013 NDHS

Counts of measles for previous year 0; 207 MoHSS

https://doi.org/10.1371/journal.pone.0201700.t001
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structure model (ICAR).

oikjjo_ikj6¼ikj � N
1

Ni

P
ioikj; 1=twi

� �

; ð2Þ

where twi and Ni are the precision parameter and the number of neighbours of constituency i
respectively. Under this latent model, the effect of ωikj for each constituency i is normally dis-

tributed with mean effect equals the average of effects of neighbours of constituency i and twi

precision. With this model, the adjacency matrix was used to characterise the spatial relation-

ships between constituencies. The neighbours are defined in terms of constituencies sharing at

least one point (queen adjacency) and the weight is set to be one if two constituencies are

neighbours, otherwise the weight equals zero [16]. The priors for the precisions of both

unstructured and structured spatial random effects were assumed to follow inverse gamma

distributions (t2
;
� IGð0:0001; 0:0001Þ and t2

wi
� IGð0:0001; 0:0001Þ).

Temporal and time-space interaction effects modelling. The time effects can be mod-

eled using time as a categorical variable through the introduction of dummy variables; using

parametric linear trend or using nonparametric formulations to relax the assumption of linear

trends through random walk models [17, 18]. In this study, we opted to specify the time effects

using a nonparametric formulation for the linear trend through first order random walk and a

Gaussian exchangeable latent model.

gtjgt� 1 � Nðgtþ1; s
2

g
Þ; for t ¼ 1; ð3Þ

and yt � Nð0; 1=tyÞ; ð4Þ

where γt and θt represent structured (through neighborhood structure) and unstructured tem-

poral effects, respectively. An interaction between area and time is modeled by expanding the

temporal effects through addition of an interaction term (δit). This interaction term explains

the differences in time trend for different areas (i.e. constituencies). There exist various specifi-

cations for this term [18, 19]:

Type I interaction assumes that the two unstructured effects ;ikj (spatial effect) and θt (tem-

poral effect) interact. The structure matrix for this type is expressed as follows. Rδ = R;⊗Rθ =

I⊗I = I. Since both ;ikj and θt do not have a spatial or temporal structure, an identically inde-

pendent non-informative normal model for δit is used.

That is dit � Nð0; s2

d
Þ with s2

d
¼ 0:0001: ð5Þ

In type II interaction, the structured temporal main effect γt and the unstructured spatial

effect ;ikj interact. The interaction structure matrix is given by

Rd ¼ R;
Rg; ð6Þ

where R; = I and Rγ is a neighborhood structure that may be defined through a random walk.

Thus, a random walk across time for each area independently from all other areas is assumed

for δit. This implies ith element (i.e. ith area parameter) of the vector parameter {δi1,. . .,δiT} has

an autoregressive structure on the time component, which is independent from the ones of

other elements.

For type III interaction, the interacting parameters are the unstructured temporal effect θt
and the structured main spatial effect ωikj. The structure matrix is written as

Rd ¼ Ry
Ro; ð7Þ
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where Rθ = I and Rω is a CAR neighborhood structure. Thus, the parameters of the ith time

point {δi1,. . .,δiT} have a spatial structure independent from the other points.

The type IV interaction structure combines spatial and temporal structured effects (i.e. ωikj
and γt). The resulting interaction matrix can be written as

Rd ¼ Ry
Ro: ð8Þ

This is believed to be the most complex interaction structure [20]. It has been argued that

the identifiability of highly structured interaction, such as type III and type IV, from the main

effects may be doubtful [21]. Therefore, this study will explore only the type I and type II inter-

action structures.

By combining fixed effects, spatial effects, temporal effects, and space-time interaction

effects together, we obtained the regression model for the log relative risk as shown:

logðmikjÞ ¼ logðEikjÞ þ X
T
ikjbþ ;ikj þ oikj þ gt þ yt þ dit: ð9Þ

Measurement error models. Fundamentally, the specification of a measurement error

model is based on an assumption about the distribution of the observed values given the true

values or vice versa [9]. For the classical measurement error model, the distribution of the

observed values given the true values is specified, while for the latter specification is referred to

as Berkson error model. That is, the classical measurement error model is expressed as (W =

w|x), while the Berkson error model is given by P(X = x|w), where X and W are the true and

observed covariates, respectively. In this study, the errors in covariates were modeled using an

additive non-differential classical measurement error model with respect to the response vari-

able. In other words, the measurement error model does not depend on the value of the

response variable and w|x = x + u. In this case, w are observed values of the true but unob-

served covariates X (i.e. Ws are surrogate of Xs). The error term u assumed a Gaussian

prior with a zero mean and a covariance matrix C = τuD (i.e. u * N(0,C)), where tu ðt
2
u �

loggammað1; 0:0005ÞÞ is the precision of the error term and D is a diagonal matrix of fixed

scaling values (di) of the observational precision.

By including the error model in the Eq (9), the regression model for the log relative risk

becomes

logðmikjÞ ¼ logðEikjÞ þ X
T
ikjbþW

T
ikjb
�
þ ;ikj þ oikj þ gt þ yt þ dit; ð10Þ

where WT
ikj ¼ X�Tikj þ u is a vector of adjusted mismeasured covariates obtained by applying

classical measurement error modelling on mismeasured covariates ðX�Tikj Þ, β
� is the vector of

parameters corresponding to WT
ikj. Details on measurement error models can be found else-

where [9, 22].

Analysis of measles data. A preliminary descriptive analysis of confirmed measles

cases was performed to gain insight about the shifts of measles yearly incidence (Fig 1).

Poisson models (Table 2) were built in Bayesian modelling framework using R-INLA (R-

version 3.4.3, Integrated Nested Laplace Approximation -INLA). The first three models

(Table 2) assumed spatial random components as the only sources of variability in the risk

of measles. In these models, unstructured and structured random effects were considered.

For unstructured random effects model (Model 1), the spatial trend includes IID random

effects. Two models for structured random effect for constituencies were considered.

Model 2 assumes for each region a spatial random effect that is distributed as a function of

the mean effect of regions in neighbourhood (ICAR). Model 3 is convolution model that
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assumes for each region two components of random effect, namely, specific region ran-

dom effect (specific region heterogeneity) and structured random effect (random effect

due to clustering). These models were extended by adding covariates and spatio-temporal

component in parametric formulation fashion that assumes linearity in the global time

effect and the differential trend for constituency and time (Models 4–6). To relax the

assumption of linearity in constituency-time component, a non-parametric modelling

approach (model 7–14 in Table 2) was employed. For space-time interaction, this study

explored only the type I and type II interaction structures.

In addition, error models were used for some variables (i.e. Percentages of children under

age 5 classified as malnourished according to anthropometric index of nutritional status

(weight-for age: % below -3SD); and Employment rates) in order to correct for mismeasuring.

All models fitted in this study are summarised in Table 2.

The best model was selected using the combination of the deviance information criterion

(DIC) given by DIC = D + 2p, where D is the deviance evaluated at the posterior mean and p
the effective number of parameters in the model, and the statistic ∑log(CPO) (where CPO is a

conditional predictive ordinate). The rule of thumb indicates that the best model is one with

the smallest value of DIC and a larger value of ∑log(CPO) denotes a better fitting. The sum-

mary statistics of the best model is presented in Table 3.

Table 2. Summary of models fitted to measles data for Namibia and their corresponding deviance information criterion (DIC) and sum of log of conditional pre-

dictive ordinate (SumLog(CPO)). ICAR—intrinsic conditional autoregressive structure model, CAR—Conditional Autoregressive, IID—identically distributed.

Poisson model Spatial component Fixed effect D p DIC SumLog(CPO)

1 ICAR None 14617.09 94.73 14806.55 -7558.995

2 CAR None 14616.81 94.96 14806.73 -7559.032

3 IID None 14613.48 99.71 14812.9 -7577.505

4 ICAR All covariates (parametric model) 13173.53 152.61 13478.75 -7104.421

5 CAR All covariates (parametric model) 13173.23 152.76 13478.75 -7104.024

6 IID All covariates (parametric model) 13170.76 166.18 13503.12 -7166.587

7 ICAR All covariates (non-parametric model) 7532.17 104.02 7740.21 -4297.502

8 CAR All covariates (non-parametric model) 7531.79 104.20 7740.19 -4298.066

9 CAR All covariates +time-space interaction (Type I) 3765.80 617.93 5001.66 -2853.179

10 ICAR All covariates + time-space interaction (Type I) 3765.58 618.01 5001.60 -2852.438

11 CAR All covariates + time-space interaction (Type I) + measurement error models 3765.35 617.16 4999.69 -2850.238

12 ICAR All covariates + time-space interaction (Type I) + measurement error model 3748.53 629.33 5007.19 -2893.197

13 CAR Covariates + time-space interaction (Type II) + measurement error models 3766.41 617.16 5000.73 -2835.843

14 ICAR Covariates + time-space interaction (Type II) + measurement error models 3782.19 608.52 4999.23 -2831.314

https://doi.org/10.1371/journal.pone.0201700.t002

Table 3. Summary statistics: Mean, standard deviation and 95% credible interval of the posterior distribution of

the fixed effects for Model 11.

Variable Mean Std dev 95% CI

Percent of women aged 15–49 with an educational level more than secondary -0.0646 0.0145 -0.0935, -0.0366

Counts of measles for previous year 0.1020 0.0440 0.0178, 0.1908

Employment rates -0.0561 0.0023 -0.0616, -0.0513

Number of people aged between 0 and 24 years 0.8487 0.0727 0.7081, 0.9934

Percentages of children age 12–23 months who received measles vaccine -0.0379 0.0147 -0.0677, -0.0103

Percent of children under age 5 classified as malnourished 0.0643 0.0285 0.0019, 0.1128

https://doi.org/10.1371/journal.pone.0201700.t003
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Results

Exploratory results

A total of 9923 cases were recorded for the period 2005–2014 in the 13 administrative regions

in Namibia. Fig 2 presents the spatio-temporal distribution of measles incidence rates in

Namibia for the period 2005–2014. The regional distributions of measles incidence rates for

each region are shown. Fig 2 shows a great variation in measles occurrence over the 13 regions.

In four regions, namely Kavango, Khomas, Kunene, and Ohangwena, high measles incidence

rates were observed through the study period. Fig 3(A) shows that constituency in Kunene and

Khomas regions had vaccination coverage between 60% and 80%, whereas for constituencies

in Ohangwena and Kavango regions the vaccination coverage was between 50% and 80%.

From Fig 3(B), it was observed that most of the constituencies in Okavango, Kunene, Khomas,

and Ohangwena are highly populated (i.e. between 30000 and 50000 inhabitants). Fig 3(C)

indicates that most of the constituencies had low percentages of women aged between 15–49

years with an educational level more than secondary. It also shows that constituencies in the

northern part of Namibia had less than 10% of women aged between 15–49 years had attained

more than secondary education level.

Fig 2. Measles incidence rates (number of cases per 1000 inhabitants) in Namibia for during 2005–2014.

https://doi.org/10.1371/journal.pone.0201700.g002

Fig 3. Maps of some of the key input variables; (a) map of vaccination coverage at constituency level (in percentage, obtained from 2013 Demographic Health Survey

(DHS)), (b) map of population at constituency level (obtained from 2011 Population and Housing Census), and (c) map of percentage of women aged 15–49 with an

educational level more than secondary (2013 DHS).

https://doi.org/10.1371/journal.pone.0201700.g003
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Fixed effects

The fixed effects allow identifying which covariates are significantly associated with an increase

or decrease in measles risks. Consequently, the public health efforts can be directed towards

improving and or reinforcing areas in which health care is more needed.

Based on DIC values, Model 9, which included all covariates, unstructured and structured

random effects, and time-area interaction term (Type I), emerged the best fit among fitted

naïve models for this data (Table 2). By including error models in covariates, “the number of

people aged between 0 and 24 years (LST)” and “the percent of children under 5 years classi-

fied as malnourished”, the model (Model 11, 12, and 13) performed relatively better than

Model 9. However, these three models performed equally well as their DIC values were almost

similar. To compare these competitive models in terms of the prediction performance, the sta-

tistic ∑log(CPO) is commonly used [17]. Larger value of the quantity indicates better model fit.

From Table 2, it can be noted that Model 11 has a larger value of ∑log(CPO). Fig 4 shows that

the predictions are very close to the observed values. Also, it can be noted from Fig 5 that most

Fig 4. Scatterplot of the posterior mean for the predictive distributions against observed values (measles cases).

https://doi.org/10.1371/journal.pone.0201700.g004
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of the p-values are in the middle range, while very few p-values are at either side of the distri-

bution, which suggests again that the model fits data rationally well. Therefore, this model rep-

resents a better fitting. Thus, we presented in Table 3 a summary of results of Model 11 only.

Based on the 95% credible interval, the percent of women aged 15–49 years with an educa-

tional level more than secondary (Edu), the number of people aged between 0 and 24 years

(LST), percentages of children aged 12–23 months who received measles vaccine (Vacc), and

the counts of measles for previous year (PrevCase), the employment rates, and the percentages

of children under 5 years classified as malnourished had significant effects on measles risks.

For example, an increase of 1% in the percent of women aged 15–49 years with an educational

level more than secondary implies a decrease of approximately 6% in the risk of measles. Also,

an increase in 1 unit the log of the number of people aged between 0 and 24 years is associated

with an increase of around 133.7% in the risk of measles.

Spatio-temporal distribution of measles relative risks

Fig 6 shows the maps of the distribution of posterior means of structured random effects and

the significant observed structured random effects. From Fig 6(A), constituencies in Omusati,

Fig 5. Histogram of the posterior predictive p-values.

https://doi.org/10.1371/journal.pone.0201700.g005
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Caprivi, Omaheke, and Omaruru regions were negatively associated with measles risks (i.e.

they have negative random effects). For Fig 6(B), three different numbers were used to distin-

guish significant observed random effects. White denoted by (-1) indicated significant negative

random effects, grey denoted (0) indicated non-significant random effects, and black denoted

by (1) represented significant positive random effects. From this figure, it was confirmed that

the constituencies in Omusati, Caprivi, Omaheke, part of Kavango, and Omaruru regions had

significant negative random effects on measles. In order words, the constituencies in those

regions were inversely significantly associated with measles risks.

Fig 7 shows the distribution of posterior probabilities of constituencies with specific relative

risks (SRR) exceeding one after adjusting for covariates. In Kunene region, the Opuwo, Khor-

ixas, and Outjo constituencies had higher measles risks. There was a higher measles risk in

most of constituencies in Ohangwena region. In Otjozondjupa region, Okahandja and Otjo-

warongo constituencies had moderate probabilities to be classified as areas at high risk of mea-

sles. For Khomas regions, the constituencies in Windhoek Urban had very high measles risk

compared to Windhoek rural constituency. All Hardap region’s constituencies had high prob-

abilities of relative risks exceeding one. The probability that the measles relative risk exceeds

one was close to zero for the constituencies in Omusati, Omaheke, and Caprivi regions.

Fig 6. Distribution of spatial random effects (Model 11); (a) map of means of the posterior distribution of the spatial structured random effect (in Model 11), (b) Map of

significant means of the posterior distribution of the spatial structured random effect in Model 11.

https://doi.org/10.1371/journal.pone.0201700.g006
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Fig 8 shows the temporal behaviour in the measles risk in Namibia between 2005 and 2014

and it concurs with temporal trend observed in measles data before smoothing techniques

were applied (Fig 2). Although there were some fluctuations in the risk of measles as the poste-

rior means of temporal effects (when exponentiated) changed over time, it is noted that the

measles risk followed an upwards trend with 2009, 2010,and 2014 as remarkable peaks in mea-

sles risk (i.e. high posterior medians in temporal effect)(Fig 7).

Discussion

The main aim in this study was to use count data that are available at regional level for the

period 2005–2014 to fit an appropriate spatio-temporal model that can be used for inference at

lower level (constituency level). Thus, the study had to deal with a problem of spatial misalign-

ment. To deal with this problem, a multi-step approach was used, which was fundamentally

based on the combination of the population proportional allocation of cases for a non-uni-

formly distributed population and the hierarchical smoothing techniques. The results of this

study are consistent with previous studies that showed spatial and temporal variability in

Fig 7. Distribution of constituency specific posterior probabilities p(SRR> 1|y) in Model 11. SRR: specific relative risk.

https://doi.org/10.1371/journal.pone.0201700.g007
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measles risk [6, 7, 8]. The covariates used in this study, which include percentage of women

aged 15–49 years with an educational level more than secondary, vaccination coverage, per-

centage of children aged under 5 years classified as malnourished, employment rates, and

number of people aged between 0 and 24 years were only available from 2013 NDHS and 2011

NPHC. Thus, the study further aimed at correcting measurement errors in covariates asyearly

data were unavailable for these covariates. It would have been restrictive to assume that covari-

ates remained constant over time. Introducing classical measurement error models in these

two covariates improved the spatio-temporal ecological regression model. Model 11, which

considered measurement error models, performed better than the best model (i.e. Model 9)

among the naïve models (i.e. models that ignored errors in covariates). Also, results from

Model 9 indicated that “percentage of children under 5 years classified as malnourished” was

not statistically significantly associated with the risk of measles (CI: -0.0609, 0.0772). However,

when errors were accounted for in Model 11, this variable became significant (CI: 0.0019,

0.1128). This could be an indication that the dynamic of employment and nutrition might

have changed during the period 2005–2014. In addition, this result confirmed the known fact

that the common practice of not accounting for measurement error by the majority of

researchers may yield misleading results [9, 10].

This study identified the number of people aged between 0 and 24 years, and the counts of

measles for previous year as significant predictors of the measles risks. These findings are simi-

lar to the results of other studies conducted on other contagious diseases [6, 7, 11, 19] and

Fig 8. Boxplots of exponentiated posterior medians of temporal effects of measles relative risks in Namibia over the period 2005–2014.

https://doi.org/10.1371/journal.pone.0201700.g008
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demonstrated that the proxy of social mixing and the existence of pools of the disease are criti-

cal at sustaining and continuing transmission to the subsequent years in Namibia.

In this study, the percentages of women aged 15–49 years with an educational level more

than secondary was found to be inversely associated with measles risk. This could be explained

by the fact that educated mothers have positive attitude towards health-seeking behaviour [23,

24]. It is established that the attitude towards health seeking is one among other reasons of

missing measles vaccination and underreporting of measles cases [11, 12].

As expected, we found that the vaccination coverage among of children aged 12–23 months

are inversely associated with measles relative risks. It is therefore vital for Namibia to maintain

existing policies (e.g. supplementary vaccination campaign every three years or in case of mea-

sles outbreaks). Furthermore, Namibia may need to improve the delivery of measles vaccines

by for example borrowing and improving the standard protocol of systematic reminder/recall

interventions by telephone or post, which has been proven to be an effective strategy in

increasing measles vaccination coverage [25].

The study also found the employment rate and percentage of malnourished children under

5 years to be associated with measles risks. Lower employment rates are commonly associated

with poor social conditions within households, which may reflect heightened close contacts of

infected with susceptible vulnerable kids due to low nutritional. This finding concurs with

results from the study by Kumar et al. [26].

As expected, the results showed that the constituencies in Ohangwena region were at high

risk. This result is consistent with previous work by Ntirampeba et al. [15]. One possible expla-

nation is that the free movement to and from Angola may enhance close contact with suscepti-

ble individuals. These findings could be useful in designing strategies and interventions such

as regular border checks and targeted vaccination in high risk or along all border areas. In

addition to frequent movements of populations along Namibian and Angolan borders, the

high measles risk observed in Opuwo, Khorixas, and Outjo constituencies could be partly

explained by low vaccination coverage (62.5%, 77.14%, and 85.2% respectively). Although

Omusati region shares borders with Angola and two regions with high risk of measles (Kunene

and Ohangwena), this region is among other regions that include Caprivi, Omaheke and part

of Kavango found to have very low probability to be classified as areas at high risk. Further

studies should be conducted to identify what could be the driving factors of low measles risk in

these regions especially in Omusati, which seems to be an island among troubled areas. Fur-

thermore, the study showed that Windhoek urban constituencies and all constituencies of

Hardap had very high specific relative risks of measles.

A few limitations of this study were noted. First, the covariates were assumed to be constant

over time. This assumption was dictated by the unavailability of yearly data for the covariates.

Nonetheless, error measurement models used in this study may have reduced the biasedness

in parameter estimates. Second, the quality and completeness of measles data could have been

affected by the inequality in the distribution of health facilities across Namibia, resulting in

under- reporting and miss-reporting of measles data.

Third, although the administrative boundaries of Namibia have changed over time

(Kavango split into East and West Kavango in 2013), the study has used the 2011 administra-

tive boundaries (old) because they match with variables obtained 2011 Namibia population

and housing census.

Conclusions

In conclusion, regional aggregated data were used to build a spatio-temporal model that is use-

ful for constituency level inferences through a multi-step approach, while accounting for
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measurement errors in covariates. It was pointed out that there were significant variations in

both spatial and temporal distribution of the measles occurrence in Namibia. Also, the study

showed factors associated with measles risks in Namibia.

On the basis of the findings of this study, we recommend the following.

Firstly, the health stakeholders should increase the vaccination coverage of susceptible

individuals especially in group of people aged between 0 and 24 years. Particularly, a sys-

tematical monitoring of vaccination of children aged less than five years living in poor

households may help reducing the risk of measles persistence. In addition, enhancing

health promotion among mothers through information, education and communication

strategies should be used to improve vaccination coverage. Secondly, political leaders and

stakeholders in the health sector should be able to plan and design prevention and control

strategies, and make important policy decisions particularly in geographically targeted

constituencies (e.g. Epupa, Kamanjab, Khorixas, Opuwo, Otjo and Sesfontein in Kunene

region; and Eenhana, Endoba, Engela in Ohangwena region). Regular surveillance of pop-

ulation movement may assist in controlling the risk of the disease, mainly regular border

checks and targeted vaccination of children in the areas identified as high risk or along all

border areas.
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