
sensors

Article

An Occlusion-Aware Framework for Real-Time 3D
Pose Tracking

Mingliang Fu 1,2,†,* , Yuquan Leng 3 ,†, Haitao Luo 1 and Weijia Zhou 1

1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China; luohaitao@sia.cn (H.L.); zwj@sia.cn (W.Z.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Mechanical and Energy Engineering, Southern University of Science and Technology,

Shenzhen 518055, China; lengyq@sustc.edu.cn
* Correspondence: fumingliang@sia.cn; Tel.: +86-24-2397-0188
† These authors contributed equally to this work.

Received: 21 July 2018; Accepted: 17 August 2018; Published: 20 August 2018
����������
�������

Abstract: Random forest-based methods for 3D temporal tracking over an image sequence have
gained increasing prominence in recent years. They do not require object’s texture and only use the
raw depth images and previous pose as input, which makes them especially suitable for textureless
objects. These methods learn a built-in occlusion handling from predetermined occlusion patterns,
which are not always able to model the real case. Besides, the input of random forest is mixed with
more and more outliers as the occlusion deepens. In this paper, we propose an occlusion-aware
framework capable of real-time and robust 3D pose tracking from RGB-D images. To this end,
the proposed framework is anchored in the random forest-based learning strategy, referred to as
RFtracker. We aim to enhance its performance from two aspects: integrated local refinement of
random forest on one side, and online rendering based occlusion handling on the other. In order to
eliminate the inconsistency between learning and prediction of RFtracker, a local refinement step
is embedded to guide random forest towards the optimal regression. Furthermore, we present an
online rendering-based occlusion handling to improve the robustness against dynamic occlusion.
Meanwhile, a lightweight convolutional neural network-based motion-compensated (CMC) module
is designed to cope with fast motion and inevitable physical delay caused by imaging frequency and
data transmission. Finally, experiments show that our proposed framework can cope better with
heavily-occluded scenes than RFtracker and preserve the real-time performance.

Keywords: pose tracking; occlusion handling; online rendering; motion compensation

1. Introduction

3D pose tracking of a rigid object in an image sequence is one of the most core research fields
in computer vision. Different from the object tracking in the image plane [1–3], pose tracking in
3D means retrieving the 3D translation and rotation of an object in the camera coordinate system.
It serves as a cornerstone for numerous computer vision applications, such as augmented reality [4],
robotic interaction [5] and medical navigation [6]. Until the advent of RGB-D sensors, early pose
tracking mostly adopted a template matching-based strategy [7] or correspondences between natural
landmarks [8]. Making it easy to capture 3D information of the scene, consumer RGB-D cameras break
fresh ground for the more rapid development of pose tracking [9–13]. Marked improvements have
been achieved in almost every aspect, from dense feature fields [14], 3D signed distance functions [15]
and pixel-wise optimization [12], to random forests-based learning [16,17] (named as RFtracker below),
deep feature [18] and hybrid energy optimization [19].

Sensors 2018, 18, 2734; doi:10.3390/s18082734 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6006-6699
https://orcid.org/0000-0003-4063-4545
http://www.mdpi.com/1424-8220/18/8/2734?type=check_update&version=1
http://dx.doi.org/10.3390/s18082734
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2734 2 of 20

Related strategies can be roughly divided into three categories according to the data type of
input: (1) RGB image-based methods [13,20]; (2) depth image-based methods [16,17]; (3) RGB-D-based
methods [21–23]. In the case of 3D pose tracking from RGB images, prior shape knowledge is often
the necessary input. A probabilistic model connecting statistical appearance models of background
and foreground and 3D pose parameters was built in [20]. Pose tracking was derived by optimizing
global appearance-based energy. Based on this probabilistic model, an energy function using multiple
local appearance models [13] was proposed to capture the spatial variation in statistical properties.
In addition to probabilistic model-based approaches, building the local correspondence is an alternate
choice for only the color cue. For the case where depth images are available, learning-based methods
with random forest [16,17] comprise a state of the art framework. Tan et al. [16,17] originally proposed
to build the mapping between displacement vectors and temporal parameters. With both color and
depth cues, the options become diverse. Hinterstoisser et al. [23] presented a robust template-based
approach with the color gradient and surface normal. Choi et al. [22] fed multiple geometric features
to a particle filter. Beyond these, the dense 3D object coordinate [21] has also been proven to be an
effective feature for correlating pose parameters.

For most applications in this community, real-time performance is the necessary attribute for
trackers. Before proceeding, we first clarify the two mechanisms: tracking-by-detection [18,21] and
temporal tracking [16,17,20,22]. The former assumes that sequence frames are independent and
performs pose detection for each frame. In contrast, the input of temporal tracking consists of the live
frame and previous pose parameters. Existing temporal trackers achieve real-time tracking gracefully
by virtue of novel approximations [19] or theoretical efficiency [16,17]. With the help of GPUs’ powerful
geometric computing ability, methods suitable for parallel computing such as the partial filter [22]
reach the real-time level. Occlusion handling is another essential skill for pose tracking. The built-in
occlusion handling [16,17] and sparse approximations [19] enable these methods to cope with occlusion
under low levels. To improve the robustness against occlusion, Tan et al. [17] proposed a passive
strategy that the tracker learns occlusion handling from predetermined occlusion patterns, which
represent the distribution of random selected tracking points. Obviously, this random strategy does
not always model the real scene well. Besides, increasing trees in the forest are disturbed inevitably as
the occlusion deepens. Meanwhile, RFtracker directly uses the selected individual trees, which are
trained separately to predict the forest’s output. Suboptimal learning loss [24] caused by the heuristic
learning rule of random forest is ignored in RFtracker [17].

In this paper, we focus on an occlusion-aware and real-time framework for 3D temporal tracking.
To this end, we propose a framework built upon RFtracker and introduce two necessary improvements
to enhance tracking accuracy and robustness to occlusion. On the one hand, an active occlusion
handling strategy built on online rendering and depth comparison is proposed. Thus, random forest
in our framework will receive filtered data instead of raw displacement vectors. Depth comparison in
occlusion handling is built on the assumption that the update transformation between consecutive
frames is not large. However, fast motion and inevitable physical delay caused by the imaging process
and data transmission make this assumption less stable. For this purpose, a lightweight convolutional
neural network (CNN)-based motion compensation module is designed to bridge the gap between
consecutive frames. A local refinement is presented to improve the forest’s regression on the other.
Note that random forest with local refinement is superficially similar to multi-forest [16]. The core
difference is that we mix complementary information between individual trees into the final prediction.

To summarize, the main contributions of this paper are highlighted as follows:

1. To guide random forest towards optimal regression, a new loss function considering
complementary information between individual trees is defined.

2. An online rendering-based occlusion handling method is proposed to improve the robustness
against occlusion.

3. A lightweight convolutional neural network-based motion compensation module is presented to
cope with jitter caused by fast motion and physical delay.



Sensors 2018, 18, 2734 3 of 20

The rest of this paper is structured as follows: In Section 2, the details of the proposed framework
are presented. Next, in Section 3, we present the implementation details and our results compared
with RFtracker. Conclusions and future work are given in Section 4.

2. Method

The proposed occlusion-aware framework is detailed in this section. As shown in Figure 1, the
input of the proposed framework consists of previous pose parameters and the live RGB-D image pair
It and Dt. After dataflow travels over the forest, the final output is a 6-DoF update transformation
between consecutive frames. To close the loop, an online rendering-based occlusion handling module
is employed to connect the update transformation and input frame. As a key component of occlusion
handling, the convolutional neural network-based motion-compensated (CMC) module takes the
synthesized template and live frame as input and outputs the motion compensated transformation.
Once having received the update transformation, the rendering engine prepares an occlusion-free
template for occlusion detection. Thus, the interference from the occluded area can be alleviated,
and random forest can focus more on building the mapping between displacement vectors and pose
parameters. The main reason to introduce the CMC module is to compensate the low overlap rate
between sequential inputs. That is, the CMC module is activated only when the frame-to-frame
transformation is larger than a preset threshold. Therefore, a switch-based velocity judgment is
integrated into the framework to control the turning on and off of the CMC module.

Figure 1. Pipeline of the proposed occlusion-aware framework. CMC, convolutional neural
network-based motion-compensated.

2.1. Random Forest-Based 3D Temporal Tracker

Random forest [25] is an ensemble learning method with many ideal attributes. In consideration
of its powerful non-linearity fitting and high efficiency, Tan et al. [17] proposed a 3D temporal tracker
anchored in random forest. Similar to model-based tracking [26], a view sphere centered on a 3D
model is constructed. To generate the training dataset, displacement vectors of randomly selected
tracking points and the corresponding update transformation are accumulated for each viewpoint.
In the forest, one tree is responsible for a unique viewpoint. After test data travel over the forest,
final predictions are calculated by averaging adjacent trees. Note that predictions of the forest are the
object’s update transformation between consecutive frames. During the training or testing stage, each
tree is responsible for one parameter, and each viewpoint has an individual unit consisting of 6 trees.
Three of them are for 3D translation, and the rest for 3D rotation.

2.2. Local Refinement of Random Forest

As shown in Figure 2, the view sphere is divided into an icosahedron with Nv vertices, and each
vertex represents a camera view. An exclusive sub-dataset consisting of displacement vectors and



Sensors 2018, 18, 2734 4 of 20

frame-to-frame transformations is assigned for each camera view. Given the previous transformation
Tt−1 and depth frame Dv of the v-th camera view, the corresponding displacement vector can be
computed by Equation (1).

ε (Tt−1, Dv)t = nv ·
(

T−1
t−1

π (x)− X
)

(1)

where nv is a unit vector pointing to the origin of the camera coordinate system, π is the re-projection
function and x and X represent a tracking point’s projection in the image coordinate system and the
location of a tracking point in the object coordinate system, respectively. Note that the unit vector nt−1

is computed with the previous object transformation Tt−1. As described above, each tree in the forest
is trained independently with its own sub-dataset. The forest’s prediction is computed by averaging
selected trees. Complementary information between individual trees is thus not employed during the
prediction. Loss functions defined on the training and testing are obviously inconsistent. To remove
this inconsistency, an ideal loss function that takes into account the complementary information among
individual trees needs to be redefined.

Figure 2. View sphere in RFtracker. Each vertex on the view sphere represents a camera viewpoint.
Trees inside the blue region and the green region are selected for the final prediction in the testing stage,
respectively. The viewpoint corresponding to the red point located at the region’s center is determined
by the previous pose.

Regardless of extreme fast motion, update transformations across sequence images change
smoothly along the time line. In the view sphere, object transformations belonging to adjacent
viewpoints are approximate. In consideration of the above two points, trees located at adjacent
viewpoints are selected to predict jointly update transformation, and the rest are put aside temporarily.
For the RFtracker, these selected trees are treated as separate individuals in the training, and thus,
forests are not guided to toward the optimal direction. To address this issue, we create a tuple consisting
of Nnt neighborhood trees for each viewpoint. Inside each tuple, a single camera view still uses 6 trees
to store training parameters. This expanded forest contains Nv tuples, a total of 6Nnt · Nv trees. Trees
inside each tuple are jointly trained under a local loss function and predict the update transformation
collaboratively, which is the key difference between this extended forest and the RFtracker. It should
be noted that tuples with adjacent viewpoints are refined separately to avoid mutual interference from
the overlapping neighborhood.

Essentially, random forest builds a non-linear mapping between sample data and corresponding
labels. Ren et al. [24] proposed to utilize an indicator vector (see Figure 3) φ (x) to specify this mapping
y = wφ (x), where w is the leaf matrix packing all leaf nodes. Analogously, the mapping associating
displacement vector ε with temporal parameters T∆t can be formulated as Equation (2).

T∆t= Tree (εt, ϕ) = ωψ (εt, ϕ) (2)



Sensors 2018, 18, 2734 5 of 20

where ψ (·) denotes an improved indicator vector with an adjustable ratio ϕ used for selecting leaf
nodes with a lower standard deviation and ω is the leaf matrix consisting of parameter means stored
in leaf nodes. Note that the corresponding indicator of leaf nodes with a larger standard deviation will
be set to 0.

Figure 3. The process to determine elements of an indicator vector. The blue leaf or non-leaf nodes
in forest represent data stream. Input data travel over the trees and are finally stored in the blue leaf
nodes. After that, an indicator vector with the same dimension as the number of leaves is determined.
Each element in the indicator vector depends on whether the corresponding leaf node contains the
input data or not.

2.2.1. Learning with Indicator Vector

For the v-th viewpoint, the corresponding tuple consists of neighborhood trees determined
by an angle threshold between the unit vector Nt−1 and adjacent camera views. During temporal
tracking, the estimated transformation at timestamp t satisfies T̂t = T∆tT̂t−1 where T∆t denotes the
regressor of random forest from timestamp t. Therefore, a series of regressors from random forest
are predicted to drive temporal tracking. After the extension of the forest, its corresponding training
process is also slightly different. Once input data reach the leaf nodes of the forest, indicator vectors ψi,
i = 1, 2, ..., Nnt from different trees are determined simultaneously. Then, the v-th tuple is determined
by the unit vector Nt−1; all the indicator vectors and leaf matrices inside this tuple are packed to form
a high-dimensional binary feature and leaf matrix, as shown in Equation 3.

L (ε, ϕ) = [ψ1, ψ2, · · ·, ψNnt ] ,
W = [ω1, ω2, · · ·, ωNnt ] ,
ωi =

[
(m1, σ1) , (m2, σ2) , · · · ,

(
mNi , σNi

)] (3)

where W represents the leaf matrix consisting of the mean mi and standard deviation σi of
transformation parameters stored in leaf nodes and Ni represents the total number of leaf nodes
in i-th tree.

2.2.2. Learning with the Leaf Matrix

For RFtracker, the objective function of random forest in learning can be written as Equation (4).

min
ωi

1
Nvp

Nvp

∑
i=1

sum
(

θsd
i

)
s.t. θsd

i = ωiψi (ε) , ∀i ∈
[
1, Nvp

] (4)

where Nvp denotes the number of viewpoints across the view sphere and sum (·) is the error function
defined on the tree’s prediction θsd

i , which is a vector collecting the standard deviation stored in
leaf nodes.

Individual trees are obviously trained separately without sharing the complementary information
with adjacent trees. The loss function of RFtracker in learning is a simple average over individual trees’
loss, which is irrelevant to the final predictions of the forest. Next, we present the reformulated version
with consideration of the complementary information inside the tuple. After the indicator vector and



Sensors 2018, 18, 2734 6 of 20

the leaf matrix are determined, these data are not used directly to calculate forest’s regressors. The leaf
matrix is discarded instead of being used to compute the final prediction. Formally, the leaf matrix W
of the v-th tuple is re-learned by minimizing the following loss:

min
W

Nvt
∑

v=1

Nv
∑

i=1

∥∥∥θ
gt
i − θest

i

∥∥∥2

2
+ λ ‖W‖2

2

s.t. θest
i = WL (εi, ϕ)

(5)

where λ controls the tradeoff between training loss and the regularization term, Nv denotes the total
number of training samples stored in the v-th tree, θ

gt
i and θest

i denote the ground truth labels and the
corresponding estimated regressors, respectively. It should be noted that the synthetic depth image
and transformation set that correspond to the v-th tree are applied to all the Nvt trees in this tuple.

However, it has been found that overfitting occurs from time to time when using the above
local refinement. The prediction model described by Equation (5) is dependent on training data
unduly and has a high error rate on the unseen data. That is, some of the discarded predictions
have lower error than refined predictions, and the fitting capacity of individual trees is weakened.
Alternatively, alternating regression forests (ARFs) [27] interrelate the complementary information
between individual trees during a stage-wise training. Several weak learners hd(x) are combined to
generate a stronger learner F(x) in turn. Each depth d corresponds to a single stage. More specifically,
a new weak learner such as a random tree is added to the previous prediction to generate a stronger
learner Fd(x) = Fd−1(x) + hd(x). ARFs utilize a more elaborate method, which applies gradient
descent to the function space to correlate the negative gradient of the loss function and the current
output. For the training sample

(
ε, θgt

)
, the corresponding pseudo target [28] can be calculated by

Equation (6).

− gd (ε) = −
[

∂Loss
(
θgt, F (ε)

)
∂F (ε)

]
F(ε)=Fd−1(ε)

(6)

In a real case, the pseudo targets act as the error of the existing prediction model and can
be replaced with the difference between the ground truth and previous estimate Fd−1(x). Given
the previous prediction Fd−1(x) at depth d − 1, ARFs can influence the training in the next stage
via updating the global loss based on Equation (6). By comparing the above two ways of mining
complementary information, it can be found that ARFs reserve predictions of individual trees, while
interrelating the complementary information and relearning-based strategy [24] does not change
the trees’ structure. To inherit advantages of both methods simultaneously, a modified prediction
model is pointedly introduced through numerical optimization in the function space, as denoted by
Equation (7).

min
W

Nvt
∑

v=1

Nv
∑

i=1

∥∥−gd (ε)− θest
i

∥∥2
2 + λ ‖W‖2

2

s.t. θest
i = WL (εi, ϕ)

(7)

where the unconstrained negative gradient −gd (ε) is approximated by the difference between the

ground truth θgt and forest regressor Fd−1 (ε, ϕ) = 1
Nt

Nt
∑

i=1
Treei (ε, ϕ).

Leaf nodes of the original forest correspond to the previous prediction Fd−1 (x) trained up to
the stage d− 1, and the refinement strategy described by Equation (7) corresponds to the training
depth d. Note that the final prediction at depth d is the pseudo targets instead of the ground truth
labels. We would like to stress that the leaf matrix corresponding to this modified prediction model
will be added to the forest’s prediction at depth d − 1 to obtain the final result. That is, a local
refinement is performed to compensate the error of the existing prediction model, and we refine the
prediction model of RFtracker instead of the relearning-based strategy. The minimization described
by Equation (7) can be handled well by the liblinear library [29]. It should be noted that although the



Sensors 2018, 18, 2734 7 of 20

local refinement utilizes more than 70,000 trees in the learning stage, only trees in a single tuple are
active simultaneously in the prediction. Thus, the time overhead to complete a prediction loop is still
close to the original method. So far, extra computation comes mainly from the leaf optimization.

2.3. CNN-Based Motion Compensation

As mentioned earlier, the CMC module is designed to handle occlusion. Someone may argue that
an occlusion-free template can be rendered directly by using the regression-derived pose. Although
RFtracker has shown extreme low computational cost and good tracking accuracy, it still suffers from
physical restrictions in real applications. Specifically, pose stream is inevitably mixed with physical
delay such as the imaging process, exposure time and data transmission. In order to overcome the
above problems, the CMC module is presented to bridge the gap.

2.3.1. Network Architecture

To achieve rapid inference, we utilize a simple neural network structure similar to a Siamese
network [30]. As shown in Figure 4, the network takes two resized RGB-D frames as the input.
Before merging two collateral inputs, they will pass through one convolutional layer and fire module.
To maintain competitive accuracy with few parameters, SqueezeNet [31] uses numerous 1× 1 filters
to replace 3 × 3 filters and decrease the number of input channels to 3 × 3 filters. Meanwhile,
downsampling is performed at late layers to ensure that the convolutional layers can have large
activation maps. Based on the above design strategies, the typical fire module is comprised of a
squeeze convolution layer and an expand layer. A squeeze layer usually has only 1× 1 filters, of which
the output is passed to the expand layer consisting of 1× 1 and 3× 3 filters. In view of the impressive
performance of model compression, fire modules instead of convolutional layers are utilized to deepen
the network. Such an early fusion can avoid excessive loss of related spatial information as the network
deepens. After the fusion, the data stream will go through three fire modules and two fully-connected
layers embedded at the end. Each convolutional layer is followed by a pooling layer and a nonlinear
activation function. With the rapid development of the deep learning community, we have many
alternative activation functions such as parametric rectified linear unit (PReLU) [32], rectified linear
unit (ReLU) [33,34] and exponential linear unit (ELU) [35]. ELU finally wins the bid because of
better performance in terms of convergence speed and accuracy in our tests. The cost function is
built by comparing the predicted transformation vector with the corresponding ground truth label.
In order to avoid damaging the learning dynamics, early stopping [36] is employed as a form of
regularization and the training data are split for training and validation into a ratio of 3:1. That is, the
no-improvement-in-n strategy is activated if the validation loss has not been improved in the next
n epochs.



Sensors 2018, 18, 2734 8 of 20

Figure 4. Architecture (left) and component size (right) of the CMC module. The early layer consists of
two collateral convolutional layers with 64 3× 3 filters. Fire modules (in crimson) [31] in the network
architecture are employed to replace conventional convolutional layers. Three hyper-parameters of
the fire module represent the number of filters in the squeeze layer, the number of 1× 1 filters and the
number of 3× 3 filters in the expand layer, respectively. For the input convolutional layers conv1-1 and
conv1-2, the stride is set to 2.

2.3.2. Training Dataset

For RFtracker, the training dataset consists of a series of displacement vectors and corresponding
transformation vectors. To extend input pairs of random forest, random transformation vectors
sampled over a fixed range are applied to selected tracking points to mimic locations from the previous
frame. Displacement vectors of these tracking points are packed to personalize trees in random forest.
For the proposed framework, two different training datasets are needed obviously. One is for random
forest, and the other is for the CNN in CMC module. Apparently, it seems that we should utilize the
combined dataset to optimize leaf nodes. However, upon closer inspection of the training dataset, we
find that this simple combined strategy is not applicable. The training dataset is a consistent whole
in a standard random forest. However, for the RFtracker, the training dataset is evidently a form of
viewpoint-specific data. Besides, the introduction of local refinement does not alter the structure of the
pre-trained forest. Given these characteristics, the random forest in our proposed framework can share
the same training dataset with RFtracker.

As the input of RFtracker, displacement vectors can represent the spatial relationship of the
tracked object between consecutive frames. Instead of learning from discrete data like random forest,
we try to build a comprehensive mapping between the image domain and numerical labels with
CNN’s powerful representation ability. Inspired by mappings built via random forest, we utilize two
synthetic frames instead of the displacement vector and the corresponding update transformation to
form a basic unit of the training dataset. Here, a certain number of consecutive image pairs instead of
displacement vectors is employed to train the CNN in the CMC module.

For a tracked object with 3D model available, we firstly generate 180,000 RGB-D frames
of which the rendering engine randomly samples a transformation with a radius that ranges
in [400 mm, 1600 mm] and polar angles in [−180◦, 180◦] in the spherical coordinate system. The
corresponding rigid transformations over rendered frames are referred to as live poses. After that, the
inverse of a random transformation is applied to the live pose for generating a simulative previous



Sensors 2018, 18, 2734 9 of 20

frame. This random transformation samples from a translation that ranges in [−20 mm, 20 mm] and
angles that range in [−15◦, 15◦].

2.3.3. Data Preprocessing

A tracked object may appear anywhere in the image plane during tracking. To avoid biasing the
network, we define a region of interest determined by object transformation and resize it to 160× 160
in both color and depth frames. Note that the object transformation is replaced with the given previous
transformation. For improving the robustness against perturbations, we employ different kinds of
data augmentation, such as changing brightness, background, noise and occlusion. After these above
steps, both color and depth images are normalized by the statistics of color and depth channels among
the whole training dataset. Some training samples are shown in Figure 5.

Figure 5. Exemplary training samples used in the CMC module. Color (up) and depth (down) image
pairs (a) and (c) are synthesized by feeding a random pose to the rendering engine. (b) and (d) are the
corresponding image pairs after augmentation operations and stacking relative transformations.

2.4. Online Rendering-Based Occlusion Detection

Occlusion detection and handling remain an open problem at all times in tracking [3]. Starting
from an intuitive point of view, the occlusion area is nearly identified with an available occlusion-free
template. Towards this direction, the compensated transformation parameters are passed to the
rendering engine for a background-free and occlusion-free template. Similar to [37], the object region
of the non-occluded template is compared to the test frame to determine the occluded pixels. This
non-occluded template makes it easy to get out of background clutter and activates many potential
methods. A color-based comparison builds on the time-consuming illumination estimation [38,39] and
falls into perplexity when the occluder and tracked object have a similar color. Another observation is
that occluders always appear between the tracked object and the observer in most cases, and thus, they
usually have different distance attributes. Given these details, a depth map instead of a color image is
employed to handle dynamic occlusion. A simple and effective occlusion detection method is designed
based on the observation. With preparatory work completed, we have the motion-compensated depth
map Dmc and test frame Dnew at hand. RFtracker learns a built-in occlusion handling capacity with
tracked points randomly selected from the target mask. For the test frame Dnew, non-occluded pixels
inside the target mask correspond to the high-quality sampling region. On the contrary, the low-quality
region SL refers to non-target appearance such as occluded pixels and background. To determine the
low-quality region SL, we apply a two-step strategy to the test frame. The corresponding detection can
be detailed as follows:

1. Depth comparison-based occlusion and background detection: Although the rendering template
with motion-compensated transformation bridges the gap between sequential frames, a direct
pixel-wise comparison is still inexact because of motion blur and a noisy depth map. To improve



Sensors 2018, 18, 2734 10 of 20

detection efficiency, we utilize the processed images with Gaussian blur instead of raw inputs.
In view of the random distribution of tracking points, as many occluded pixels as possible should
be labeled. To this end, the dilation operation is embedded in the backend of coarse detection.
In our implementation, both the rendering template and test frame are convolved by the 6× 6
Gaussian kernel Gσ with a standard deviation of 5. To reduce time cost, filtering is only performed
in the region of interest (ROI) determined by the motion-compensated pose and the object’s
diameter. Formally, the occluded region identified by depth images can be expressed as Equation (8).

SD = Mask
(∣∣∣Gσ ∗ DROI

new − Gσ ∗ DROI
mc

∣∣∣− β
)
⊕ ED (8)

where Mask(·) labels pixels with a higher difference than threshold β, ∗ denotes the filtering
operation, ED represents a quadrate structuring element with a side of 3 pixels, ⊕ is an image
dilation operator for expanding the detected occlusion and DROI

new and DROI
mc represent the ROI in

the test frame and motion-compensated frame, respectively.
2. Projected silhouette of the rendering template: As previous literature reported, raw depth maps

captured by Kinect meet interferences such as sensor noise [40] or flying pixels [41] at depth
discontinuity. The difference between the compensated pose and ground truth pose exacerbates
the unreliability. Thus, the silhouette of the non-occluded template is labeled in this stage.
As shown in Figure 6, some background pixels appear in the mask area. The projected silhouette of
the tracked object is added to the low-quality region to maximize purification of the forest’s input.
We can easily label the silhouette pixels Se with an occlusion-free and background-free template.
Similar to the coarse detection, the dilation operation is applied to the detected silhouette. The final
low-quality region can be determined by combining the silhouette pixels Se with the occluded
region SD (see Equation (9)).

SL = SD ∪ (Se ⊕ ED) (9)

Figure 6. An example of occlusion detection with the depth map. RGB images are provided for better
visualization. The test sample from the Occluded LineModdataset [21] is employed to show the flow of
occlusion detection. In (a), RGB image crop (up) and depth image crop (down) of an occluded scene are
displayed. The synthetic depth maps (b) and projected mask (c) on the RGB image are generated with
the compensated pose (up) and ground truth pose (down), respectively. The labeled region corresponds
to low-quality area shown in (d).

From Figure 6c, the projection mask on the RGB image that corresponds to the compensated
pose contains more background pixels. By contrast, occlusion in Figure 6d can be detected almost
perfectly with the ground truth pose. However, if without the CMC module, the projection mask will



Sensors 2018, 18, 2734 11 of 20

contain more low-quality areas dominated by background pixels or occluders, which frequently leads
to tracking loss. Note that once the occlusion detection is completed, all indexes of the low-quality
region are stored for filtering test data of random forest.

2.5. Details of Using Detected Occlusion

Before showing how to exploit the detected occlusion, we firstly review how to learn occlusion
handling in RFtracker. RFtracker achieves a built-in occlusion handling capability from sparse tracking.
A certain number of sample points is randomly selected from the target region to generate displacement
vectors. As the level of occlusion increases, displacement vectors are mixed with an increasing number
of outliers. The result is that regression accuracy declines sharply, and even losses of the tracking occur
frequently. Therefore, the key to maintain and improve prediction accuracy is to distinguish occluded
sample points from test data. In the proposed framework, tracked points stored in activated trees will
be filtered before traveling over the forest. More specifically, a displacement vector is set to 0 if the
corresponding tracked point falls into the low-quality region after back-projection.

3. Experiments

The proposed framework is written in python and runs on a core i7@3.5 GHz (Intel, Santa Clara,
CA, USA) and NVIDIA GTX 1080Ti (NVIDIA, Santa Clara, CA, USA). The CMC module is built
on PyTorch [42], which is an open source machine learning library with modular components of
a deep learning architecture. A synthetic dataset [22] consisting of four motion sequences each
containing 1000 frames with the ground truth pose is utilized to evaluate the reimplementation.
The LineMod dataset [23] and the occluded version [21] are employed to evaluate the tracking accuracy
and robustness against occlusion.

The proposed framework builds on RFtracker, and thus, parameter settings of random forest are
reserved. That is, the view sphere is equally divided into 642 camera views, and training data for each
tree consist of 2500 samples. The angle threshold for determining neighborhood trees is set to 35◦.
Beyond these, the optimal parameter λ for the local refinement is set to 10−4 after a cross-validated
grid search. Adam [43] is utilized to optimize the loss of CMC module, with a learning rate of 10−5

and mini-batches of 64 image pairs.

3.1. Lifting of the Overlap Ratio

In the proposed framework, the CMC module is designed to increase the overlap ratio between
the rendering template and tracked object in the test frame. It is obvious that the overlapping ratio is
negatively correlated with the update transformation between sequential frames. Given a test frame
and rendering template, the overlapping ratio can be determined by Equation (10).

overlapping_ratio =
Nrender
Nscene

(10)

where Nscene is the total number of pixels inside the projected mask of a LineMod object in the test
frame and Nrender is the number of synthetic pixels located in the corresponding region determined by
the same mask. In order to evaluate the impact of the CMC module on the overlapping ratio, the update
transformation is sampled from a Euler angle in the range [−15◦, 15◦] and a translation in the range
[−20 mm, 20 mm] for each axis. For a quantitative comparison, the update transformation applied to
the LineMod sequences is divided into five levels (both translation and rotation are represented in an
absolute value): L1 = [0◦/0 mm, 3◦/4 mm], L2 = [3◦/4 mm, 6◦/8 mm], L3 = [6◦/8 mm, 9◦/12 mm],
L4 = [9◦/12 mm, 12◦/16 mm] and L5 = [12◦/16 mm, 15◦/20 mm]. For each tracked object, average
values of the overlapping ratio on a single LineMod sequence are recorded. The corresponding plots
of 12 LineMod sequences are shown in Figure 7.



Sensors 2018, 18, 2734 12 of 20

Figure 7. Overlapping ratio between the rendering template and tracked object in a real scene.

As can be seen in Figure 7, the overlapping ratio of LineMod sequences decreases with the increase
of the transformation level when the CMC switch is off. The CMC module increases the overlapping
ratio under all four higher levels. Besides, the overlapping rate of LineMod sequences can always
be maintained at a consistent level despite the increasing motion level. Note that when the update
transformation between sequential frames lies at a lower level, such as the L1 level, the rendering
template derived by previous transformation is close to the real projected silhouette in the test frame.
For all LineMod objects, the addition of the CMC module will slightly reduce the overlapping ratio at
lower levels. Here, the overlapping ratio is a statistical average value, which indicates that nearly half
of the test frames have an overlapping ratio below the average. A low overlapping ratio will result in a
decrease of the valid input data of random forest, a decline in tracking accuracy or even tracking loss.

At a low level of frame-to-frame motion, the CMC module achieves a very limited compensation
and even reduces the overlapping ratio of parts of LineMod objects. Thus, the threshold of translation
and rotation of the CMC switch is set to 6◦ and 8 mm.

3.2. Tracking Accuracy on the RGB-D Object Pose Tracking Dataset

To investigate the efficiency of local refinement and occlusion detection, we specify two different
implementations of the proposed framework: (1) improve the tracking accuracy of RFtracker with local
refinement and without regard to dynamic occlusion (referred to as RFtracker-A); (2) an integrated
implementation with both local refinement and the occlusion detection module (referred to as
RFtracker-B). Furthermore, the re-implementation is referred to as RFtracker*. Both RFtracker-A
and RFtracker-B build on this re-implementation. In this experiment, we employ a dataset consisting
of 4 synthetic and 2 real RGB-D image sequences with ground truth transformation. As in [17],
four synthetic object (Kinect box, tide, orange juice, milk) sequences are chosen for evaluation in terms
of tracking accuracy, i.e., errors in translation and rotation. We compare RFtracker*, RFtracker-A, and
RFtracker-B with the original RFtracker. Here, median errors of translation (mm) and rotation (degrees)
are given in Table 1. Note that mean errors of four sequences corresponding to RFtracker are provided
by the authors [44].



Sensors 2018, 18, 2734 13 of 20

Table 1. Comparison of tracking accuracy on the synthetic dataset [22]. The errors are denoted in
translation as mm and rotation in degrees. Optimal results for each term are in bold.

Method Kinect Box Tide Orange Juice Milk Mean
tran. rot. tran. rot. tran. rot. tran. rot. tran. rot.

RFtracker [17] 1.70 0.3 1.17 0.44 1.29 0.35 1.27 0.41 1.36 0.37
RFtracker* 1.67 0.53 1.29 0.50 1.49 0.42 1.19 0.69 1.41 0.54
RFtracker-A 1.40 0.45 1.19 0.41 1.35 0.40 1.08 0.54 1.26 0.45
RFtracker-B 1.72 0.48 1.21 0.44 1.40 0.42 1.27 0.51 1.40 0.46

From the results listed in Table 1, the tracking accuracy of the RFtracker* is comparable to
the original version. After integrating the local refinement module, RFtracker-A achieves the best
mean error in translation. Compared with RFtracker*, RFtracker-A has achieved better results on all
indicators. Note that the tracking accuracy of RFtracker-B is slightly worse than that of RFtracker-A
because of the non-occluded attribute of LineMod sequences. The CMC module filters out both the
background pixels and parts of high-quality areas. Even so, mean errors of RFtracker-B are still better
than RFtracker*.

3.3. Tracking Accuracy on a Real Dataset

For the synthetic dataset, the rendering engine is idealized without distortion and noise. Hence,
we utilize the extensive ACCV (Asian Conference on Computer Vision) dataset [23] for further
evaluation in terms of tracking accuracy in this experiment. This real dataset consists of over 18,000 real
images with 15 different objects and the ground truth pose. Note that three of the LineMod objects
(bowl, can, cup) are removed for lacking the mesh model. Furthermore, this dataset aims to evaluate
the accuracy of object detection and pose estimation in heavily-cluttered scenes and does not have
a specially-designed occluded scene to evaluate the robustness of algorithms. In this experiment,
we only examine the lifting tracking accuracy of the local refinement module. Similar to [17], the
convergence rate describing average errors in translation and rotation with the increasing of iterations
is employed as the evaluation criteria. Corresponding plots of both RFtracker* and RFtracker-A on
each LineMod sequence are shown in Figure 8. The ground truth pose of each frame is combined
with a relative transformation of the translation range in [−20 mm, 20 mm] and the rotation range in
[−10◦, 10◦] to mimic the previous transformation.

For the LineMod dataset, RFtracker-A achieves better results than the reimplementation on
all sequences. Specific to each iteration, RFtracker-A can always converge to a lower error in both
translation and rotation because of the local refinement module. Another nice bonus is that fewer
iterations are required when RFtracker-A converges than RFtracker*. RFtracker-A takes only 6 or
7 iterations to converge.



Sensors 2018, 18, 2734 14 of 20

Figure 8. Comparison of tracking accuracy against the number of iterations. All the test objects are
from the LineMod dataset [23].

3.4. Robustness against Occlusion

The framework’s robustness against occlusion is evaluated on a challenging benchmark dataset,
the Occluded LineMod dataset. This dataset contains additional annotations for the original LineMod
dataset [23], for which only ground truth poses for one object are given. Depending on the viewing
direction, some objects are occluded by others. Thus, the Occluded LineMod dataset can provide
us with heavily-occluded objects for which ground truth poses are available. In this experiment, we
test all the sequence frames with all three methods, that is RFtracker*, RFtracker-A and RFtracker-B.
To quantify the robustness against occlusion, the percentage of images where the object’s pose is



Sensors 2018, 18, 2734 15 of 20

estimated correctly is included. This protocol, which compares the average distance of all model
vertices with the product of a scaling factor and the object’s diameter, was originally proposed by
Hinterstoisser et al. [23]. The corresponding results are detailed in Table 2. Similar to the previous
practice, the simulative input transformation is generated by combining the ground truth pose of each
frame with an update transformation of the translation range in [−20 mm, 20 mm] and the rotation
range in [−10◦, 10◦]. Note that all the sampled update transformations are tested to ensure that the
corresponding scaling factor is greater than 0.2.

Table 2. Comparison of the Occluded LineMod dataset under two different scaling factors. We provide
the percentage of frames for which the estimated average distance is smaller than the product of the
scaling factor and the object’s diameter. Optimal results for different scaling factors are in bold. Avg.
denotes the percentage here. RF*, RF-A and RF-B represent RFtracker*, RFtracker-A and RFtracker-B,
respectively. Depth C. (depth component). denotes the method [21] with depth energy only.

Object Depth C. [21] RF* RF-A RF-B Depth C. [21] RF* RF-A RF-B
k = 0.1 k = 0.2

Ape 51.9 65.1 66.1 68.3 - 66.6 67.2 70.0
Can 98.8 74.9 75.9 78.0 - 77.6 79.2 81.1
Cat 27.7 37.2 37.7 38.4 - 38.3 39.0 41.4
Driller 71.8 59.6 60.3 62.7 - 61.2 62.5 65.3
Duck 57.8 62.7 63.1 63.9 - 63.3 64.3 66.0
Egg box 2.4 34.3 34.9 35.7 - 35.3 36.1 38.3
Glue 33.3 43.5 44.2 45.6 - 45.1 46.0 47.8
Hole puncher 71.5 73.5 74.0 75.5 - 74.9 75.5 76.2
Avg. 51.9 56.3 57.0 58.5 - 57.7 58.7 60.8

The learning method with 3D object coordinates [21] is essentially a pose detection approach,
which directly estimates the 6D pose of specific objects relative to the camera coordinate system.
Therefore the data provided by this method are to determine roughly to which levels the proposed
method belongs. As shown in Table 2, both RFtracker-A and RFtracker-B obtain more superior
results than RFtracker*. Adding the local refinement module slightly improves the fraction of correct
estimated frames by 0.7% on average. This indicates that the local refinement module does not have
much inhibitory effect on noisy data mixed with the forest’s input. For k = 0.1, the lifting of the
success rate is mainly from the improvement of tracking accuracy. Taking into account challenging
scenes among the Occluded LineMod dataset, RFtracker-B significantly outperforms RFtracker* and
RFtracker-A on this protocol by a large margin for both scaling factors. All of these benefit mainly from
the occlusion handling module in the framework, which can efficiently filter out noisy data introduced
by occlusions. The success rate of egg box being correctly estimated is extremely low because egg box
is out of view and heavily occluded in numerous scenarios.

Some qualitative results on the Occluded LineMod dataset [23] are shown in Figure 9.
The occlusion rate in the scenes corresponding to the two columns on the left side is low, while
it is high in the two columns on the right side. From top to bottom, the eight tracked targets are ape,
can, cat, driller, duck, egg box, glue and hole puncher, respectively. We show the projection mask of 3D
rendering models on scene crops. The results of RFtracker* are shown in white, and our predictions
(RFtracker-B) are shown in yellow. For the scenes for which the occlusion rate is low, both RFtracker*
and RFtracker-B achieve visually satisfactory accuracy. For heavily-occluded scenes, RFtracker-B
shows a stronger robustness against occlusion.



Sensors 2018, 18, 2734 16 of 20

Figure 9. Example image crops showing the test results of RFtracker* (white) and RFtracker-B (yellow).



Sensors 2018, 18, 2734 17 of 20

3.5. Computation Time

In the proposed framework, the random forest and local refinement are running on multi-core
CPUs. The CMC module and occlusion detection are suitable for parallel computing, so GPU is
employed to maximize the efficiency of our framework. Both the CMC module and the occlusion
detection are executed once in each loop. By contrast, random forest and local refinement need to be
iteratively executed multiple times until the interrupt condition is triggered. As shown in Table 3,
the corresponding runtimes of different modules are listed.

Table 3. Runtime analysis of the proposed framework.

Processing step Time

per frame CMC module 7 ms
Occlusion detection 4 ms

per iteration Random forest + local refinement 4 ms
RFtracker-A 4× 7 = 28 ms
RFtracker-B with CMC off 4× 7 + 4 = 32 ms
RFtracker-B with CMC on 4× 7 + 4 + 7 = 39 ms

Similar to [17], the runtime of our reimplementation (referring to RFtracker*) is less than 2 ms
using the multi-core CPUs. The extra time overhead of RFtracker-A comes mainly from the local
refinement module compared with RFtracker*. RFtracker-A runs at about 35 Hz on the LineMod
sequences with a total of 7 iterations. When the CMC switch is closed, RFtracker-B achieves a
runtime performance of more than 30 Hz. In cases when the CMC module is triggered by the update
transformation between sequential frames, it goes down to about 25 Hz.

4. Conclusions

In the field of pose tracking, tracking accuracy and robustness to various interferences from the
environment are still open problems to be further studied. Inspired by a strong baseline RFtracker, we
have proposed an integrated framework with strong robustness to occlusion and improved precision.
To address the disagreement between training and testing loss in the original RFtracker, a local
refinement is introduced to take advantage of complementary information between adjacent trees.
The evaluation on the LineMod dataset shows that the proposed refinement module can further
improve the regression accuracy of the forest at the expense of less computational cost. The randomness
of sample selection in the training data provides a built-in occlusion handling, which can deal with
occlusion at primary levels. Thus, we propose an online rendering module with the CMC to label the
low-quality region. The comparison with RFtracker shows that our method has stronger robustness to
heavy occlusion. These improvements built on RFtracker allow our approach to maintain considerable
accuracy under partial occlusions.

In future work, we will consider exploring a deep learning model to predict stable parts of a
tracked object directly instead of the proposed occlusion handling module. Online rendering damages
the scalable attribute of RFtracker, which is also an issue to be solved.

Author Contributions: M.F. and Y.L. conceived of and designed the experiments. M.F. performed the experiments.
M.F. and Y.L. analyzed the data. H.L. and W.Z. supervised this work.

Funding: This research was funded by the National Science Foundation of China under Grant 51505470.

Acknowledgments: The authors would like to thank the National Science Foundation of China for supporting
and funding this work.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 2734 18 of 20

References

1. Comaniciu, D.; Ramesh, V.; Meer, P. Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell.
2003, 25, 564–577. [CrossRef]

2. Song, S.; Xiao, J. Tracking revisited using RGBD camera: Unified benchmark and baselines. In Proceedings
of the IEEE Intertional Conference on Computer Vision, Sydney, Australia, 3–6 December 2013; pp. 233–240.

3. Meshgi, K.; Ishii, S. The State-of-the-Art in Handling Occlusions for Visual Object Tracking. IEICE Trans.
Inf. Syst. 2015, 98, 1260–1274. [CrossRef]

4. Billinghurst, M.; Clark, A.; Lee, G. A survey of augmented reality. Found. Trends Hum. Comput. Interact. 2014,
8, 73–272. [CrossRef]

5. Oikonomidis, I.; Kyriazis, N.; Argyros, A.A. Efficient model-based 3D tracking of hand articulations using
kinect. In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014;
pp. 1–11.

6. Rieke, N.; Tan, D.J.; Filippo, C.A.D.; Tombari, F.; Alsheakhali, M.; Belagiannis, V.; Eslami, A.; Navab, N.
Real-time localization of articulated surgical instruments in retinal microsurgery. Med. Image Anal. 2016, 34,
82–100. [CrossRef] [PubMed]

7. Black, M.J.; Jepson, A.D. Eigentracking: Robust matching and tracking of articulated objects using a
view-based representation. Int. J. Comput. Vis. 1998, 26, 63–84. [CrossRef]

8. Wagner, D.; Reitmayr, G.; Mulloni, A.; Drummond, T.; Schmalstieg, D. Pose tracking from natural features on
mobile phones. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented
Reality, Washington, DC, USA, 15–18 September 2008; pp. 125–134.

9. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohli, P.; Shotton, J.;
Hodges, S.; Fitzgibbon, A. Kinectfusio n: Real-time dense surface mapping and tracking. In Proceedings of
the IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October
2011; pp. 127–136.

10. Whelan, T.; Johannsson, H.; Kaess, M.; Leonard, J.J.; McDonald, J. Robust real-time visual odometry for
dense rgb-d mapping. In Proceedings of the IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, 6–10 May 2013; pp. 5724–5731.

11. Park, Y.; Lepetit, V.; Woo, W. Texture-less object tracking with online training using an rgb-d camera.
In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland,
26–29 October 2011; pp. 121–126.

12. Tjaden, H.; Schwanecke, U.; Schomer, E. Real-time monocular segmentation and pose tracking of multiple
objects. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 Octover 2016; pp. 423–438.

13. Hexner, J.; Hagege, R.R. 2D-3D pose estimation of heterogeneous objects using a region based approach.
Int. J. Comput. Vis. 2016, 118, 95–112. [CrossRef]

14. Zhong, L.; Lu, M.; Zhang, L. A Direct 3D Object Tracking Method Based on Dynamic Textured Model
Rendering and Extended Dense Feature Fields. IEEE Trans. Circuits Syst. Video Technol. 2017. [CrossRef]

15. Ren, C.Y.; Prisacariu, V.A.; Kahler, O.; Reid, I.D.; Murray, D.W. Real-time tracking of single and multiple
objects from depth-colour imagery using 3d signed distance functions. Int. J. Comput. Vision 2017, 124, 80–95.
[CrossRef]

16. Tan, D.J.; Ilic, S. Multi-forest tracker: A chameleon in tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1202–1209.

17. Tan, D.J.; Tombari, F.; Ilic, S.; Navab, N. A versatile learning-based 3D temporal tracker: Scalable,
robust, online. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
7–13 December 2015; pp. 693–701.

18. Kehl, W.; Milletari, F.; Tombari, F.; Ilic, S.; Navab, N. Deep learning of local RGB-D patches for 3D object
detection and 6D pose estimation. In Proceedings of the European Conference on Computer Vision,
Amsterdam, The Netherlands, 8–16 October 2016; pp. 205–220.

19. Kehl, W.; Tombari, F.; Ilic, S.; Navab, N. Real-time 3D model tracking in color and depth on a single CPU
core. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 465–473.

http://dx.doi.org/10.1109/TPAMI.2003.1195991
http://dx.doi.org/10.1587/transinf.2014EDR0002
http://dx.doi.org/10.1561/1100000049
http://dx.doi.org/10.1016/j.media.2016.05.003
http://www.ncbi.nlm.nih.gov/pubmed/27237604
http://dx.doi.org/10.1023/A:1007939232436
http://dx.doi.org/10.1007/s11263-015-0873-2
http://dx.doi.org/10.1109/TCSVT.2017.2731519
http://dx.doi.org/10.1007/s11263-016-0978-2


Sensors 2018, 18, 2734 19 of 20

20. Prisacariu, V.A.; Reid, I.D. PWP3D: Real-time segmentation and tracking of 3D objects. Int. J. Comput. Vis.
2012, 98, 335–354. [CrossRef]

21. Brachmann, E.; Krull, A.; Michel, F.; Gumhold, S.; Shotton, J.; Rother, C. Learning 6D object pose estimation
using 3D object coordinates. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 536–551.

22. Choi, C.; Christensen, H.I. Rgb-d object tracking: A particle filter approach on gpu. In Proceedings of the
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November
2013; pp. 1084–1091.

23. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Konolige, K.; Bradski, G.; Navab, N. Technical demonstration
on model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered
scenes. In Proceedings of the European Conference on Computer Vision, Firenze, Italy, 7–13 October 2012;
pp. 593–596.

24. Ren, S.Q.; Cao, X.D.; Wei, Y.C.; Sun, J. Global refinement of random forest. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 723–730.

25. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
26. Petit, A.; Marchand, E.; Sekkal, R.; Kanani, K. 3D object pose detection using foreground/background

segmentation. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle,
WA, USA, 26–30 May 2015; pp. 1858–1865.

27. Schulter, S.; Leistner, C.; Wohlhart, P.; Roth, P.M.; Bischof, H. Alternating regression forests for object
detection and pose estimation. In Proceedings of the IEEE Intertional Conference on Computer Vision,
Sydney, Australia, 3–6 December 2013; pp. 417–424.

28. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.
[CrossRef]

29. Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. Liblinear: A library for large linear classification.
J. Mach. Learn. Res. 2008, 9, 1871–1874.

30. Handa, A.; Bloesch, M.; Patraucean, V.; Stent, S.; McCormac, J.; Davison, A. Gvnn: Neural network library for
geometric computer vision. In Proceedings of the European Conference on Computer Vision, Amsterdam,
The Netherlands, 8–16 October 2016; pp. 67–82.

31. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv: 1602.07360.

32. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1026–1034.

33. Nair, V; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

34. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

35. Clevert, D.A; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear
units (elus). arXiv 2015, arXiv:1511.07289.

36. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
37. Brox, T.; Rosenhahn, B.; Gall, J.; Cremers, D. Combined region and motion-based 3D tracking of rigid and

articulated objects. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 402–415. [CrossRef] [PubMed]
38. Haber, T.; Fuchs, C.; Bekaert, P.; Seidel, H.P.; Goesele, M.; Lensch, H.P.A. Relighting objects from image

collections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL,
USA, 20–25 June 2009; pp. 627–634.

39. Liu, S.Y.; Do, M.N. Inverse rendering and relighting from multiple color plus depth images. IEEE Trans.
Image Process. 2017, 26, 4951–4961. [CrossRef] [PubMed]

40. Mutto, C.D.; Zanuttigh, P.; Cortelazzo, G.M. Time-of-Flight Cameras and Microsoft Kinect; Springer Publishing
Company, Inc.: New York, NY, USA, 2012.

41. Mutto, C.D.; Zanuttigh, P.; Cortelazzo, G.M. Probabilistic tof and stereo data fusion based on mixed pixels
measurement models. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 2260–2272. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11263-011-0514-3
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1109/TPAMI.2009.32
http://www.ncbi.nlm.nih.gov/pubmed/20075468
http://dx.doi.org/10.1109/TIP.2017.2728184
http://www.ncbi.nlm.nih.gov/pubmed/28727551
http://dx.doi.org/10.1109/TPAMI.2015.2408361
http://www.ncbi.nlm.nih.gov/pubmed/26440266


Sensors 2018, 18, 2734 20 of 20

42. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G. Pytorch. Available online: https://github.com/pytorch/
pytorch (accessed on 25 Janurary 2018)

43. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1312.4400.
44. Coskun, H.; Achilles, F.; DiPietro, R.; Navab, N.; Tombari, F. Long short-term memory kalman filters:

Recurrent neural estimators for pose regularization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5525–5533.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method 
	Random Forest-Based 3D Temporal Tracker
	Local Refinement of Random Forest
	Learning with Indicator Vector
	Learning with the Leaf Matrix

	CNN-Based Motion Compensation
	Network Architecture
	Training Dataset
	Data Preprocessing

	Online Rendering-Based Occlusion Detection
	Details of Using Detected Occlusion

	Experiments 
	Lifting of the Overlap Ratio
	Tracking Accuracy on the RGB-D Object Pose Tracking Dataset
	Tracking Accuracy on a Real Dataset
	Robustness against Occlusion
	Computation Time

	Conclusions 
	References

