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ABSTRACT

Motivation: Biclustering of transcriptomic data groups genes and
samples simultaneously. It is emerging as a standard tool for
extracting knowledge from gene expression measurements. We
propose a novel generative approach for biclustering called ‘FABIA:
Factor Analysis for Bicluster Acquisition’. FABIA is based on
a multiplicative model, which accounts for linear dependencies
between gene expression and conditions, and also captures heavy-
tailed distributions as observed in real-world transcriptomic data. The
generative framework allows to utilize well-founded model selection
methods and to apply Bayesian techniques.
Results: On 100 simulated datasets with known true, artificially
implanted biclusters, FABIA clearly outperformed all 11 competitors.
On these datasets, FABIA was able to separate spurious biclusters
from true biclusters by ranking biclusters according to their
information content. FABIA was tested on three microarray datasets
with known subclusters, where it was two times the best and once the
second best method among the compared biclustering approaches.
Availability: FABIA is available as an R package on Bioconductor
(http://www.bioconductor.org). All datasets, results and software are
available at http://www.bioinf.jku.at/software/fabia/fabia.html
Contact: hochreit@bioinf.jku.at
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Recent technologies such as the Affymetrix array plates and
next-generation sequencing open up new possibilities for high-
throughput expression profiling. These technologies in turn require
advanced analysis tools to extract knowledge from the huge amount
of data. If the experimental conditions are known, supervised
techniques such as support vector machines are suitable to extract the
dependencies between conditions and gene expression or to identify
condition-indicative genes. However, conditions may not be known
or biologists and medical researchers are interested in dependencies
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within or across conditions. For instance, it could be possible to
refine pathways across conditions or to identify new subgroups
within one condition. For these tasks, unsupervised methods such
as clustering are required, which are usually insufficient, because
samples may only be similar on a subset of genes and vice versa. In
drug design, for example, researchers want to reveal how compounds
affect gene expression; the effects of compounds, however, may be
similar only on a subgroup of genes. Under such circumstances,
biclustering is the proper unsupervised analysis technique.

A bicluster in a transcriptomic dataset is a pair of a gene set and
a sample set for which the genes are similar to each other on the
samples and vice versa. If multiple pathways are active in a sample,
it belongs to different biclusters. If a gene participates in different
pathways for different conditions, it belongs to different biclusters,
too. Thus, biclusters can overlap.

A survey of biclustering approaches has been given by
Madeira and Oliveira (2004). In principle, there exist four
categories of biclustering methods: (1) variance minimization
methods, (2) two-way clustering methods, (3) motif and
pattern recognition methods and (4) probabilistic and generative
approaches. Transcriptomic data are usually supplied as a matrix,
where each gene corresponds to one row and each sample to one
column; the matrix entries themselves are the expression levels.

(1) Variance minimization methods: define clusters as blocks in
the matrix with minimal deviation of their elements. This definition
has been already considered by Hartigan (1972) and extended by
Tibshirani et al. (1999). The δ-cluster methods search for blocks
of elements having a deviation (‘variance’) below δ. One example
are δ-ks clusters (Califano et al., 2000), where the maximum
and the minimum of each row need to differ less than δ on the
selected columns. A second example are δ-pClusters (Wang et al.,
2002), which are defined as 2×2 submatrices with pairwise edge
differences less than δ. A third example are the Cheng and Church
(2000) δ-biclusters having a mean squared error below δ after fitting
an additive model with a constant, a row and a column effect.
FLexible Overlapped biClustering (FLOC; Yang et al., 2005) extend
Cheng–Church δ-biclusters by dealing with missing values via an
occupancy threshold θ and by using both l1 and l2 norms.

(2) Two-way clustering methods apply conventional clustering
to the columns and rows and (iteratively) combine the results.
Coupled Two-Way Clustering (CTWC; Getz et al., 2000) iteratively
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performs standard clustering of the rows (columns) using previously
constructed columns (rows) clusters as features. Also Interrelated
Two-Way Clustering (ITWC; Tang et al., 2001) using k-means and
Double Conjugated Clustering (DCC; Busygin et al., 2002) using
self-organizing maps combine column and row clustering.

(3) Motif and pattern recognition methods define a bicluster
as samples sharing a common pattern or motif. To simplify this
task, some methods discretize the data in a first step, such as
xMOTIF (Murali and Kasif, 2003) or Bimax (Prelic et al., 2006),
which even binarizes the data and searches for blocks with an
enrichment of ones. Order-Preserving SubMatrices (OPSM; Ben-
Dor et al., 2003) searches for blocks having the same order of
values in their columns. Using partial models, only the column
order on subsets must be preserved. Spectral clustering (SPEC;
Kluger et al., 2003) performs a singular value decomposition of the
data matrix after normalization. SPEC extracts columns (samples)
with the same conserved gene expression pattern using the fact that
they are linearly dependent and span a subspace associated with
a certain singular value. The Iterative Signature Algorithm (ISA;
Ihmels et al., 2004) selects samples that have a given gene signature
and then uses these samples to define a new sample signature. This
sample signature, in turn, is used to select genes and to define a
new gene signature. For each bicluster to be extracted, this process
is initialized by a randomly selected binary gene signature and
repeated iteratively. A related approach uses a Hough transform
for identifying groups of linearly dependent genes and samples
(Gan et al., 2008). Contiguous column coherent (CCC biclustering;
Madeira and Oliveira, 2009; Madeira et al., 2010) is a method
for gene expression time series, which finds patterns in contiguous
columns.

(4) Probabilistic and generative methods use model-based
techniques to define biclusters. Statistical-Algorithmic Method
for Bicluster Analysis (SAMBA; Tanay et al., 2002) uses a bi-
partitioned graph, where both conditions and genes are nodes. An
edge from a gene to a condition means that the gene responds to the
condition. With a probabilistic objective, subgraphs are found that
have a significantly higher connectivity than the overall graph. In
another approach, Sheng et al. (2003) use Gibbs sampling to estimate
the parameters of a simple frequency model for the expression
pattern of a bicluster. However, the data must first be discretized
and then only one bicluster with constant column values at each step
can be extracted. Probabilistic Relational Models (PRMs; Getoor
et al., 2002) and their extension ProBic (Van den Bulcke, 2009) are
fully generative models that combine probabilistic modeling and
relational logic. Another generative approach is cMonkey (Reiss
et al., 2006), which models biclusters by Markov chain processes.
Both PRMs and cMonkey are able to integrate non-transcriptomic
data sources.

In the plaid model family (Lazzeroni and Owen, 2002), the i-th
bicluster is extracted by row and column indicator variables ρki
and κij . The values of each bicluster are explained by a general
additive model θkij =µi +αki +βij . Parameters are estimated by a
least square fit. Gu and Liu (2008) generalized the plaid models to
fully generative models called Bayesian BiClustering model (BBC).
To avoid the high percentage of overlap in the plaid models, BBC
constrains the overlapping of biclusters to only one dimension.
Further it allows different error variances per bicluster. Caldas and
Kaski (2008) also extended the plaid model to a fully generative

model using a Bayesian framework and found that the plaid model
is equivalent to the PRM model for specific parameters.

The latter models (Caldas and Kaski, 2008; Gu and Liu, 2008)
are generative models which have the advantage that (i) they select
models using well-understood model selection techniques such as
maximum likelihood, (ii) hyperparameter selection methods (e.g.
to determine the number of biclusters) can rely on the Bayesian
framework, (iii) signal-to-noise ratios can be computed, (iv) they can
be compared with each other via the likelihood or posterior, (v) tests
such as likelihood ratio test are possible and (vi) they produce a
global model to explain all data. These models are additive and
assume that all effects are Gaussian to utilize Gibbs sampling for
parameter estimation. However, after prefiltering, real microarray
datasets are not Gaussian distributed and have heavy tails (Hardin
and Wilson, 2009), even after log transformation. This can be seen in
Supplementary Figures S8, S9 and S19 for gene expression datasets.
In this article, we propose a generative multiplicative model tailored
to the special characteristics of gene expression data.

This article is organized as follows. Section 2 introduces the
multiplicative bicluster model class. Section 3 describes the model
selection (training) algorithm for the new model class. Section 4
highlights how biclusters can be ranked according to the information
they contained about the data. Section 5 describes how to extract
bicluster members from our new models. Finally, Section 6 provides
an experimental evaluation of the new method.

2 THE FABIA MODEL
We propose a multiplicative model class for analyzing gene expression
datasets for several reasons. First, a multiplicative model allows to model
heavy tailed data, as observed in gene expression. Second, it can relate
the strength of gene expression patterns to characteristics of the induced
condition such as elapsed time or concentration of compounds. After log
transformation, exponential dynamics such as decay (mRNA or compound)
or saturation can also be modeled. Note that supervised multiplicative
models, e.g. support vector machines, were successfully applied to log-
transformed gene expression datasets. Further, artificial multiplicative effects
are introduced during data preprocessing, for example, if expression values
are standardized, then variations stemming from noise scale the signal.

We assume that the gene expression dataset is preprocessed and filtered
for genes that contain a signal (e.g. informative call or signal strength).
The resulting data is given as a data matrix X ∈R

n×l , where every row
corresponds to a gene and every column corresponds to a sample; the value
xkj corresponds to the expression level of the k-th gene in the j-th sample.
The matrix X is the input to biclustering methods.

We define a bicluster as a pair of a row (gene) set and a column (sample)
set for which the rows are similar to each other on the columns and vice
versa. In a multiplicative model, two vectors are similar if one is a multiple
of the other, that is, the angle between them is zero or, as realization of
random variables, their correlation coefficient is (minus) one. It is clear that
such a linear dependency on subsets of rows and columns can be represented
as an outer product λ zT of two vectors λ and z. The vector λ corresponds
to a prototype column vector that contains zeros for genes not participating
in the bicluster, whereas z is a vector of factors with which the prototype
column vector is scaled for each sample; clearly z contains zeros for samples
not participating in the bicluster. Vectors containing many zeros or values
close to zero are called sparse vectors. Figure 1 visualizes this representation
by sparse vectors schematically.

The overall model for p biclusters and additive noise is

X =
p∑

i=1

λi zT
i + ϒ = � Z + ϒ , (1)
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Fig. 1. The outer product λ zT of two sparse vectors results in a matrix with
a bicluster. Note that the non-zero entries in the vectors are adjacent to each
other for visualization purposes only.

where ϒ ∈R
n×l is additive noise; λi ∈R

n and zi ∈R
l are the sparse prototype

vector and the sparse vector of factors of the i-th bicluster, respectively.
The second formulation above holds if �∈R

n×p is the sparse prototype
matrix containing the prototype vectors λi as columns and Z∈R

p×l is the
sparse factor matrix containing the transposed factors zT

i as rows. Note that
Equation (1) formulates biclustering as sparse matrix factorization.

According to Equation (1), the j-th sample xj , i.e. the j-th column of X, is

xj =
p∑

i=1

λi zij + εj = � z̃j + εj , (2)

where εj is the j-th column of the noise matrix ϒ and z̃j = (z1j,...,zpj)T

denotes the j-th column of the matrix Z. Recall that zT
i = (zi1,...,zil) is the

vector of values that constitutes the i-th bicluster (one value per sample),
while z̃j is the vector of values that contribute to the j-th sample (one value
per bicluster).

The formulation in Equation (2) facilitates a generative interpretation by
a factor analysis model with p factors (Everitt, 1984)

x =
p∑

i=1

λi z̃i + ε = � z̃ + ε , (3)

where x is the observation, � is the loading matrix, z̃i is the value of the
i-th factor, z̃= (z̃1,...,z̃p)T is the vector of factors and ε∈R

n is the additive
noise. Standard factor analysis assumes: the noise is independent of z̃, z̃ is
N (0,I)-distributed and ε is N (0,�)-distributed (the covariance matrix � ∈
R

n×n is diagonal—expressing independent Gaussian noise). The parameter
� explains the dependent (common) and � the independent variance in the
observations x. Additive noise in gene expression is normally distributed
(Hochreiter et al., 2006).

That the covariance matrix for z̃ is the unit matrix means that the biclusters
should not be correlated. This assumption ensures that one true bicluster in
the data will not be divided into dependent small model biclusters—thereby
ensuring maximal model biclusters. Note, however, that this assumption still
allows for overlapping biclusters.

Standard factor analysis does not consider sparse factors and sparse
loadings that are essential in our formulation to represent biclusters.
Sparseness is obtained by a component-wise independent Laplace
distribution (Hyvärinen and Oja, 1999), which is now used as a prior on
the factors z̃ instead of the Gaussian:

p(z̃) =
(

1√
2

)p
p∏

i=1

e− √
2 |z̃i |

Sparse loadings λi and, therefore sparse �, are achieved by two alternative
strategies. In the first model, called FABIA, we assume a component-wise
independent Laplace prior for the loadings (like for the factors):

p(λi) =
(

1√
2

)n n∏
k=1

e− √
2 |λki | (4)

The FABIA model contains the product of Laplacian variables which is
distributed proportionally to the 0th order modified Bessel function of the
second kind (Bithas et al., 2007). For large values, this Bessel function is
a negative exponential function of the square root of the random variable.
Therefore, the tails of the distribution are heavier than those of the Laplace
distribution. The Gaussian noise, however, reduces the heaviness of the tails
such that the heaviness is between Gaussian and Bessel function tails—
about as heavy as the tails of the Laplacian distribution. These heavy tails
are exactly the desired model characteristics.

The second model, called FABIAS, uses a prior distribution for the
loadings that is non-zero only in regions where the loadings are sparse.
Following (Hoyer, 2004), we define sparseness as

sp(λi) =
√

n − ∑n
k=1 |λki| /

∑n
k=1λ2

ki√
n − 1

leading to the prior with parameter spL

p(λi) =
{

c for sp(λi) ≤ spL

0 for sp(λi) > spL
. (5)

Relation to Independent Component Analysis (ICA): our models are
closely related to ICA (Hyvärinen, 1999). ICA searches for a matrix
factorization, where the components of z̃ in model Equation (3) without noise
ε should be mutually independent. The matrix decomposition for ICA is

X = �ICA ZICA, where ZICA ZT
ICA = I .

ICA results in sparse ZICA, whereas �ICA is not sparse as in our models.

3 MODEL SELECTION
To identify the biclusters, we have to select the model parameters � and �

that explain the data best. Maximum likelihood is the most common approach
for selecting a generative model. Unfortunately, in our case, the likelihood
is analytically intractable. The reason is that we aim at generating sparse
values, for which we use Laplacian priors (in contrast to the commonly
used Gaussian priors). The resulting integral defining the likelihood cannot
be computed analytically. In such situations, variational approaches can be
applied, where a lower bound of the likelihood is maximized instead of the
likelihood itself.

Expectation maximization (EM; Dempster et al., 1977) is the most popular
method for maximizing the likelihood. The EM algorithm has been extended
to variational EM (Girolami, 2001; Palmer et al., 2006). We follow this
approach. However, we also assume a prior on the loadings in order to make
the loadings sparse as well. Therefore, we use variational EM for maximizing
the posterior—in line with our previous approaches (Hochreiter et al., 2006;
Talloen et al., 2007).

3.1 Variational approach for sparse factors
As mentioned above, the likelihood

p(x |�,�) =
∫

p(x | z̃,�,�) p(z̃) dz̃

cannot be computed analytically for a Laplacian prior p(z̃). Girolami (2001)
introduces a model family that is parameterized by ξ , where the maximum
over models in this family is the true likelihood:

argmax
ξ

p(x|ξ ) = p(x) .

The variational EM algorithm does not only maximize the lower bound on
the likelihood with respect to the parameters � and �, but also with respect
to the variational parameter ξ .

In the following, � and � denote the parameter estimates in the current
iteration. According to Girolami (2001) and Palmer et al. (2006), we obtain
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the following variational E-step:

E
(
z̃j |xj

)=(�T �−1 � + �−1
j

)−1
�T �−1 xj and

E
(
z̃j z̃T

j |xj
)=(�T �−1 � + �−1

j

)−1 +
E
(
z̃j |xj

)
E(z̃j |xj)

T ,

where �j stands for diag
(
ξ j

)
. The update for ξ j is

ξ j = diag

(√
E(z̃j z̃T

j |xj)

)
.

3.2 New update rules for sparse loadings
The M-step for FABIA (Laplace prior on loadings) is

�new =
1
l

∑l
j=1 xj E(z̃j |xj)T − α

l � sign(�)
1
l

∑l
j=1 E(z̃j z̃T

j |xj)
(6)

diag
(
�new) = �EM + diag

(α

l
� sign(�)(�new)T

)
, where

�EM = diag

(
1

l

l∑
j=1

xjxT
j − �new 1

l

l∑
j=1

E
(
z̃j |xj

)
xT

j

)
.

The M-step for FABIAS updates diag(�new)=�EM and � according to
the standard EM. However, we must take into account that the prior on λi has
restricted support. This is ensured by a projection of λi according to Hoyer
(2004). The projection is a convex quadratic problem, which minimizes the
Euclidean distance to the original vector subject to ‖λi‖=1 and sp(λi)=spL,
see Equation (5). The final update is

�new = proj

(
1
l

∑l
j=1 xj E

(
z̃j |xj

)T
1
l

∑l
j=1 E(z̃j z̃T

j |xj)
,spL

)
.

For n>p, the algorithm has a complexity of O(lp2 n) per iteration, i.e. it
is linear in n and l.

3.3 Extremely sparse priors
Some microarray data are extremely sparse. For example, we observed a
kurtosis larger than 30 for Affymetrix SNP 6 arrays [see copy number
variation (CNV) data on FABIA homepage]. We want to generalize our
model class to deal with such sparse datasets and define extremely sparse
priors both on the factors and the loadings utilizing the following (pseudo)
distributions:

Generalized Gaussians: p(z) ∝ exp
(− |z|β) for 0<β≤1

Jeffrey’s prior: p(z) ∝ exp
(− ln|z|)= 1/|z|

Improper prior: p(z) ∝ exp
(|z|−β

)
for 0<β

The latter may only exist on an interval [ε,a] with sufficiently small ε.
For updating the loadings in the M-step, we need the derivatives of the

negative log-priors, which can be expressed proportionally to |z|−spl for a
specific exponent spl, where spl=0 (β=1) corresponds to the Laplace prior
and spl>0 to sparser priors. The M-step for the loadings is finally as in
Equation (6), where sign(�) is replaced by |�|−spl sign(�) with element-
wise operations (absolute value, sign, exponentiation and multiplication).

For the factors, we represent the priors by a convex variational form.
According to Palmer et al. (2006), this is possible if g(z)=−lnp(

√
z) is

increasing and concave for z>0. Our priors fulfill this, because first-order
derivatives are positive and second-order derivatives are negative. Then the
update for the variational parameter ξ j is

ξ j ∝ diag
(

E
(
z̃j z̃T

j |xj
)spz

)
where spz is the exponent of |z| in the first derivative of g(z); spz=1/2
(β=1) represents the Laplace prior and spz>1/2 leads to sparser priors.

3.4 Data preprocessing and initialization
The data should be centered to zero mean, zero median or zero mode
(Supplementary Material). If the correlation of weak signals is of interest
too, we recommend to normalize the data.

The iterative model selection procedure requires initialization of the
parameters �, � and ξ j . We initialize the variational parameter vectors ξ j

by ones, � randomly and � =diag(max(δ,covar(x)−��T )).

4 INFORMATION CONTENT OF BICLUSTERS
A highly desired property for biclustering algorithms is the ability to rank
the extracted biclusters analogously to principal component which are ranked
according to the data variance they explain. We rank biclusters according to
the information they contain about the data. The information content of z̃j

for the j-th observation xj is the mutual information between z̃j and xj as

I(xj;z̃j) = H(z̃j) − H(z̃j |xj) = 1
2 ln

∣∣Ip + �j �T �−1 �
∣∣ ,

where H is the entropy. The independence of xj and z̃j across j gives

I(X;Z) = 1
2

l∑
j=1

ln
∣∣Ip + �j �T �−1 �

∣∣ .

To assess the information content of one factor, we consider the case that
factor z̃i is removed from the final model and, consequently, the explained
covariance ξji λi λT

i must be considered as noise:

xj | (z̃j \zij) ∼ N (
� z̃j|zij=0 , � + ξij λi λT

i

)
The information of zij given the other factors is

I
(
xj;zij | (z̃j \zij)

) = H(zij | (z̃j \zij))−H(zij | (z̃j \zij),xj)

= 1
2 ln

(
1 + ξij λT

i �−1λi
)

.

Again independence across j gives

I
(
X;zT

i | (Z\zT
i )
)= 1

2

l∑
j=1

ln
(
1 + ξij λT

i �−1λi
)

.

This information content gives that part of the information in x that zT
i

conveys across all examples. Note that the information content grows with
the number of non-zero λi’s (size of the bicluster).

5 EXTRACTING MEMBERS OF BICLUSTERS
After model selection and ranking of bicluster, the i-th bicluster has soft
gene memberships given by the absolute values of λi and soft sample
memberships given by the absolute values of zT

i . Soft clustering has the
advantage that gradual memberships are able to account for ambiguities that
occur in gene expression datasets (where hard memberships can be obscured
by noise). However, some applications require hard ‘yes/no’ memberships.
We determine the members of the i-th bicluster by selecting absolute values
λki and zij above thresholds thresL and thresZ, respectively.

First, the second moment of each factor is normalized to 1 resulting
in a factor matrix Ẑ [in accordance with E(z̃z̃T )=I]. Consequently, � is
rescaled to �̂ such that �Z=�̂Ẑ. Now the threshold thresZ can be chosen to
determine which percentage of samples will on average belong to a bicluster.
For a Laplace prior, this percentage can be computed by 1

2 exp(−√
2/thresZ).

We extract one bicluster for each factor ẑi. In gene expression, a gene
pattern is either absent or present, but not negatively present. Therefore, the
i-th bicluster is either determined by the positive or negative values of ẑij .
Which of these two possibilities is chosen is decided by whether the sum
over

∣∣ẑij
∣∣> thresZ is larger for the positive or negative ẑij .

We may not normalize �̂ for extracting loadings, since the factors have
been normalized already. We suggest to estimate the average contribution of
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λ̂ki ẑij first. Therefore, we compute the standard deviation of �̂Ẑ by

sdLZ =

√√√√√ 1

p l n

(p,l,n)∑
(i,j,k)=(1,1,1)

(
λ̂ki ẑij

)2
.

Now we choose thresL=sdLZ/thresZ that corresponds to extracting those
loadings which have an above-average contribution.

6 EXPERIMENTS

6.1 Evaluating biclustering results
Before comparing biclustering methods, we have to consider how
to evaluate the performance of biclustering methods. If the true
biclusters are known, the performance of a biclustering method
should be evaluated by the consensus between the set of extracted
biclusters and the set of true biclusters.

Previous consensus measures such as the one in Gu and Liu (2008)
do not take overlapping biclusters into account. Other consensus
measures do not consider the numbers of biclusters in both sets (e.g.
Prelic et al., 2006, Li et al., 2009). Thus, the set of true biclusters
would be in consensus with very large sets of random biclusters. We
introduce a novel consensus score for two sets of biclusters which
avoids the drawbacks mentioned above as follows:

(1) compute similarities between all pairs of biclusters, where
one is from the first set and the other from the second set;

(2) assign the biclusters of one set to biclusters of the other set
by maximizing the assignment by the Munkres algorithm
(Munkres, 1957); and

(3) divide the sum of similarities of the assigned biclusters by the
number of biclusters of the larger set.

Step (3) penalizes different numbers of biclusters as emphasized
above.

We use the Jaccard index for computing the similarity of two
biclusters. It measures the relative proportion of overlap of two
biclusters as the quotient of the number of matrix elements contained
in the intersection of the biclusters and the number of matrix
elements contained in the union of the biclusters.

The highest consensus is 1 and only obtained for identical sets of
biclusters. Further note that the consensus score defined above can
be applied analogously to comparing standard clustering results.

6.2 Compared methods
We compare the following 13 biclustering methods:

(1) FABIA: our new method with sparse prior Equation (4).

(2) FABIAS: our new method with sparseness projection
Equation (5).

(3) MFSC: matrix factorization with sparseness constraints
(Hoyer, 2004).

(4) plaid: plaid model (Lazzeroni and Owen, 2002).

(5) ISA: Ihmels et al. (2004).

(6) OPSM: Ben-Dor et al. (2003).

(7) SAMBA: Tanay et al. (2002).

(8) xMOTIF: conserved motifs (Murali and Kasif, 2003).

(9) Bimax: divide-and-conquer algorithm (Prelic et al., 2006).

(10) CC: Cheng–Church δ-biclusters (Cheng and Church, 2000).

(11) plaid_t: improved plaid model (Turner et al., 2003)

(12) FLOC: a generalization of Cheng–Church δ-biclusters (Yang
et al., 2005).

(13) spec: spectral biclustering (Kluger et al., 2003).

We used the following software: for (1)–(3) our R package ‘fabia’,
for (4) the software http://www-stat.stanford.edu/∼owen/plaid/, for
(5) the R package ‘isa2’, for (6) the software BicAT (Barkow et al.,
2006), for (7) the software EXPANDER (Shamir et al., 2005), for
(8)–(13) the R package ‘biclust’ (Kaiser and Leisch, 2008).

In all experiments, rows (genes) were standardized to mean 0
and variance 1. For a fair comparison, the parameters of the
methods were optimized on auxiliary toy datasets. If more than
one setting was close to the optimum, all near optimal parameter
settings were tested. In the following, these variants are denoted as
method_variant (e.g. plaid_ss). A complete list of all settings and
variants is available in the Supplementary Material.

Among the compared methods, not only FABIA and FABIAS but
also ISA, OPSM and SPEC are geared to identifying biclusters
based on a multiplicative model. Additionally, we included MFSC,
although it is not a biclustering method in the strict sense, but it is a
standard method for multiplicative factorization and hence provides
a baseline for our comparison.

6.3 Simulated datasets with known biclusters
Benchmark datasets published in Prelic et al. (2006) and Li et al.
(2009) are small (50 to 100 genes), have low noise, equally sized
biclusters, and only simultaneous row and column overlaps. FABIA
performed very well on these datasets (see Supplementary, S6.3.1
and S6.3.2). However, we use more realistic simulated datasets that
match the characteristics of gene expression data better, especially
in terms of the heavy tails. This can be seen in the Supplementary
Material by comparing the densities and moments of our simulated
datasets (Supplementary Fig. S7) with real gene expression data
(Supplementary Figs S8, S9 and S19).

We assumed n=1000 genes and l=100 samples and implanted
p=10 multiplicative biclusters with the model given by
Equation (1).

The λi’s are generated by (i) randomly choosing the number
Nλ

i of genes in bicluster i from {10,...,210}, (ii) choosing Nλ
i

genes randomly from {1,...,1000}, (iii) setting λi components not
in bicluster i to N (0,0.22) random values and (iv) setting λi
components that are in bicluster i to N (±3,1) random values, where
the sign is chosen randomly for each gene.

The zi’s are generated by (i) randomly choosing the number
Nz

i of samples in bicluster i from {5,...,25}, (ii) choosing Nz
i

samples randomly from {1,...,100}, (iii) setting zi components
not in bicluster i to N (0,0.22) random values and (iv) setting zi
components that are in bicluster i to N (2,1) random values.

Finally, we draw the ϒ entries (additive noise on all entries)
according to N (0,32) and compute the data X according to
Equation (1). Using these settings, noisy biclusters of random sizes
between 10×5 and 210×25 (genes×samples) are generated.

With this procedure, we created 100 independent datasets. Table 1
shows the biclustering results for these datasets. The methods are
evaluated by the average consensus score of the extracted biclusters
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Table 1. Results on the 100 simulated datasets

Method Score Method Score

FABIA 0.478 (1e-2) SAMBA 0.006 (5e-5)
FABIAS 0.564 (3e-3) xMOTIF 0.002 (6e-5)
MFSC 0.057 (2e-3) Bimax 0.004 (2e-4)
plaid_ss 0.045 (9e-4) CC 0.001 (7e-6)
plaid_ms 0.072 (4e-4) plaid_t_ab 0.046 (5e-3)
plaid_ms_5 0.083 (6e-4) plaid_t_a 0.037 (4e-3)
ISA_1 0.333 (5e-2) FLOC 0.006 (3e-5)
ISA_2 0.299 (6e-2) spec_1 0.032 (5e-4)
ISA_3 0.188 (4e-2) spec_2 0.011 (5e-4)
OPSM 0.012 (1e-4)

The numbers denote average consensus scores with the true biclusters as defined in
Section 6.1 (standard deviations in parentheses). The best results are highlighted in
bold and the second best in italics (‘better’ means significantly better according to both
a paired t-test and a McNemar test of correct elements in biclusters).

Fig. 2. An example of FABIA model selection. The data have 10 true
biclusters. We have trained the model with 13 biclusters. Only for
visualization purposes, the biclusters are generated as contiguous blocks.
Top: data (left) and noise-free data (right). Middle: factors Z. Bottom: data
reconstructed by the FABIA model as � Z (left) and loadings � (right). The
lines indicate three biclusters and connect each bicluster in the reconstructed
data with its corresponding factors (middle) and loadings (bottom right).

and the true biclusters as defined in Section 6.1. Our new methods
FABIA and FABIAS outperform all other methods considerably.

Figure 2 illustrates a FABIA result on a simulated dataset, where,
in contrast to our 100 benchmark datasets, the biclusters have been
created as contiguous blocks for visualization purposes.

We observed the following characteristics of the methods,
also confirming earlier findings of Gu and Liu (2008): SAMBA
and OPSM excluded many relevant biclusters; SAMBA, Bimax,
xMOTIF, CC and FLOC found many small random biclusters
(overfitting). spec produces a partition of the samples for each gene
set. The plaid models and ISA extract large overlapping clusters.

Ranking by information content: to verify that the information
content is useful for ranking the extracted biclusters, we performed
a two-sided Spearman rank correlation test comparing (i) the
information content and (ii) the Jaccard similarity to the assigned
true bicluster. We obtained P-values of 1.7×10−5 for FABIA and
6.1×10−3 for FABIAS, which shows that true biclusters can indeed
be identified by their information content.

Data based on an additive model: we also generated data
according to an additive model structure in order to analyze how
well FABIA and FABIAS perform on data not satisfying the
multiplicative model assumptions. We generated 100 datasets with
the above settings, but using the general additive model from
Section 1, category (4). Both FABIA and FABIAS outperform all
other methods, followed by plaid_ms_5. Specifically, for three
different signal levels, FABIAS gave average consensus scores
of 0.15–0.27–0.55, FABIA 0.10–0.20–0.48 and plaid_ms_5 0.10–
0.14–0.22 (detailed results, also for all other methods, are reported
in the Supplementary Material). One would assume plaid methods to
perform better than FABIA and FABIAS. We explain the superiority
of our methods on datasets that do not even match the data generation
model as follows: (i) they construct biclusters simultaneously,
thereby, taking overlaps into account; (ii) the decorrelation of factors
minimizes redundancy of biclusters; (iii) the low complexity of the
model ensures low parameter interdependencies, which facilitates
model selection.

6.4 Gene expression datasets
We consider three gene expression datasets that have been provided
by the Broad Institute and were previously analyzed by Hoshida
et al. (2007). They first clustered the samples using additional
datasets and then confirmed the clusters by gene set enrichment
analysis. Our goal was to study how well biclustering methods are
able to re-identify these clusters without any additional information.

(A) The ‘breast cancer’ dataset (van’t Veer et al., 2002) was
aimed at a predictive gene signature for the outcome of a breast
cancer therapy. We removed the outlier array S54 that leads to
a dataset with 97 samples and 1213 genes. After standardization,
skewness was 0.45 and excess kurtosis 0.93. In Hoshida et al. (2007),
three biologically meaningful subclasses were found that should be
re-identified.

(B) The ‘multiple tissue types’ dataset (Su et al., 2002) are gene
expression profiles from human cancer samples from diverse tissues
and cell lines. The dataset contains 102 samples with 5565 genes.
After standardization, skewness was 0.15 and excess kurtosis 1.3.
Biclustering should be able to re-identify the tissue types.

(C) The ‘diffuse large-B-cell lymphoma (DLBCL)’ dataset
(Rosenwald et al., 2002) was aimed at predicting the survival
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Table 2. Results on the breast cancer, multiple tissue samples, DLBCL
datasets measured by the consensus score from Section 6.1

Breast cancer Multiple tissues DLBCL

Method Score #bc #g #s Score #bc #g #s Score #bc #g #s

FABIA 0.52 3 92 31 0.53 5 356 29 0.37 2 59 62
FABIAS 0.52 3 144 32 0.44 5 435 30 0.35 2 104 60
MFSC 0.17 5 87 24 0.31 5 431 24 0.18 5 50 42
plaid_ss 0.39 5 500 38 0.56 5 1903 35 0.30 5 339 72
plaid_ms 0.39 5 175 38 0.50 5 571 42 0.28 5 143 63
plaid_ms_5 0.29 5 56 29 0.23 5 71 26 0.21 5 68 47
plaid_a_ss 0.37 5 796 35 0.65 5 3711 31 0.28 5 389 68
plaid_a_ms 0.34 5 194 35 0.58 5 583 34 0.27 5 95 61
plaid_a_ms_5 0.16 5 5 26 0.20 5 11 25 0.18 5 4 68
ISA_1 0.03 25 55 4 0.05 29 230 6 0.01 56 26 8
ISA_2 0.25 2 466 42 0.37 3 1904 28 0.22 1 267 74
ISA_3 0.22 1 742 33 0.35 3 2856 28 0.18 2 385 58
OPSM 0.04 12 172 8 0.04 19 643 12 0.03 6 162 4
SAMBA 0.02 38 37 7 0.03 59 53 8 0.02 38 19 15
SAMBA_01 0.01 79 33 8 0.01 128 53 9 0.01 70 18 14
xMOTIF 0.07 5 61 6 0.11 5 628 6 0.05 5 9 9
Bimax 0.01 1 1213 97 0.10 4 35 5 0.07 5 73 5
CC 0.11 5 12 12 nc nc nc nc 0.05 5 10 10
plaid_t_ab 0.24 2 40 23 0.38 5 255 22 0.17 1 3 44
plaid_t_a 0.23 2 24 20 0.39 5 274 24 0.11 3 6 24
spec_1 0.12 13 198 28 0.37 5 395 20 0.05 28 133 32
spec_2 0.07 14 77 22 0.21 1 117 39 0.08 8 82 44
FLOC 0.04 5 343 5 nc nc nc nc 0.03 5 167 5

An ‘nc’entry means that the method did not converge for this dataset. The best results are
in bold and the second best in italics (again ‘better’ means significantly better according
to a paired t-test). The columns ‘#bc’, ‘#g’ and ‘#s’ provide the numbers of biclusters,
their average numbers of genes and their average numbers of samples, respectively.

after chemotherapy. It contains 180 samples and 661 genes, and
after standardization the skewness was −0.05 and excess kurtosis
0.35. The three classes found by Hoshida et al. (2007) should be
re-identified.

The biclustering results are summarized in Table 2. For the
methods assuming a fixed number of biclusters, we chose five
biclusters—slightly higher than the number of known clusters to
avoid biases toward prior knowledge about the number of actual
clusters. The performance was assessed by comparing known classes
of samples in the datasets with the sample sets identified by
biclustering as defined in Section 6.1, in this case on sample clusters
instead of biclusters. For the multiple tissue dataset, plaid performs
best and our methods FABIA and FABIAS are second best. For breast
cancer and DLBCL datasets, our new methods FABIA and FABIAS
detected the clusters most accurately. Further, note that FABIA and
FABIAS have considerably fewer genes in their bicluster than the
next-best methods.

For the biological interpretation of the FABIA results, we applied
gene ontology (GO), Kyoto encyclopedia of genes and genomes
(KEGG) pathway and protein interaction network analysis. We
provide a summary of these analysis results, details of which can be
found in the Supplementary Material.

Breast cancer: GO and KEGG agree that genes in
bicluster 1 are related to the cell cycle (KEGG P-value:
9.7×10−8; GO P-value: 2.8×10−9), especially to M-phase
(GO P-value: 2.5×10−15). Proteins which drive this bicluster
are the cell division control protein CDC2 and the mitosis-
related KIF proteins. Genes in bicluster 2 are related to immune
response (GO P-value: 1.4×10−26) and cytokine–cytokine

receptor interaction (KEGG P-value <10−10), involving cytokine-
related proteins such as CCR5, CCL4 and CSF2RB. Note that
cytokines are important regulators and mobilizers of the immune
response. Bicluster 3 is too small to allow for a reliable biological
interpretation.

DLBCL: the most significant GO terms and KEGG pathways
found for bicluster 1 are related to the ribosome (GO P-value:
2.2×10−6; KEGG P-value: 1.3×10−8) and to B-cell receptor
signaling (KEGG P-value: 9.6×10−8). The latter fits especially well
to the kind of cells the data stem from. The most significant GO terms
and KEGG pathways for bicluster 2 are immune system-related (GO
P-value: 3.2×10−6; KEGG P-value: 5.7×10−8).

Multiple tissues: this dataset is very heterogeneous and the
samples differ in many biological processes; hence, it is difficult
to provide a comprehensible biological interpretation.

6.5 Drug design
In a drug design project, Affymetrix GeneChip HT HG-U133+
PM array plates with 96 samples (12 × 8) per plate were used to
analyze the effect of different compounds on gene expression. The
compounds were selected to be active on a cancer cell line and were
tested in groups of three replicates.

Raw expression data were summarized with FARMS (Hochreiter
et al., 2006) and informative genes are selected by I/NI calls (Talloen
et al., 2007). The preprocessed data matrix was 1413×95 (one array
was missing) with skewness of −0.39 and excess kurtosis larger than
3.0 (i.e. heavier tails than Laplace). We tested FABIA on this dataset.
Biclusters were extracted with thresZ=1.5 to obtain an average
of 5–6 samples in a bicluster (note that, for the Laplacian prior,
1
2 exp(−√

2 1.5) ≈ 0.06).
FABIA found four biclusters. The first bicluster consisted of

two replicate sets (6 arrays), the second consisted of five replicate
sets with one replicate missing (14 arrays). The third bicluster
consisted of three replicate sets and an additional array (10 arrays).
The fourth bicluster consisted of arrays located at the last column
of the plate—corresponding to border arrays which dry out. In
the meantime, this problem has been fixed by Affymetrix. That
replicates are clustered together shows that our biclustering approach
works correctly.

The bicluster with highest information content (two sets of
replicates) extracted genes related to mitosis (GO analysis gave
a P-value <10−13). Regulation of mitosis genes is biologically
plausible, as inhibiting cell division would be consistent with an
active compound that does not kill the cell. The compounds of
this bicluster are now under investigation by Johnson & Johnson
Pharmaceutical Research & Development.

7 CONCLUSION
We have introduced a novel biclustering method that is a generative
multiplicative model. It assumes realistic non-Gaussian signal
distributions with heavy tails. The generative model allows to rank
biclusters according to their information content. Model selection is
performed by maximum a posteriori via an EM algorithm based on
a variational approach.

On 100 simulated datasets with known true biclusters, FABIA
clearly outperformed all 11 competing methods. On three gene
expression datasets with previously verified subclusters, it was once
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the second best and twice the best performing method. The biological
relevance of the FABIA biclusters has been demonstrated by GO
and KEGG analyses. Finally, FABIA has been successfully applied
to drug design to find compounds with similar effects on gene
expression.
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