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Simple Summary: Multigene germline panel testing data, extended beyond BRCA, in unselected
pancreatic cancer patients, are missing in the Italian population. We aimed here to determine the
prevalence and impact of pathogenic variants in 51 pancreatic cancer candidate susceptibility genes in
an unselected cohort of Italian pancreatic cancer patients. We found that 17% were carriers. CDKN2A
was the most frequently mutated gene, followed by BRCA2 and ATM. Carriers showed better overall
survival. A total of 41% of them had no family history. All CDKN2A carriers were older than 50 years,
and BRCA1/2 carriers were younger than 70 years. CDKN2A and ATM should be added to current
BRCA1/2 testing independently of family history in our population.

Abstract: Multigene germline panel testing is recommended for Pancreatic Cancer (PC) patients;
however, for non-BRCA1/2 genes, the clinical utility is unclear. A comprehensive multi-gene as-
sessment in unselected Italian PC patients is missing. We evaluated the prevalence and impact
of Pathogenic Variants (PV) in 51 PC susceptibility genes in a real-world series of 422 Italian PC
patients unselected for Family History (FH), compared the clinical characteristics and conducted
survival analyses. 17% of patients had PVs (70/422), mainly in BRCA1/2 (4.5%, all <70 y), CDKN2A
(4.5%, all >50 y), ATM (2.1%). PV carriers were younger (64 vs. 67; p = 0.02) and had more frequent
personal/FH of PC, melanoma and breast/ovarian cancer (all p < 0.05). The Overall Survival (OS)
was longer in patients carrying PVs (HR 0.78; p = 0.090), comprising ATM carriers (HR 0.33; p = 0.054).
In the oxaliplatin-treated subset, PV carriers showed better control of the disease, although this was
not statistically significant (67% vs. 56%). CDKN2A, BRCA2 and ATM were the most frequently
altered genes. ATM PVs were positively associated with OS in 41% of PV carriers, 60% of whom
carried CDKN2A, BRCA2 or ATM PVs, had negative FH and would have been missed by traditional
referral. Thus, CDKN2A and ATM should be added to BRCA1/2 testing regardless of FH.

Keywords: pancreatic cancer; genetics; DNA Damage Repair—Homologous Recombination Deficiency
(DDR-HRD); hereditary cancer syndromes; germline; multigene panel testing; BRCA; CDKN2A;
overall survival

1. Introduction

Exocrine Pancreatic Cancer (PC) is one of the deadliest solid tumors, with an average
5-year survival rate of 5–10% [1]. In 2020, 495,773 new cases and 466,003 deaths were
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observed globally (4.5% of all deaths caused by cancer) [2–4], and the incidence is expected
to increase [5]. Pancreatic cancer remains one of the few cancers in which both early
diagnosis and effective therapeutic processes have been lacking in recent years. Surgical
resection is the only potentially curative treatment; however, less than 20% of patients
present with resectable disease at the time of diagnosis [6,7].

Up to 10% of pancreatic cancer patients have familial inheritance [8]: about 3% develop
pancreatic cancer in the context of hereditary cancer syndromes, and another 7% are
classified as Familial Pancreatic Cancer (FPC), a definition attributed to individuals who
have two or more first-degree relatives with pancreatic cancer.

Hereditary pancreatic cancer syndromes include Hereditary Breast and Ovarian Can-
cer syndrome (HBOC), Peutz–Jeghers syndrome (SPJ), Familial Atypical Multiple Mole
Melanoma (FAMMM)/melanoma-pancreatic cancer syndrome, Lynch syndrome (or Hered-
itary Non Polyposis Colorectal Carcinoma [HNPCC]), Familial Adenomatous Polyposis
(FAP), ataxia-telangiectasia (ATM) and Hereditary Pancreatitis (HP). These hereditary
cancer syndromes account for 10–15% of hereditary pancreatic cancers, while a genetic
explanation for most FPCs has yet to be identified [9–11].

However, there are no established screening procedures for high-risk unaffected cases
or for the general population, and it is unclear whether surveillance programs would
provide clinical benefits [12]. Despite this lack of an internationally validated surveillance
program for high-risk individuals, international guidelines (e.g., the National Comprehen-
sive Cancer Network (NCCN) guidelines) recommend multigene germline testing for any
patient with a confirmed PC diagnosis [13].

The implementation of this recommendation is hampered by the uncertainty around
the clinical utility of multigene testing in pancreatic cancer patients, particularly for genes
other than BRCA1/2. Indeed, Multi Gene Panel (MGP) testing results in a high rate of
Pathogenic Variants (PVs), whose spectrum of cancer risks and penetrance is often not
clearly defined. In addition, MGP testing generates high rates of Variants of Unknown
Significance (VUS). These issues concern the medical community, as ambiguous findings
may lead to unnecessary patient anxiety and unwarranted interventions [14].

In addition, the widespread availability of Next-Generation Sequencing (NGS) tech-
nologies, which has resulted in increased detection rate of PVs and VUS through MGP
testing, has led to a paradigm shift also in cancer susceptibility testing [15]. Indeed, rather
than submitting patients to pre-and post-genetic testing sessions, we were called to per-
form mainstream, oncologist-led, family history-independent genetic testing and refer for
genetic counseling only those carrying a germline variant or with a strong clinical suspect
of hereditary cancer syndrome [16].

For these reasons, while previously no more than 10% of PC cases were considered
due to heritable factors, only a subset of which was explained by germline PVs in high-risk
genes, recent sequencing efforts have revealed that as many as 15–20% of PC patients
unselected for Family History (FH) bear PVs [17,18]. The use of MGP testing has also been
implemented to detect druggable PVs (NCCN Guidelines 2022). The results from the POLO
trial [19,20] confirmed the proof of principle of anti-PARP (Poly ADP-ribose polymerase)
efficacy in PC patients harboring germline PVs in the BRCA1/2 genes.

In addition to ovarian [21], breast [22] and prostate cancer patients [23], the efficacy
shown in this study extends the population to be tested and counseled for BRCA PVs to
include PC patients. In addition, some other above mentioned hereditary syndromes asso-
ciated with PC (i.e., Lynch Syndrome) are known to be caused by actionable mutations [24].
However, oncologists tend to focus on cancer treatment and overlook the implications of
genetic counseling and diagnosis of hereditary syndromes.

Thus, the POLO trial’s results have two main implications: (a) the need to select BRCA
germline positive patients for personalized therapy and (b) the need to adequately counsel
them for hereditary cancer syndromes. Of note, the US Food and Drug Administration
(FDA), as well as the European Medicines Agency (EMA), approved Olaparib in this
setting of patients based on POLO trial in 2019 [25] and 2020 [26] respectively, while the
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Italian Medicines Agency (AIFA) recently withdrew Olaparib from the approved treatments
for PCs.

The POLO study also confirmed the well-known platinum sensitivity of patients
carrying germline PVs causing DNA Damage Repair—Homologous Recombination Defi-
ciency (DDR-HRD), such as BRCA1/2 [27]. However, a comprehensive analysis by MGP in
unselected Italian PC patients is lacking. Preliminary data from different cohorts of unse-
lected Italian PC patients focusing on CDKN2A and BRCA1/2 showed a high prevalence of
CDKN2A PVs, regardless of familial status [28] and of BRCA1/2 PVs—these latter being
observed only in patients < 74 y [29].

This study aimed to evaluate the prevalence and impact on outcomes of PVs in 51 PC
susceptibility genes in a retrospective/prospective series of 422 Italian PC patients recruited
at our Institution and unselected for FH.

2. Materials and Methods
2.1. Patients Selection and Characteristic

From 2020 to 2022, we recruited a consecutive series of 111 PC patients referred to
our center for molecular analysis. Moreover, we retrospectively included an additional
series of 311 non-consecutive PC patients who underwent molecular analysis at our center.
Patients with neuroendocrine pancreatic tumors were excluded. All patients (N = 422)
were unselected for age, FH or personal history, and there were no differences in terms
of patients’ characteristics (age, family, personal history and prevalence of PVs) between
retrospective and prospective groups, except for the stage and Overall Survival (OS).

This may be explained by stage migration and better management of patients in recent
years. All patients signed an informed consent according to local ethics committee protocols
and answered a standardized family history questionnaire on the presence and type of
cancers in the family. One hundred twenty-two patients have been described in previous
publications; however, the analysis was limited to CDKN2A or BRCA1-2 [28,30], as well
as Mismatch Repair (MMR) genes for a subset of high-risk patients [30,31]. In addition,
31 patients, either positive for CDKN2A PVs or negative but considered high-risk because
of PC family history, had been previously tested by Whole-Exome Sequencing (WES) [32]
and were re-tested here by MGP.

2.2. Gene Panel

Next-Generation Sequencing (NGS) was performed for all 422 patients using an Ion
Custom Panel (125–275 bp amplicon target sizes; 355 kb; 1266 amplicons), including
51 genes involved in DDR, PC susceptibility and hereditary pancreatitis (APC, ARID1A,
ARID1B, ARID2, ATM, ATR, ATRX, BAP1, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1,
CDC73, CDK12, CDK4, CDKN2A, CHEK1, CHEK2, COL7A1, CPA1, EPCAM, ERCC4,
FAM175A, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, MLH1,
MRE11, MSH2, MSH6, NBN, PALB2, PMS2, PRSS1, RABL3, RAD50, RAD51, RAD51B,
RAD51C, RAD51D, RET, SPINK1, STK11, SUFU and TP53) according to the recent litera-
ture [33,34].

The NGS libraries were constructed using the Ion AmpliSeq Kit for Chef DL8 (Thermo
Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s protocol starting
from 20 ng of genomic DNA. According to the manufacturer, the libraries were sequenced
with an Ion Torrent S5 GeneStudio Plus system using 530 Chip (Thermo Fisher Scientific).
The S5 sequencing data were analyzed by the Ion Torrent Software Suite (Thermo Fisher
Scientific) using the plugin Variant Caller and Ion Reporter (Thermo Fisher Scientific). The
filtered variants were analyzed and classified according to the American College of Medical
Genetics and Genomics (ACMG) classification [35]. Only ACMG class 4 (Likely Pathogenic)
and 5 (Pathogenic) variants were considered as PVs in this study.
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2.3. Statistical Analysis

Descriptive characteristics were reported as mean (standard deviation) or absolute
frequency (relative frequency). Patients carrying PVs were compared to the non-carriers
using T-test for continuous variables and Chi-squared or Fisher’s exact test for categorical
variables. Univariable Cox proportional hazards models were used to identify character-
istics associated with prognosis in terms of overall survival. Subsequently, we presented
multivariable Cox proportional hazards models adjusting for confounders. Additionally,
as a sensitivity analysis, age-adjusted Cox proportional hazards models were performed to
specifically assess the impact of each type of mutation.

Within the subsample of patients who received oxaliplatin-based treatment, the associ-
ation between PVs and disease progression was evaluated by a Chi-squared test. Finally,
an age-adjusted Cox proportional hazards model was performed to compare responding
and not-responding patients. All statistical analyses were conducted using Stata version
16.0 (Stata Corporation, College Station, TX, USA), and p-values < 0.05 were considered
statistically significant.

3. Results

We recruited 422 patients belonging to a real-world series of patients diagnosed with
Pancreatic cancer, unselected for family history and analyzed them using a multigene
panel containing 51 genes. Table 1 shows the patients’ characteristics according to the
germline status.

Table 1. Characteristics of the study cohort according to the germline status.

Overall (N = 422) Non-Carriers (N = 352) PV Carriers (N = 70) p-Value

Age, mean (range) 67 (30–92) 67.4 (30–92) 64.3 (44–82) 0.0254
Female, N (%) 221 (52) 189 (54) 32 (46) 0.222

Initial stage, N (%)
Resectable 92 (22) 76 (22) 16 (23) 0.323
Borderline 25 (6) 21 (6) 4 (6)

Unresectable 51 (12) 38 (11) 13 (19)
Metastatic 188 (45) 158 (45) 30 (43)

Missing 66 (16) 59 (17) 7 (10)
FH for PC, N (%) 55 (13) 37 (11) 18 (26) 0.001

Personal/FH for BC/Ovarian, N (%) 76 (18) 51 (14) 25 (36) <0.001
Personal/FH for melanoma, N (%) 30 (7) 17 (5) 13 (19) <0.001

Other primary cancers, N (%) 64 (16) 43 (13) 21 (32) <0.001

Pts = patients; wt = wild-type; PV = pathogenic variant/likely pathogenic variant; FH = family history.
PC = pancreatic cancer; BC = breast cancer; significant values are shown in bold.

Overall, 52% were females, and the mean age was 67 years (range 30–92). As expected,
germline PV carriers were significantly younger than non-carriers (p-value = 0.0254). Over-
all, 13% of patients had a first or second-degree relative with PC. A family history of PC
was more frequent in carriers than in non-carriers (26% vs. 11%; p = 0.001); the same pattern
was confirmed in cases with a personal and/or family history of either breast and ovarian
cancer (36% vs. 14%, p < 0.001), melanoma (19% vs. 5%; p < 0.01) and personal history of
other tumors (32% vs. 13%, p < 0.001).

3.1. Prevalence of Pathogenic Variants in Pancreatic Cancer Susceptibility Genes: Correlation with
Family History and Age at Diagnosis

Seventy out of 422 enrolled patients (17%) carried one or more pathogenic variant
(PV) in at least one of the 51 genes included in the panel (Table 1). CDKN2A was the most
frequently mutated gene (19/422; 4.5%), confirming the founder p.Gly101Trp as the most
frequent PV in our series (11/19 = 57.9%) [36]. For this reason, CDKN2A in our cohort
shows a higher frequency compared to the literature data [37] (Figure 1).
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Figure 1. Comparison between the relative frequency of candidate susceptibility genes PVs in our
cohort and literature data according to the systematic review by Astiazaran-Symonds E and Goldstein
AM [37].

BRCA2 (13/422 = 3.1%) was the second most frequently mutated gene. BRCA1/2
positive patients (19/422; 4.5%) were as frequent as those carrying CDKN2A PV/LPVs.
The third most frequently mutated gene was ATM since PV/LPVs were detected in nine
patients (2.1%). Altogether, PV/LPVs in these four genes were 50% of all mutations in
our cohort (37/74). Notably, 41% (29/70) of patients carrying PV/LPVs had no pancreatic,
breast or melanoma personal and/or family history (Table 2).

Table 2. Pathogenic variant frequency: overall and according to personal and family history.

Genes Cumulative
Frequency FH of PC Personal and/or FH

of BC and Ovary
Personal and/or

FH of Melanoma
Frequency in
Sporadic PC

n = 422 n = 55 n = 76 n = 30 n = 283
n % n % n % n % n %

ATM 9 (2.1) 3 (5.4) 1 (1.3) 1 (3.3) 5 (1.7) *
BRCA1 6 (1.4) 1 (1.8) 5 (6.6) 1 (3.3) - - **
BRCA2 13 (3) 1 (1.8) 7 (9.2) 2 (6.7) 5 (1.7) */**
BRCA1/2 19 (4.5) 2 (3.6) 12 (15.8) 3 (10) 5 (1.7) */**
CDKN2A 19 (4.5) 8 (14.5) 5 (6.6) 6 (20) 8 (2.8) */**
CHEK2 7 (1.6) 1 (1.8) - - 1 (3.3) 5 (1.7)
COL7A1 5 (1.2) 1 (1.8) 1 (1.3) - - 3 (1)
ERCC4 1 (0.2) - - - - - - 1 (0.3)
FANCA/C/G 3 (0.7) 2 (3.6) 2 (2.6) 1 (3.3) - - **
MLH1 1 (0.2) - - 1 (1,3) - - - -
MSH2 2 (0.4) - - 1 (1.3) - - 1 (0.3)
NBN 3 (0.7) - - 1 (1.3) 1 (3.3) 2 (0.7) *

RAD50/51 2 (0.4) 1 (1.8) 1 (1.3) 1 (3.3) - - **
RET1 1 (0.2) - - - - - - 1 (0.3)
SDHA 1 (0.2) - - - - - - 1 (0.3)
TP53 1 (0.2) - - 1 (1.3) - -
All

genes 74 (17.5) 18 (32.7) 26 (34.2) 14 (46.7) 32 (11.3)

FH = family history; PC = pancreatic cancer; BC = breast cancer. * 2 or more variants in the same patient; ** some
patients were included in more than one category.
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The prevalence of PVs in HRD pathway-related genes (ATM, BRCA1/2, CHEK2, ERCC4,
FANCA, FANCC, FANCG, NBN, RAD50 and RAD51) was 10.4%. The inclusion of HR-DDR
pathway-related genes compared to BRCA1/2 alone more than doubled the prevalence
of pathogenic variants (10.4% vs. 4.5%). Among these PVs, 41% (18/44) were found in
sporadic patients.

Three patients showed multiple PVs: two sporadic PC patients had two (in BRCA2
and CHEK2) and three (in ATM, CDKN2A and NBN) pathogenic variants, respectively.
The third, who developed both melanoma and PC, showed 2 PVs (in CDKN2A and NBN).
Interestingly, two out of three patients carrying NBN PVs had a concomitant PV in a high
penetrance predisposition gene (CDKN2A or ATM).

Seven PVs were found in CHEK2 (1.7%), four of whom had no FH. Five PVs (1.2%)
were found in the COL7A1 gene; among these patients, only two showed a family history of
PC and breast cancer. Finally, we detected two PVs in MSH2, in 2 patients with suspected
Lynch Syndrome. No variants were identified in the PALB2 gene. The complete list of LPs
and PVs is described in Supplementary Table S1.

As expected, PVs in BRCA1/2 were more frequent in subjects with a personal and/or
family history for breast/ovarian cancer (12/76, 15.8%). However, a 1.8% frequency was
observed even in sporadic subjects (5/283). CDKN2A PVs were frequent in patients with
a family history of PC (8/55, 14.5%) and with a personal or family history of melanoma
(6/30, 20%); however, the rate remains high (8/283, 2.8%) in sporadic subjects. Notably,
ATM PVs frequency was 5.4% in patients with a family history of PC (3/55) and 3.3% in
patients with personal or family history of melanoma (1/30). ATM PVs mutation frequency
was as high as that of BRCA-2 (1.8%) in sporadic patients.

Overall, 11.3% of PV were found in sporadic patients (32/283) and would have been
missed if we tested patients based only on family history (Table 2). When we analyzed
age at diagnosis comparing patients according to specific PVs, we found that the overall
frequency of PVs was 22.2% among patients ≤50 y, 24.4% among patients 51–60 y, 17.5%
among patients 61–70 y and 11.6% for those who were >70 y. The highest frequency of
BRCA1/2 PV was found among the youngest patients (≤50, 13.9%), while no PVs were
found in patients older than 70.

Conversely, the highest CDKN2A mutation rate was found in patients aged 61–70 y
(6.3%) and was 3.8% in patients > 70 y. No PVs in CDKN2A were found in patients younger
than 50 y (Supplementary Table S2). Overall, patients with BRCA1/2 genes were younger
(mean age = 58) than CDKN2A patients (mean age = 67) (Supplementary Table S2).

3.2. Impact of Germline Pathogenic Variants on Patients’ Survival

Table 3 summarizes patients characteristics according to OS. Median follow-up was
9.7 months (interquartile range: 4.3–21,25) and median OS was 11.5 months (range 10.4–13.3).
In univariable analysis, as expected, 10-years increase in age was associated with worse
prognosis (HR 1.18; 95% CI 1.06–1.32; p = 0.004), as well as metastatic disease compared
to resectable stage (HR 3.20; 95% CI 2.38–4.29; p < 0.001). These results were confirmed
in multivariable analysis (age: HR 1.18; 95% CI 1.06–1.33; p = 0.004) (metastatic disease:
HR 3.39; 95% CI 2.51–4.57; p < 0.001).

Patients carrying any PVs showed better OS compared to non-carriers in the univari-
able analysis (HR 0.78; 95% CI 0.59–1.04; p = 0.090) and was confirmed in the multivariable
analysis (HR 0.81; 95% CI 0.61–1.09; p = 0.160). In the sensitivity analysis we also evaluated
the impact of PVs in single gene and we found that all nine patients carrying ATM PVs
had a better prognosis compared to non-carriers in terms of median OS (15 vs. 11 months;
age-adjusted HR 0.33; 95% CI 0.10–1.02; p = 0.054). No significant differences were observed
between patients with PVs in other genes and non-carriers.

3.3. Impact of Germline Pathogenic Variants on Response to Oxaliplatin

A total of 106 patients received oxaliplatin-based treatment: 25 (34%) in the neoadju-
vant and 81 (76%) in the first- or second-line metastatic setting. Overall, in the neoadjuvant
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setting, 24% (N = 6) had a Progression of Disease (PD) as the Best Response (BR) to ox-
aliplatin, 28% (N = 7) had a partial response and 32% (N = 8) had stable disease. In the
metastatic setting, 42% (N = 34) had a PD as the best response to oxaliplatin, 21% (N = 17)
had a partial response, and 30% (N = 24) had a stable disease. Patients carrying a PV more
frequently showed a good response to treatment (67%) compared to non-carriers (56%) but
differences were not statistically significant (p = 0.381). When we focused on patients with
BRCA or ATM PVs, all nine patients showed control of disease as BR to oxaliplatin.

Table 3. Cox proportional hazards models to identify characteristics associated with prognosis in
terms of overall survival.

Univariable Cox Models Multivariable Cox Model N = 340

HR (95% CI) p-Value HR (95% CI) p-Value

Age (10-years) *** 1.18 (1.03–1.32) 0.004 1.18 (1.06; 1.33) 0.004
Male vs. Female * 1.06 (0.85–1.31) 0.612 1.13 (0.91; 1.40) 0.270

Initial stage (N = 353) **
Resectable 1.00 Ref 1.00 Ref
Borderline 1.24 (0.66–2.30) 0.504 1.25 (0.66; 2.39) 0.491

Unresectable 1.39 (0.93–2.08) 0.113 1.39 (0.92; 2.09) 0.116
Metastatic 3.20 (2.38–4.29) <0.001 3.39 (2.51; 4.57) <0.001

FH for PC * 0.85 (0.62–1.17) 0.315 0.90 (0.65; 1.24) 0.526
Personal/FH for BC/Ovarian * 0.91 (0.69–1.21) 0.519 0.92 (0.69; 1.22) 0.552
Personal/FH for melanoma * 0.99 (0.66–1.49) 0.969 1.08 (0.71; 1.63) 0.723

Other primary cancers, (N = 395) * 0.76 (0.56–1.04) 0.089 0.74 (0.54; 1.01) 0.061
Presence of any PV vs. WT * 0.78 (0.59–1.04) 0.090 0.81 (0.61; 1.09) 0.160

Multivariable estimates are adjusted for * age, ** age, sex and PV, *** sex. FH = family history; WT = wild-type;
PV = Pathogenic Variant/Likely Pathogenic Variant; PC = pancreatic cancer; BC = breast cancer; significant values
are shown in bold.

4. Discussion

We analyzed a panel of 51 genes in a retrospective/prospective cohort of 422 Italian PC
patients unselected for family history, stage or age of onset. To the best of our knowledge,
this is the largest cohort of unselected PC Italian patients analyzed with a MGP comprehen-
sive of all PC susceptibility genes described to date. Overall, 70 PVs (17%) were found, a
relatively high frequency compared to similar studies. However, due to the heterogeneity
in cohort selection and dissimilar sequencing approaches across studies, the prevalence of
PVs in PC susceptibility genes cannot be easily quantified, ranging from 5% to nearly 20%
in different studies and reviews [18,34,37–42].

Here, we confirm in an extended cohort of Italian PC patients, the high CDKN2A
PV/LPV rate previously described [28,43], finding a total CDKN2A mutation rate of 4.5%
(19/422), as high as the one conferred by BRCA1 and BRCA2 together (BRCA1 n = 6/422
and BRCA2 13/422). According to the literature, CDKN2A germline variants in patients
unselected for FH range from 0.1 to 2.6% [37,44–46]. In our study, the rate increased to
14.5% (n = 8/55) and 20% (n = 6/30) in subjects with familial PC or with a personal and/or
FH of melanoma, respectively.

The latest frequency confirms recent findings from an extended melanoma family
study in the Italian population showing a 12.4% of PVs in melanoma families with PC
cases [47]. However, the mutation rate remains high (2.8%) even in sporadic subjects. This
may reflect the presence of founder CDKN2A PVs in our population [36].

As expected, BRCA1 and BRCA2 PV rate nearly doubled in cases with a FH of PC
nearly compared to sporadic subjects (3.6% vs. 1.7%), while it ranged from 1.7% to 15.8% in
subjects with a personal or family history of breast/ovarian cancer (Table 2). Again, these
data confirm previously observed BRCA1/2 mutation rates in Italian families with history
of both breast/ovarian and PC [40,41].

Carriers of BRCA1/2 PVs showed a lower age of onset compared to CDKN2A carriers.
While CDKN2A PVs are distributed only in the age categories above 50 years, BRCA1/2 are
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the most common PVs in the age category below 50 years (13.9%). In our cohort, the oldest
patient carrier of a germline BRCA1/2 PVs was 70 years old. This supports the results
obtained in a different unselected cohort of Italian PC patients tested for BRCA1/2 only,
showing that BRCA1/2 mutations were found in patients < 74 y [29].

ATM was the first most frequently mutated gene in the age category between 51
and 60 years and the third mutated gene overall (2.13%). Interestingly, ATM PV/LPVs
frequency was second to CDKN2A only in patients with a family history of PC (5.4%) and
was found at a frequency of 3.3% in patients with familiarity for melanoma. These data
also confirm recent figures observed for ATM germline PVs in melanoma cases [47–49].

Overall, CHEK2 and COL7A1 PVs were found with a frequency above 1%. Further
investigation will be needed to elucidate their role in pancreatic cancer predisposition. How-
ever, our findings are in line with those from the PAN Cancer [34]. A recent paper found
that the combined frequency of heterozygous carriers of CHEK2 in the general population
was 1.2% [50]. Interestingly, PVs in TP53 and MMR genes were below 1% and were found
in patients with a personal and/or FH of breast/ovarian and colon cancer, respectively.

In our study, we observed that patients carrying any PVs had a better OS compared to
non-carriers (HR = 0.66; 95% CI 0.47–0.93; p = 0.017). However, when we focused on PVs in
specific genes, only patients carrying ATM PVs (N = 9) showed better OS compared to WT
patients (N = 345) (HR = 0.33). Our results confirm previous reports that suggested ATM
alterations as prognostic for improved outcomes in patients with PC [51].

Despite efforts in extensive molecular profiling in PC for actionable genetic alterations
or pathways, targeted therapy showed to provide limited clinical benefit for patients with
this disease to date [52]. One exception is alterations in DNA damage repair (DDR) genes,
especially BRCA1/2, since BRCA-associated tumors, including breast, prostate and ovarian
tumors, respond to poly–(adenosine diphosphate–ribose) polymerase (PARP) inhibitors
and platinum-based therapy.

However, the efficacy of PARP inhibitors in DDR-related genes other than BRCA
is less clear. Recent two phase II nonrandomized clinical trials showed that Olaparib
was well tolerated. However, it showed limited antitumor activity in patients with ad-
vanced, platinum-sensitive PC with DDR-genetic alterations, most of them carried ATM
alterations [53]. Unfortunately, no patients with ATM alterations were treated with PARP
inhibitors in our cohort. However, we observed a trend in better disease control in PV
carriers treated with oxaliplatin, although not statistically significant.

More data in larger cohorts are needed to confirm these results. Although the preva-
lence of DNA MMR is <1%, these patients may benefit from immunotherapy [24], thus we
believe that evaluation of MMR system (somatic and/or germline) is crucial in PC patients
as well as in all other solid tumor types [54]. BRCA1/2, CDKN2A and ATM, account for an
overall PV/LPV prevalence of 11.1% in our cohort.

Had we selected PC patients for genetic testing according to their personal and family
history suggestive for familial PC or hereditary cancer syndromes, we would have missed
41% of patient carriers of PVs in candidate gens. Sixty% of them were carriers of PVs in
CDKN2A, BRCA2 and ATM. At least CDKN2A and ATM, should be added to BRCA1/2
testing by MGP independently of FH.

These PVs are clinically actionable since they result in hereditary cancer syndromes
for which international guidelines support surveillance aimed to reduce mortality among
relatives. Although such guidelines are not of proven efficacy for PC mortality reduction,
identification of probands may still reduce mortality for other cancers through ‘ad hoc’
prevention protocols. However, several studies and meta-analyses have shown that the
diagnostic yield of pre-malignant or malignant lesions (including earlier stage) in high
risk individuals undergoing screening/surveillance is much higher than the lifetime risk
of PC in the general population and this might be considered a surrogate for mortality
reduction [55–59].

In Italy, the AISP (Italian Association for the Study of the Pancreas), developed a
registry of families at high risk of PC to be included in surveillance protocols [59,60]. As
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previously mentioned, an extended MGP testing—beyond BRCA1 and 2—in all PC patients
in not standard of care in Italy and an estimate of a real world MGP frequency in unselected
PC patients was missing. The registry is currently recruiting families at high-risk because of
family history or positive mutation testing. Our data support an extended MGP testing (at
least to CDKN2A and ATM) to identify positive high-risk carriers to be included in registry
surveillance protocols, also independently of family history.

We acknowledge that our study presents some limitations, mainly because of a non-
consecutive and retrospective enrollment of part of the cohort. In addition, few data
are available on treatments (oxaliplatin-based, anti-PARP and/or immunotherapy) in PV
carriers. No correlation with somatic tumor samples was conducted. Moreover, stage
migration and changes in patient management were observed during the long patient
recruitment period.

5. Conclusions

In conclusion, our study showed that the universal use of MGP testing in PC patients
allowed us to identify a high PV prevalence (17%). These data might address unmet clinical
need to identify actionable mutations and provide the opportunity to identify well-known
hereditary cancer syndromes. Finally, 40% of patients with PVs did not have suspected
criteria within our cohort and would have been missed with standard selection criteria.

Thus, we propose extending the offer of genetic testing beyond BRCA1 and 2 at least
to CDKN2A and ATM, independently of family history, with no age restrictions to identify
mutations and actionable not only for target therapy in affected members but also for
surveillance research protocols in carriers, including unaffected relatives.
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