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Abstract: This study was performed to assess the effects of dietary aflatoxin B1 (AFB1) on the
growth, antioxidant and immune response, digestive enzyme activities, and intestinal morphology
of Lateolabrax maculatus during a 56-day feeding trial. Four diets were formulated including 0, 0.1,
0.5, and 1.0 mg/kg of AFB1. Each diet was randomly assigned to 3 fish tanks with 40 fish per
tank. Results indicated that the fish’s final body weight, weight gain rate, specific growth rate,
feed intake, condition factor, viscerosomatic index, hepatosomatic index, and intestinesomatic index
decreased (p < 0.01) as dietary AFB1 increased. AFB1 levels in diets increased (p < 0.05) serum
total antioxidant capacity (TAOC), superoxide (SOD), catalase, malondialdehyde (MDA), alkaline
phosphatase (AKP), and lysozyme (LZM), and increased (p < 0.05) the TAOC, SOD, MDA, AKP,
LZM, and immunoglobulin M in the livers of the fish. Dietary AFB1 decreased (p < 0.05) intestinal
trypsin activity and induced intestinal injury. In summary, dietary AFB1 up to 1.0 mg/kg was toxic
to L. maculatus as judged by reduced growth, enhanced antioxidant and immune response, decreased
intestinal trypsin activity, and impaired intestinal morphology.

Keywords: aflatoxin B1; toxicity; Lateolabrax maculatus

Key Contribution: The present study reports the comprehensive response of Lateolabrax maculatus to
dietary AFB1. These results provide a reference for further studies on AFB1 in aquaculture.

1. Introduction

Aflatoxin B1 (AFB1) is mainly produced by Aspergillus flavus, which exists in some
raw feed materials for animal use, such as maize, peanut, and wheat flour [1]. AFB1 is a
major challenge to aquaculture due to its high toxicity to aquatic animals and great threat
to food safety. The biotransformation of AFB1 mainly occurs in the liver and intestine [2].
Intake may induce an inflammatory response, interrupt intestinal integrity, and eventually
inhibit the growth of fish [3,4]. At present, research in this field has focused mainly on
the effects of dietary AFB1 on growth, bioaccumulation, muscle quality, immune response,
hematology, and hepatic function indices of aquatic animals [5–18]. Little information is
available that evaluates the effect of AFB1 on the health of the gut, the largest digestive and
immune organ in the animal body. Strengthening research in this area can provide a better
understanding of the mechanism for AFB1-induced changes in the growth and intestinal
health of aquatic animals. The biological effects AFB1 has on aquatic animals are directly
associated with the animal species and the dietary concentrations of AFB1 [5]. The effects of
AFB1 on the growth and health of tilapia (Oreochromis niloticus × O. aureus) [6], grass carp
(Ctenopharyngodon idella) [7], common carp (Cyprinus carpio) [8], channel catfish [9], Clarias
batrachus [10], rainbow trout (Oncorhynchus mykiss) [4,11], Sciaenos ocedatas [12], Litopanaeus
vannamei [13–15], turbot (Scophthalmus maximus) [16], gibel carp [17], and Indian carp (Labeo
rohita) [18] have been assessed. However, information is rare regarding Lateolabrax maculatus,
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a popular carnivorous fish in the southern region of China in recent years, known for its
rapid growth and superb taste [19]. In 2020, the nationwide fish yield exceeded 160,000 tons,
according to the 2020 China Fishery Statistical Yearbook. Previous studies documented that
Litopanaeus vannamei and gibel carp (Carassius auratus gibelio) could tolerate dietary AFB1
up to 2 mg/kg [13] and 0.5 mg/kg [17], respectively. Other species tolerated dietary AFB1
ranging from 0.1 to 2.5 mg/kg [6,7,9]. This had not yet been evaluated for L. maculatus,
however. The present study was conducted to assess the effects of dietary AFB1 on growth,
antioxidant and immune response, digestive enzyme activities, and intestinal morphology of
L. maculatus.

2. Results
2.1. Growth Performance

Increasing dietary AFB1 from 0 to 1.0 mg/kg linearly and quadratically decreased
(p < 0.01) the final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR),
and feed intake (FI), but did not alter the feed coefficient (FC) or survival rate (SR) of the fish
(p > 0.05) (Table 1). The condition factor (CF), viscerosomatic index (VSI), and intestineso-
matic index (ISI) linearly decreased (p < 0.05), and the hepatosomatic index (HIS) linearly
and quadratically decreased (p < 0.05) as dietary AFB1 increased.

Table 1. Effects of AFB1 on survival and growth of L. maculatus.

Items 3 Diets 1
SEM P

Polynomial Contrasts 2

G0 G0.1 G0.5 G1.0 L Q

SR, % 86.67 89.52 92.38 90.48 1.38 0.591 0.302 0.435
FBW, g 45.56 a 45.31 a 41.34 a 26.70 b 2.41 <0.001 <0.001 0.002

WGR, % 1464.43 a 1455.98 a 1323.00 a 818.07 b 82.76 <0.001 <0.001 0.001
SGR, %/d 4.10 a 4.09 a 3.96 a 3.31 b 0.10 <0.001 <0.001 <0.001
FI, g/fish 48.52 a 46.54 a,b 43.50 b 27.83 c 2.50 <0.001 <0.001 <0.001

FC 1.14 1.10 1.13 1.17 0.01 0.301 0.258 0.154
CF, g/cm3 1.65 a 1.62 a,b 1.56 b 1.57 b 0.01 0.036 0.007 0.581

VSI, % 9.27 a 8.29 b 7.55 c 6.77 d 0.15 <0.001 <0.001 0.633
HSI, % 0.84 a 0.62 b 0.54 b 0.56 b 0.03 0.001 0.001 0.039
ISI, % 0.63 a 0.64 a 0.51 b 0.53 b 0.01 0.004 0.040 0.148

1 G0–G1.0, basal diet added 0, 0.1, 0.5 and 1.0 mg/kg of AFB1. 2 L, linear effect; Q, quadratic effect. 3 SR, survival rate; FBW, final body
weight; WGR, weight gain rate; SGR, specific growth rate; FI, feed intake; FC, feed coefficient; CF, condition factor; VSI, viscerosomatic
index; HSI, hepatosomatic index; ISI, intestinesomatic index. a,b,c,d Different letters within a row denote difference (p < 0.05).

2.2. Antioxidant and Immune Response

The serum total antioxidant capacity (TAOC), superoxide dismutase (SOD), and
catalase (CAT) linearly increased (p < 0.05), and malondialdehyde (MDA) linearly and
quadratically increased (p < 0.01) as dietary AFB1 increased and reached significance at the
level of 1.0 mg/kg (Table 2).

Table 2. Effects of AFB1 on the antioxidant and immune response of L. maculatus.

Items 3 Diets 1
SEM P

Polynomial
Contrasts 2

G0 G0.1 G0.5 G1.0 L Q

Serum antioxidant
TAOC, U/mL 4.12 b 6.24 a,b 5.91 a,b 7.26 a 0.46 0.082 0.023 0.609
SOD, U/mL 153.55 b 163.96 a,b 161.62 a,b 171.97 a 2.82 0.126 0.026 0.995
CAT, U/mL 11.55 b 14.51 a,b 15.36 a,b 19.96 a 1.28 0.115 0.025 0.707
GPx, U/mL 363.19 410.42 438.68 421.97 15.24 0.374 0.162 0.314

MDA, nmol/mL 3.68 b 2.76 b 3.32 b 7.15 a 0.58 0.003 0.003 0.004
Serum immune

AKP, U/L 275.87 c 283.95 c 382.74 b 507.73 a 29.46 <0.001 <0.001 0.017
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Table 2. Cont.

Items 3 Diets 1
SEM P

Polynomial
Contrasts 2

G0 G0.1 G0.5 G1.0 L Q

LZM, U/mL 308.00 b 441.26 a 471.37 a 481.59 a 25.46 0.023 0.012 0.108
Liver antioxidant

TAOC, U/mg prot 0.37 b 0.40 b 0.66 a 0.70 a 0.07 0.148 0.038 0.941
SOD, U/mg prot 229.56 b 264.53 a,b 270.47 a,b 310.43 a 11.00 0.044 0.037 0.047
CAT, U/mg prot 47.82 46.60 50.57 49.78 1.85 0.903 0.614 0.960
GPx, U/mg prot 30.39 27.86 26.12 34.55 1.57 0.269 0.434 0.097

MDA, nmol/mg prot 0.70 b 0.74 b 1.94 a 2.68 a 0.28 0.002 <0.001 0.237
Liver immune

AKP, U/mg prot 34.31 b 40.57 b 54.21 b 92.78 a 9.01 0.003 0.001 0.052
LZM, U/mg prot 10.34 b 11.37 b 16.29 b 25.39 a 2.01 0.004 0.001 0.097
IgM, µg/mg prot 31.18 b 39.63 a,b 48.99 a,b 64.33 a 5.44 0.153 0.019 0.239
C3, µg/mg prot 26.68 25.95 27.92 32.66 1.46 0.404 0.160 0.370

1 G0–G1.0, basal diet added 0, 0.1, 0.5 and 1.0 mg/kg of AFB1. 2 L, linear effect; Q, quadratic effect. 3 TAOC, total antioxidant capacity; SOD,
superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; MDA, malondialdehyde; AKP, alkaline phosphatase; LZM, lysozyme;
IgM, immunoglobulin M; C3, complement C3. a,b,c Different letters within a row denote difference (p < 0.05).

Increased dietary AFB1 linearly and quadratically increased (p < 0.05) serum alka-
line phosphatase (AKP) and linearly increased (p < 0.05) lysozyme (LZM). The serum
glutathione peroxidase (GPx) was similar among groups (p > 0.05).

The liver TAOC and MDA were linearly increased (p < 0.05), and SOD was linearly
and quadratically increased (p < 0.05) as dietary AFB1 increased.

Increased dietary AFB1 linearly increased (p < 0.05) liver AKP, LZM, and immunoglob-
ulin M (IgM). Dietary treatment did not alter the CAT, GPx, or complement C3 (C3) in the
liver of fish (p > 0.05).

2.3. Intestinal Digestive Enzyme Activities and Histological Appearance

The intestinal trypsin activity was lower (p < 0.05) in G0.1 and G0.5 than in G0, and
was lower (p < 0.05) in G1.0 than in other groups (Figure 1). The activities of lipase and
amylase were similar among groups (p > 0.05).

Figure 1. Cont.



Toxins 2021, 13, 844 4 of 10

Figure 1. Effects of AFB1 on the intestinal digestive enzyme activities ((a), lipase; (b), amylase;
(c), trypsin) of L. maculatus. G0–G1.0, basal diet added 0, 0.1, 0.5 and1.0 mg/kg of AFB1. * p < 0.05
compared to G0. # p < 0.05 compared to G0.1.

The intestinal villus in G0 was most regular in shape (Figure 2), whereas the villus
in G0.1, G0.5, and G1.0 had different degrees of deformation as reflected by the irregular
arrangement of the villus.

Figure 2. Effects of AFB1 on the intestinal histological appearance (×100) of L. maculatus. G0–G1.0,
basal diet added 0, 0.1, 0.5 and 1.0 mg/kg of AFB1.

3. Discussion
3.1. Effect of AFB1 on the Growth of L. maculatus

The similar SR of fish among the groups suggested that dietary AFB1 up to 1.0 mg/kg
did not alter the survival of L. maculatus. However, the decreased FI, WGR, and SGR
as dietary AFB1 increased suggests that AFB1 adversely impacts the palatability of feed
and the growth of L. maculatus. To the best of our knowledge, this is the first study
assessing the effects of dietary AFB1 on the growth of L. maculatus. Similar results were



Toxins 2021, 13, 844 5 of 10

also reported in tilapia [6], grass carp [7], common carp [8], Pelteobagrus fulvidraco [20],
channel catfish [9], Clarias batrachus [10], rainbow trout [11], Litopanaeus vannamei [13], and
gibel carp [17]. Growth inhibition is regarded as one of the main toxic effects of AFB1 on
aquatic animals [1]. It has been reported that dietary AFB1 inhibits the growth of gibel
carp by inducing liver function impairment and metabolic disorders [17]. In this study,
the decreased hepatosomatic index, along with the declined intestinesomatic index of L.
maculatus as dietary AFB1 increased, suggests that AFB1 may cause dysorganoplasia of the
liver and intestine since AFB1 can induce degeneration and hepatocyte necrosis [21] and
weaken the intestinal barrier function [22]. Using growth performance as the evaluation
index, the recommended inclusion level of AFB1 in the L. maculatus diet is less than
1.0 mg/kg.

3.2. Effects of AFB1 on the Antioxidant and Immune Response of L. maculatus

The assessment of serum antioxidant and immune parameters can provide a better
understanding of the mechanism for AFB1-induced damage in the growth and health
of L. maculatus. In this study, the increased TAOC in either serum or the liver indicated
that dietary AFB1 up to 1.0 mg/kg enhanced the antioxidant response of L. maculatus.
Antioxidant enzymes including SOD and CAT have been known to play a key role in
alleviating oxidative stress via scavenging reactive oxygen species [23]. The increased SOD
and CAT activities, along with increased MDA concentrations in fish fed AFB1-treated diets
in this study, suggest that dietary AFB1 causes oxidative stress. It has been reported that
SOD could catalyze the dismutation of superoxide anion free radicals and thereby alleviate
cellular DNA damage [24]. CAT protects the cell from oxidative injury by catalyzing
hydrogen peroxide decomposition [25]. MDA is a product of lipid peroxidation, which
can induce oxidative stress [26]. These increased antioxidant parameters in fish fed AFB1-
treated diets are most likely in response to the physiological toxicity or oxidative stress
stimulated by AFB1 rather than an improved antioxidant capacity of the fish. Similar
results were also reported by Wang et al. [14], stating that including 5 mg/kg of AFB1
in Litopenaeus vannamei diets induced dysregulation of the antioxidant system of shrimp
by increasing SOD and CAT activities and MDA concentration during the 30 days of the
AFB1 challenge.

Similarly, the increased immune parameters as reflected by the increased AKP and
LZM in the serum, as well as the increased AKP, LZM, and IgM in the livers of the
fish, suggests that dietary AFB1 enhanced the immune response of L. maculatus. AKP,
an unconventional immune protein, influences inflammation through the regulation of
purinergic signaling [27]. LZM, a critical defense protein in the innate immune system,
plays an important role in defending against microbial invasion [28]. IgM is the first
antibody to respond to an antigen and is an effective defense factor against adverse
stress [29]. Similar results were reported by Li [30], stating that dietary inclusion of
10 mg/kg and 50 mg/kg of AFB1 increased serum LZM and AKP activities and IgM
concentration in Cyprinus carp.

3.3. Effects of AFB1 on Intestinal Digestive Enzyme Activities and the Histological Appearance
of L. maculatus

Intestinal digestive enzymes, including trypsin, lipase, and amylase, are often used
as indicators to assess the digestive process of fish [31] or as feedback related to changes
in feed formula [32]. Although the effects of AFB1 on the intestinal digestion of livestock
have been assessed [33,34], information is rarely available for fish. In this study, dietary
AFB1 significantly decreased intestinal trypsin activity but did not alter the lipase and
amylase activities of L. maculatus. Wang et al. [35] reported that including 55 µg/kg of
AFB1 in Cyprinus carpio diets decreased the apparent digestibility of crude protein owing
to decreased intestinal trypsin activity. A similar result was observed by Ostrowski–
Meissner [36], in that dietary AFB1 of up to 210 µg/kg only decreased the digestibility of
crude protein in the intestines of ducklings. However, including 300 µg/kg of AFB1 in
piglet diets [33] and 80 µg/kg of AFB1 in broiler diets [34] did not affect their intestinal
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digestive enzyme activities. Variations among studies seem to be attributed to species
differences and may result from different concentrations of AFB1 in diets. In this study,
the decreased growth of L. maculatus fed a diet containing 1.0 mg/kg of AFB1 may partly
contribute to the decreased digestibility of crude protein, as reflected by the declined
intestinal trypsin activity. However, crude protein digestibility was not evaluated in the
present study and further research is still needed to confirm this hypothesis.

Changes in histological morphology commonly indicate pathological alteration caused
by feed sources [37]. In this study, the atrophic intestinal villus observed in the AFB1-
treated groups indicated that dietary AFB1 caused intestinal injury to L. maculatus. This
is similar to the report by Wang et al. [38], stating that including 5 mg/kg of AFB1 in
Litopenaeus vannamei diets destroyed the histomorphology of the intestine by reducing the
height of the intestinal villus and completely detaching epithelial cells from the basement
membrane. Others also observed similar results in rainbow trout (Oncorhynchus mykiss) [4]
and common carp [8]. Documentation shows that such histological damage interferes with
the absorption of nutrients [39,40]. In tilapia, the decreased growth performance of the fish
was due to intestinal lesions induced by AFB1 [39]. The intestinal histological damages
induced by AFB1 in this study may also account for the decreased growth performance of
L. maculatus.

4. Conclusions

Dietary AFB1 up to 1.0 mg/kg enhanced antioxidant and immune response, decreased
intestinal trypsin activity, and induced intestinal histological damages in L. maculatus,
eventually reducing the growth performance of the fish. The findings of this study provide
a better understanding of the mechanism for AFB1-induced damages in the growth and
intestinal health of L. maculatus.

5. Materials and Methods
5.1. Experimental Diets

The compositions of the experimental diets are shown in Table 3. Four diets were
prepared including 0 (G0), 0.1 (G0.1), 0.5 (G0.5), and 1.0 (G1.0) mg/kg of AFB1 (from
Aspergillus flavus, Sigma, Canada). Dietary AFB1 concentrations were determined using
liquid chromatography tandem mass spectrometry [41]. The actual AFB1 concentrations in
G0, G0.1, G0.5, and G1.0 were 0, 0.09, 0.47, and 1.02 mg/kg, respectively.

Table 3. Ingredients and proximate composition (g/kg DM) of the basal diet.

Ingredients

Fish meal 180
Casein 180

Soy protein concentrate 160
High gluten 280

Monocalcium phosphate 15
Fish oil 40

Soybean oil 20
Soy lecithin 20

Vitamin premix 1 2
Mineral premix 2 5
Choline chloride 5
Vitamin C ester 1.5

Lysine 0.3
Methionine 2.2

Betaine 5
Zeolite powder 30

Cellulose 54
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Table 3. Cont.

Ingredients

Condensed tannins 0
Proximate composition

Dry matter 912.4
Crude protein 406.7

Crude lipid 109.8
Ash 73.0

1 One kilogram of diet provided: VA, 3230 IU; VD, 1600 IU; VE, 160 mg; VK3, 4 mg; VB1, 4 mg; VB2, 8 mg; VB6,
4.8 mg; VB12, 0.016 mg; nicotinic acid, 28 mg; pantothenic acid calcium, 16 mg; biotin, 0.064 mg; folic acid, 1.285
mg, inositol, 40 mg. 2 One kilogram of diet provided: Ca, 1150 mg; K, 180 mg; Mg, 45 mg; Fe, 50 mg; Zn, 40 mg;
Mn, 9.5 mg; Cu, 7.5 mg; Co, 1.25 mg; I, 0.16 mg; Se, 0.25 mg.

5.2. Feeding Trial

In total, 480 juvenile L. maculatus (initial body weight 2.9 ± 0.02 g) were randomly
distributed into 12 tanks (40 fish per tank), with 3 tanks per diet. Fish were hand-fed to
apparent satiation twice daily at 07:00 and 19:00 for 56 days. During the feeding trial, the
water temperature was 25–27 ◦C, dissolved oxygen was above 6.0 mg/L, pH was 7.4–8.0,
and ammonia and nitrite levels were below 0.01 mg/L. The protocol of this study was
approved by the Animal Care and Use Committee of Guangdong Academy of Agricultural
Sciences (Guangzhou, China).

5.3. Sampling

At the termination of the trial, fish were fasted for 24 h and then anesthetized with
3-aminobenzoic acid ethyl ester methanesulfonate (40 mg/L, Sigma, Oakland, CA, USA)
before sampling. Fish per tank were counted and weighed to analyze the SR, FBW, WGR,
SGR, and FC. Feed intake (FI) was determined as the gravimetric difference between the
feed offered and orts. Six fish in each tank were randomly selected for analysis of CF, VSI,
his, and ISI.

Blood was collected from the caudal veins of six fish in each tank, kept at 25 ◦C for
30 min, and centrifuged at 8000× g for 10 min. Serum was stored at −80 ◦C for subsequent
analysis of serum antioxidant and immune indexes.

The livers of three fish per tank were taken to determine antioxidant and immune indexes.
The intestines of three fish per tank were sampled for trypsin analysis (Ultraviolet

colorimetry), lipase (colorimetry), and amylase (colorimetry) activities using commercial
kits supplied by Nanjing Jiancheng Bioengineering Institute (Nanjing, China). The in-
testines of three other fish per tank were randomly collected for intestinal histological
examination [42].

5.4. Sample Analyses

Proximate compositions of diets, including dry matter, crude protein, crude lipid, and
ash, were measured following the AOAC method [43].

The TAOC (colorimetry), SOD (hydroxylamine method), CAT (ammonium molyb-
date spectrophotometric method), GPx (colorimetry), MDA (thiobarbituric acid method),
AKP (microplate culture method), and LZM (turbidimetry) in the serum and liver were
determined using commercial kits provided by Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). Concentrations of liver IgM and complement C3 were determined by
ELISA kits using immunoturbidimetry (R&D Systems, Minneapolis, MN, USA).

5.5. Calculations and Statistical Analysis

The WGR, FI, FC, SR, SGR, VSI, his, and ISI were calculated by Peng et al. [44].
All data were analyzed by ANOVA and the SAS Mixed procedure system [45] with a

tank as the statistical unit. Polynomial contrasts were used to analyze the linear and/or
quadratic responses to dietary AFB1 concentrations. Differences were compared using
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LSMEANS with the PDIFF option and adjusted with a Tukey test. Significance was
regarded as p < 0.05.
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